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ABSTRACT

H ighly efficient power conversion beyond the capabilities of silicon electronics is required
to meet the growing global demand for power and to enable emerging technologies. The
high breakdown field of wide bandgap semiconductors make these materials capable of

meeting this demand in a power electronics revolution. Gallium nitride (GaN) is especially suited
to this role due to its high electron mobility and its ability to form a high density 2D electron gas,
resulting in enhanced efficiency. Compared to silicon, GaN systems can provide more efficient
power conversion at higher voltages, all at a fraction of the system size.

Despite its promising material properties, a number of research topics remain before GaN
technology can be fully exploited. In lateral devices, the substrate is usually grounded so increas-
ing the vertical breakdown voltage of GaN-on-Si epitaxies is required to enable higher voltage
devices while maintaining the low production cost associated with the use of silicon substrates.
This has been approached from two directions in this thesis. Firstly from a material property
perspective, by furthering the understanding of how carbon doping increases the resistivity of
GaN. Through a combination of electrical measurements and device simulations, it is shown
that carbon in GaN incorporates as donors as well as acceptors and that this self-compensation
ratio of donors to acceptors is above 0.4. As the self-compensation ratio determines the material
resistivity, it is an essential parameter in device design and future simulation works. Secondly,
optimisation of epitaxial resistivity was approached at the device level. It is shown through
electrical measurements that the resistivity of the epitaxy is reduced after processing Ti/Al based
Ohmic contacts. These sub-contact leakage paths are further studied through a novel use of the
quasi-static capacitance-voltage technique to reveal these paths extend up to 1.6 µm, all the way
to the superlattice strain relief layers. The existence of these leakage paths is widely unknown
and being aware of their impact is an important step forward for buffer design and accurate
device simulation.

Vertical GaN-on-GaN devices are desired over lateral devices for their improved thermal
performance, superior breakdown characteristics and reduced peak surface fields. The primary
research efforts are focused on optimising vertical leakage and edge termination. The reverse
leakage in vertical pn diodes is studied in the time domain and reveals the first evidence of
impurity band conduction. The model required to explain the results also demonstrates the ability
of charged point defects to control the conductivity of dislocations. This new understanding of
the leakage dynamics could influence the way leakage is managed in future device designs. The
reliability of these devices is also a topic of interest as qualification of this emerging vertical GaN
technology is required before commercialisation. The mean time to failure of these vertical diodes
was evaluated by adapting existing analysis techniques to facilitate the application of Weibull
statistics to step stress measurements. These results represent the first lifetime estimations of
this technology and this new technique will enable more rapid reliability testing of vertical GaN
devices in the future.
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INTRODUCTION

More than one tenth of the worlds electrical power is wasted in conversion losses between

generation and consumption [1–3]. Through wide-spread adoption of high efficiency

power converters, these losses can be halved [2], easing the demand for electrical power

which is projected to increase by 12% in the US over the next 30 years [4]. The demand for

highly efficient power converters is growing with applications in data centres, electric vehicles,

wireless charging and LiDAR [5] as well as enabling new technologies where no other practical

solutions exist. 30% of global greenhouse gas emissions comes from industrial power consumption

[6] which has been reported to consume double the theoretical minimum power requirements,

primarily due to energy inefficiency [7]. Therefore, highly efficient power electronics will impact

positively on the global demand for power, global greenhouse gas emissions and can enable new

technologies such as electric vehicles.

Applying mature and well proven silicon based technologies to this problem has resulted in

diminishing returns of performance with system efficiencies ultimately limited by the material

properties. The introduction of wide bandgap semiconductors can surmount these limits and

facilitate ultra-high efficiencies and high power densities all delivered at a commercially viable

price. Gallium nitride (GaN) power electronic devices are already being commercialised and

beginning to compete with the $30B silicon power electronics market [5, 8]. As a wide bandgap

semiconductor, GaN devices can operate at higher voltages, reducing the need for lossy step

down and at higher temperatures, further reducing cooling requirements. The critical breakdown

field of GaN is > 5 MVcm−1, more than ten times higher than Si, allowing device operation at

higher voltages in smaller geometries [9]. In a high electron mobility transistor (HEMT) device

architecture, GaN can deliver carrier mobilities of up to 2000 cm2V−1s−1 [10], reducing conduction

losses and enabling up to a five times increase in the theoretical maximum switching speed.
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CHAPTER 1. INTRODUCTION

Maximising the switching speed is desired since switching related losses depend on this duration

when hard switching. An increase in the switching speed also allows the switching frequency to

be proportionally increased without increasing switching losses, facilitating a reduction in the

required size of passives [11, 12]. These smaller components, coupled with the high power density

of GaN devices, gives rise to a >10 times reduction in the size of GaN based systems compared to

silicon [13]. This gives GaN based power converters an advantage over Si and SiC in applications

with weight and volume restrictions [14].

Taking the example of electric vehicles, efficiency and on-board power consumption are critical

since batteries have a lower energy density than fuel tanks [15]. Currently silicon is still the

primary material used in power conversion circuits but there is interest in the higher power

conversion efficiency and reduced system size offered by new materials such as GaN [16]. In order

to replace Si in electric vehicles, GaN power converters need to match or improve on the efficiency

of existing technology. Current GaN based power converters are already able to compete with

mature Si systems achieving efficiencies of up to 99% [17]. Additionally, GaN can operate at

higher temperatures than Si which reduces the power requirements for cooling. The reduction

in the volume of cooling systems coupled with the ability to use smaller passives enables GaN

power converters to be smaller and lighter than Si equivalents. In all, GaN power converters

have the potential to be lighter, more compact and more efficient, all of which increase the range

of the vehicle while remaining competitive in total cost [18].

Power converters require high current transistors and diodes with current GaN technology

targeting the application space of 600 V to 1200 V [16, 19]. The first GaN based HEMT was

reported in 1993 by Khan et al. and was grown on a sapphire substrate [20]. However, the high

defect density of the GaN and the poor thermal conductivity of sapphire made these devices

unsuitable for power applications due to high leakage and difficulties in heat sinking. GaN-on-SiC

fabrication in 1997 by Binari et al. solved these issues, taking advantage of the higher thermal

conductivity of SiC and by including an AlN nucleation layer to reduce dislocation density [21].

This created devices suitable for high power operation but at great expense due to the cost of

the SiC substrates, meaning this technology was not competitive to industry and was originally

limited to defence based applications. It was not until 2001 with the development of GaN-on-Si

technology that a suitable and affordable solution was found [22]. As a well-established material,

silicon offers widely available infrastructure for growth on >150 mm wafers with a higher thermal

conductivity than sapphire, and ten times cheaper than SiC. A challenge in growth on silicon

is the large lattice mismatch and the differing coefficients of thermal expansion. This caused

wafer cracking and introduced high densities of dislocations (> 1010 cm−2) which required the

development of strain management techniques. By introducing compressive stress through

AlN interlayers or AlN/GaN superlattice layers the cracking can be eliminated, although the

epitaxies are still highly defective with typical dislocation densities in the order of 109 cm−2.

GaN HEMTs are normally-on since the 2DEG channel is only depleted with a negative bias on

2



the gate. However, there is a demand for normally-off devices as they offer fail-safe operation

and more simplified gate driver circuitry [23]. Normally-off behaviour can be achieved in a

cascode configuration with a low voltage Si MOSFET [24]. Additionally, true normally-off GaN

HEMTs have been achieved by locally reducing the 2DEG density under the gate either by barrier

recession, deposition of a p-type layer or Florine implantation [25–27]. GaN-on-Si wafers are

sufficient for GaN HEMTs as the high dislocation densities do not affect the 2DEG. However, for

vertical device geometries where vertical leakage is more critical the dislocation density is too

high, although some pseudo-vertical devices have been demonstrated [28, 29]. Growth on native

GaN substrates enabled by hydride vapour phase epitaxy (HVPE) or ammonothermal growth

[30, 31] allows epitaxial growth with defect densities 104 times lower, facilitating production

of the first vertical GaN-on-GaN pn diode in 2003 [32]. Unlike lateral devices, vertical devices

can be scaled up to operate at higher electric fields without greatly increasing their area on the

wafer [33]. Improvements in material quality and device design have increased the breakdown

of vertical GaN pn diodes to 4 kV [34] but until recently the cost of the substrate has been

prohibitive. The possibility of developing epitaxial lift-off techniques would allow the reuse of

these expensive substrates, greatly reducing the production cost and enabling commercialisation.

After the 25 years of progress summarised above, GaN power devices are beginning to become

commercially available with GaN based consumer products now available for purchase such

as compact laptop chargers. However, some limitations are still to be overcome to harness the

full potential promised by the material properties. The maximum forward bias surge current

depends on the junction thermal capacity and the reliability of the device also depends on the

junction temperature. These two factors are driving research into heat extraction from GaN

devices since the thermal conductivity is lower than in silicon. GaN-on-GaN pn diodes offer

high breakdown fields, low reverse leakage and have been reported to show avalanche capability.

However, reverse bias leakage is still seen in these devices due to the presence of vertical

dislocations. Reducing the reverse leakage would increase the operating efficiency, motivating

work on further reduction of the dislocation density as well as study of the leakage mechanisms.

Building a firmer understanding of the physics behind the leakage may present alternative

methods of leakage suppression. This highlights the need for further study of bulk GaN devices

which are already very low leakage and have the potential to approach the material limits of the

reverse breakdown field.

In AlGaN/GaN-on-Si HEMTs, both the lateral and vertical leakage can be reduced by intro-

ducing carbon into the epitaxy below the channel [35]. The carbon can incorporate as an acceptor

or a donor, making it an amphoteric dopant and various trap levels are possible. Overall, carbon

has the effect of pinning the Fermi level in the mid gap, increasing the material resistivity. This

method of leakage suppression works well and is commonly used despite an incomplete under-

standing of exactly how the carbon sets the resistivity. Since the carbon introduces acceptors and

donors, these both influence the position of the Fermi level and the exact resistivity of carbon
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doped GaN depends on this ratio of donors to acceptors, referred to as the self-compensation ratio.

Direct measurements of the carbon self-compensation ratio are difficult as most methods for

measuring dopant density are destructive and so only measure the total carbon density. Therefore,

for a complete understanding of this widely used material, and for estimations of the resistivity of

carbon doped GaN which are needed for simulation, an estimate of the carbon self-compensation

ratio is required.

The vertical breakdown field also benefits from the carbon doping as it increases the resistivity

of the epitaxy. Vertical breakdown is determined by the epitaxial resistivity and thickness which,

when grown on silicon, is limited by strain management to ∼ 7 µm [36, 37]. For operation of

GaN-on-Si devices at higher voltages new strain management strategies need to be devised

facilitating thicker epitaxial growth. Alternatively, the breakdown field of the epitaxy must be

increased which is still much lower than the theoretical limits of GaN. For this latter reason,

it is critical to study and optimise any aspects of the growth or processing which reduce the

breakdown field of the epitaxy. For example, it has recently been shown that the passivation

stoichiometry, deposited after growth, can influence the buffer resistivity [38, 39].

The typically stated requirements of a transistor specify a low specific on-resistance in

the order of 1 mΩcm2 with a dynamic on-resistance of less than 10% [40] i.e. the channel

on-resistance never increases by more than 10%, regardless of any historical stress. Dynamic

on-resistance or current collapse refers to the temporary increase in on-resistance of the channel

after electrical stress in the off-state. In GaN HEMTs this occurs either via surface trapping

causing a virtual gate or by bulk trapping acting as a back-gate. The use of source and gate

field plates to redistribute the electric field and reduce the electric field peak at the drain side

of the gate edge, as well as optimised surface passivation has allowed good management of

surface related current collapse. In the bulk, trapping is mostly caused by deep levels related to

the intentional carbon doping. Rapid de-trapping of these states and hence the suppression of

current collapse requires leakage paths to facilitate the removal of the charge. It has been shown

experimentally that low current collapse buffers can be achieved through a leaky GaN channel

layer [41, 42] where leakage paths are either just under the contacts or distributed along the

entire channel depending on the growth and processing. Thus in HEMTs an apparent trade-off is

presented between current collapse and vertical leakage.

1.1 Thesis Structure

A selection of the challenges discussed above are addressed in this thesis. The following two

chapters cover the required theoretical background and measurement techniques. In Chapter

4, two AlGaN/GaN samples, with and without carbon doping, are used to study the electrical

effects of carbon in AlGaN. The empirically observed increase in resistivity is attributed to carbon

being self-compensating. With the aid of device simulations, the carbon self-compensation ratio

4



1.1. THESIS STRUCTURE

in AlGaN, which was previously unknown, is estimated. Since this ratio alone sets the material

resistivity, a reasonable estimate is required by researchers performing device simulations.

Chapter 5 identifies and investigates a reduction in the epitaxial resistivity of an AlGaN/GaN

HEMT epitaxy due to device processing. This is seen as an additional vertical leakage under

Ti/Al based Ohmic contacts. Measurements of the leakage current on bespoke structures are

used to identify the presence of these preferential leakage paths below the contacts. A novel

analysis of quasi-static capacitance-voltage measurement data is used to identify the length of

these leakage paths in the epitaxy and estimate their resistivity. This Ti/Al contact process is

widely used and so the implications of this result extend to the majority of GaN devices. A full

understanding of this behaviour is crucial for maximising the operating voltage of GaN-on-Si

devices, which requires optimisation of the epitaxial breakdown field for successful high voltage

device operation.

Continuing on to vertical devices, Chapter 6 investigates the reverse bias leakage mechanism

in GaN-on-GaN pn diodes. Transient measurements of the reverse leakage and device capacitance

reveal previously unseen features which are not possible to explain using existing models. A new

model is constructed attributing the reverse leakage to conduction along impurity bands in the

cores of the dislocations. In this model, the core conductivity is controlled by the charge states

of surrounding point defect clusters. This work provides the first direct evidence for impurity

band conduction along dislocations in bulk GaN. The reverse leakage in pn diodes is a critical

parameter for the operating efficiency and this model provides new insight into the leakage

mechanisms in GaN-on-GaN vertical devices. Another important factor for the commercialisation

of this technology is the reliability. Chapter 7 evaluates the lifetimes of current vertical devices

on bulk GaN. A step stress technique is used, which reduced the measurement time compared

to conventional accelerated lifetime testing techniques. Analysis of these measurements is

performed using methods not previously applied to GaN devices. The results provide the first

lifetime estimations for vertical GaN-on-GaN pn diodes.
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2
THEORETICAL BACKGROUND

In order to understand the electrical characterisation in this thesis, some context is required.

This chapter presents a summary of the material properties of GaN and compares it to

other materials in the context of power electronics. An overview of GaN device architectures

is presented as well as the material quality requirements and growth methods. This chapter also

discusses some selected semiconductor physics which is relevant to later research chapters and

introduces the challenges faced with device reliability.

2.1 Gallium Nitride

2.1.1 Crystal properties

Gallium nitride is a III-V compound semiconductor existing in two crystal structures; wurtzite

and meta-stable zinc blend. For power devices, the more stable wurtzite crystal structure is

used, shown in Figure 2.1. This is a hexagonal crystal system with inter-penetrating hexagonal

close packed lattices of gallium and nitrogen. Wurtzite belongs to the symmetry group P63mc

meaning that the primitive cell has sixfold screw symmetry, mirror symmetry in the a plane

and transflection symmetry in the c direction. Critically however, this crystal has no inversion

symmetry in the c-plane. This means that reflecting the position of each atom about the centre

of the primitive cell does not recover the original crystal. Coupled with the large difference in

electro-negativity of the two constituent elements, this gives rise to an intrinsic internal electric

field. This spontaneous polarisation is enhanced by a piezoelectric polarisation when the crystal

is subject to tensile stress perpendicular to the c-plane.

The electronic properties of a crystal can be evaluated by consideration of the structure in

reciprocal space. The primitive cell in reciprocal space is referred to as the Wigner-Seitz cell and
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Figure 2.1: A hexagonal section of wurtzite GaN, viewed (a) along the a direction, (b) in isometric
view and (c) along the c direction. The thick black lines outline the primitive cell while the solid
grey lines represent bonds and the dashed lines highlight the hexagonal symmetry.

is constructed such that its basis vectors are orthogonal to the basis vectors of the primitive

cell and the dot product of the two corresponding vectors is a multiple of 2π [43]. The centre of

the reciprocal cell is referred to as the Γ point and represents zero momentum. The Γ point and

the locations of other high symmetry points are labelled in Figure 2.2(a). Considering Bloch’s

theorem, electron plane waves with wave vector k, must be periodic with the crystal lattice [44].

As such, the size of the Wigner-Seitz cell represents the longest possible wavelength an electron

wave function can assume. The energy-momentum band structure can be constructed with this

consideration of k space and the periodic crystal potential field V (r) using the Schrödinger

equation of the form ( −~2

2m∗∇2 +V (r)
)
Ψ(r,k)= E(k)Ψ(r,k) (2.1)

where m∗ is the carrier effective mass, Ψ is the wave function and E is the carrier energy. By

solving this equation for each momentum state, the electronic band structure can be constructed.

The band structure of GaN is shown in Figure 2.2(b) between the high symmetry points.

Only the bands closest to the Fermi level, which are partially filled above 0 K, contribute

to conduction. In GaN, conduction occurs at the Γ point where the bandgap is minimum. The

carrier effective mass is inversely related to the curvature of the band which means that in GaN,

electrons have a lower effective mass than holes. As the mobility is inversely proportional to the
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Figure 2.2: (a) The reciprocal cell with labelled high symmetry points. (b) The band structure of
wurtzite GaN, adapted from [45]. Around the conduction band minimum (CB) and valence band
maximum (VB) the bands are approximately parabolic with the light electron band and light and
heavy hole bands.

effective mass, electrons have a higher mobility and as such, are used as the charge carrier in

unipolar GaN devices. In addition, since the curvature of the conduction band differs between the

Γ-M and Γ-A directions, the electron effective masses will be anisotropic. The electron effective

masses parallel and perpendicular to the c axis are m∗∥
e = 0.2m0 and m∗⊥

e = 0.18m0 respectively

where m0 is the mass of a free electron [46].

The conduction band minimum and valence band maximum both coincide at the Γ point

making wurtzite GaN a direct bandgap semiconductor. This means that zero momentum change is

required for carriers transitioning across the bandgap. A direct bandgap can reduce the minority

carrier lifetime by adding direct recombination to the list of available recombination mechanisms.

The impact of this in the context of diodes is discussed in Section 2.4.2.1. A direct bandgap is

a requirement for optoelectronic devices such as LEDs and solar cells since photons provide no

momentum to the interaction. Indirect bandgap materials require the presence of phonons for

optical interaction which greatly reduces the probability of these radiative transitions occurring.

The direct bandgap of 3.4 eV makes GaN suitable for UV LEDs, which can be extended to blue

LEDs when alloyed with indium. Moreover, the wide bandgap increases the energy required to

create electron hole pairs and therefore increases the field required for impact ionisation and

breakdown. Typically, the breakdown field scales with the bandgap to the power of 2.5 when the

bandgap is direct [47]. This is the reason wide bandgap semiconductors are ideal for high power

applications.
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Figure 2.3: The spontaneous (SP) and piezoelectric (PZ) polarisation fields are shown in (a) on a
purely instructive epitaxy with (b) the resulting band diagram and (c) the density of the carrier
accumulation.

The band structure of wurtzite AlN contains many of the same features as GaN but with a

much wider bandgap of 6.1 eV. The spontaneous polarisation of wurtzite AlN is higher than in

GaN, with the polarisation field of AlGaN described by a non-linear interpolation [48]. Growing

these materials epitaxially with abrupt changes in aluminium composition results in heteroin-

terfaces at which there is a discontinuity in the polarisation field. In addition, the difference

in lattice parameters between the two materials causes growth induced stress, adding a piezo-

electric contribution to this discontinuity as shown in Figure 2.3(a). An interface charge, σ, is

required to facilitate these internal field discontinuities and results in the accumulation of free

carriers shown in Figures 2.3(b) and 2.3(c). Depending on the polarity of the interface charge, this

results in the formation of a polarisation induced two dimensional electron gas (2DEG) or a two

dimensional hole gas (2DHG). The density of the sheet charge is determined by the difference in

the net polarisation fields, i.e. for material B on material A,

σAB = (PSP
A +PPZ

A )− (PSP
B +PPZ

B ) (2.2)

where PSP and PPZ are the spontaneous and piezoelectric polarisations respectively and have

been determined empirically for the GaN-AlGaN-AlN material system as a function of the Al

composition by Ambacher et al. [48]. These equations hold, providing there is no strain relaxation

which typically will occur in layers & 20 µm thick [49]. To conserve net neutrality, the electrons

which form the 2DEG must originate from elsewhere and leave behind a positively charged region

of the crystal. In a HEMT, this source is commonly attributed to surface states on the AlGaN

barrier and explains why a minimum barrier thickness is required for 2DEG formation [49]. As

the barrier thickness is increased, the Fermi level at the surface is lowered by the polarisation

field, shown in Figures 2.4(a) and 2.4(b). When the Fermi level drops below the highest surface

state energy, that state can become unoccupied and the electrons in those states can migrate
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Figure 2.4: The source of electrons in the 2DEG, adapted from [49]. Band diagrams depicting the
ionisation of surface donor states of depth ED due to the polarisation field are shown in (a) and
(b). The 2DEG density as a function of AlGaN barrier thickness is shown in (c). The deviation
from the model above ∼ 15 nm was attributed to strain relaxation.

to form the 2DEG. Therefore, the thicker the barrier, the more surface states will be emptied

into the 2DEG. The experimentally measured 2DEG density as a function of AlGaN barrier

thickness is shown as points in Figure 2.4(c) and fits well with this theory. This mechanism is

completely analogous to the polar catastrophe in polar thin films [50]. From Figure 2.4(c) the

minimum barrier thickness for 2DEG formation is seen to be around 3.5 nm with a Al0.35Ga0.65N

barrier. Increasing the polarisation field by increased Al content in the barrier, and thus reducing

the minimum barrier thickness for 2DEG formation is not possible since the differing lattice

constants result in cracking. However, thinner barriers can be achieved by the introduction of

a 1−5 nm AlN layer between the channel and the barrier which boosts the polarisation field

and comes with the added advantage of further increasing the 2DEG mobility by reducing alloy

scattering at the interface [51]. The reduction of the 2DEG density with increasing barrier

thicknesses above ∼ 15 nm in Figure 2.4(c) was attributed to strain relaxation.

2.1.2 GaN for power applications

The primary materials used in the power semiconductor industry are compared in Table 2.1. The

comparatively small bandgap of silicon makes it less naturally suited to high power electronics,

however, because of its high maturity and low cost, a lot of work has gone into workarounds,

pushing device performance to beyond their theoretical material limits. In contrast, the bandgaps

of GaN, SiC and diamond are much larger, resulting in breakdown fields more than ten times

larger than Si. This allows far simpler approaches in device design to achieve superior devices.
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Table 2.1: Bulk intrinsic properties of semiconductors used in the power electronics industry
[40, 55, 56].

Bandgap
(eV)

Relative
permittivity

Electron
mobility
(cm2V−1s−1)

Breakdown
field
(MV/cm)

Baliga figure
of merit (BFOM)
normalised to Si

Si 1.1 11.8 1450 0.3 1
4H-SiC 3.2 10 900 3 526
GaN 3.4 9.5 440 5 1131
C (diamond) 5.5 5.3 4500 10 51627
β−Ga2O3 4.4-4.9 10-15 200-300 7-8 1485-4987

SiC has an advantage in heat extraction with its higher thermal conductivity but has a lower

breakdown field. A good measure of the suitability of a material to power switching is the Baliga

figure of merit (BFOM) [52]. This is defined as

BFOM= εµE3
C (2.3)

where ε is the material permittivity, µ is the carrier mobility and EC is the critical field. This

analysis is also presented in Table 2.1 normalised to silicon. Here it is immediately obvious that

on paper, diamond is the best material for high power devices. However, there is no known n-type

dopant for diamond and even for unipolar devices, diamond is fundamentally unsuitable due to

the 300 meV deep acceptor which has low activation and thus presents a high series resistance.

The next highest figure of merit is beta phase Ga2O3 which is currently a material of high interest

in the research community but is still in the very early phases of device development. Comparing

GaN and SiC, the material based figure of merit of GaN is significantly better. This is reflected in

the theoretical performance limits of GaN devices which should be able to block higher voltages

while simultaneously providing lower on-resistances than the best SiC devices [53]. SiC has the

advantage in heat extraction with a higher thermal conductivity and this is desired as junction

temperature is linked to device lifetime. However, the property that sets GaN based devices apart

from SiC equivalents is the polar crystal structure. With the polar structure of GaN comes the

ability to use device architectures which exploit a 2DEG channel. This will be discussed in more

detail in section 2.2.2 but among other things, this facilitates an increase in carrier mobility from

the bulk value of 440 cm2V−1s−1 (at 300 K with a donor density of ∼ 1017 cm−3 [54]) to as high as

2000 cm2V−1s−1 at room temperature [10].

2.2 Devices

2.2.1 Metal-semiconductor junctions

Metal-semiconductor junctions are required for device contacting and form with two distinct

behaviours depending on the work function of the metal and the electron affinity of the semi-
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Figure 2.5: The band diagrams of metal-semiconductor junctions before contact and after equi-
librium. (a) Before contact Φ< χe resulting in the Ohmic contact in (b). (c) Before contact with
Φ> χe resulting in a barrier height of φB and (d) the resulting Schottky junction after contact
with a depletion width of Wd.

conductor. The work function, Φ, and the electron affinity, χe, are defined as the energy to the

vacuum level from the Fermi level and conduction band minimum respectively. If Φ6 χe as in

Figure 2.5 (a), upon contact, electrons will move from the metal to the semiconductor increasing

the chemical potential in the semiconductor and bending the bands down. This means after

equilibrium, the band structure looks like Figure 2.5 (b) and there is no barrier to charge flow in

either direction resulting in an Ohmic contact. The opposite case, in Figure 2.5 (c) where Φ> χe

introduces a barrier, φB, with a height of Φ−χe. On contact, electrons flow from the semiconductor

to the metal, exposing a positive space-charge and forming the Schottky junction shown in Figure

2.5 (d).

The example band diagrams in Figure 2.5 feature an n-type material but the same can be

applied to p-type semiconductors. In practice on GaN, Ohmic contacts are made on n-GaN with

the metals titanium and aluminium. These metals are used together to permit diffusion of the

contact metals into the GaN enabling the contact of 2DEGs. To make an Ohmic contact to a p-type
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semiconductor, the work function must be high such that the metal Fermi level is in the vicinity

of the valence band energy. Few metals have a sufficiently large work function to satisfy this

requirement for GaN making Ohmic contacts to p-GaN challenging. Nickel is commonly used for

this purpose, however, the contacts are not Ohmic but Schottky with a very small barrier. While

the barrier height is set by the material, the depletion width, Wd is determined by the doping

density as will be shown in section 2.4.4 (where the potential Vbi in equation 2.12 is equivalent

to the barrier height φB). Therefore by heavily doping the p-GaN, the barrier width can be made

very thin, reducing the impact of the barrier and rendering only weak Schottky behaviour. On

the other hand, nickel on n-GaN presents a large barrier height and results in good rectifying

behaviour.

It is not uncommon for multiple metals to be used in a stack. For example gold can be

deposited on top of the metal-semiconductor junction to stop oxidisation of the contact metal in

air. In HEMTs where the Ohmic contacts need to contact a 2DEG through a barrier, a common

approach is to deposit layers of titanium, aluminium, nickel and then gold (Ti/Al/Ni/Au) [57].

During annealing the Ti/Al layers react and spike through the barrier into the 2DEG resulting in

a low resistance electrical contact. The nickel acts as a cap and keeps the contact smooth with

the inert gold ensuring the contact retains a conductive surface allowing the pad to be probed or

wire bonded. This metal stack is not compatible with silicon foundries since in silicon devices

gold is a rapidly diffusing contaminant. Acting as a deep recombination centre, gold destroys the

minority carrier lifetime. Alternative gold free metal stacks providing similar contact resistances

are Ta/Al/Ta [58] and Ti/Al/TiN [59].

2.2.2 Lateral device design

Because of the advantages presented by the 2DEG, early research was focused on developing

lateral devices to exploit this. As such, lateral devices are the primary architecture entering the

electronics industry today. The typical design of a lateral GaN power transistor is the HEMT,

shown in Figure 2.6. The source and drain contacts make Ohmic contact to the 2DEG channel

with a Schottky gate contact in between. The layers of the epitaxy will be discussed in detail in

section 2.3.1.

A HEMT is a type of field effect transistor (FET) whereby the potential of the gate controls

the size of the depletion region below it and the source-drain conductance is controlled by the

gate potential in this way. Unlike conventional FETs, which create the depletion region by a

pn junction, HEMTs employ a heterojunction for this job. This means that more specifically,

HEMTs are a type of heterostructure FET (HFET) [43]. HFETs are desirable since the large

barrier to the gate allows for low gate leakage and the confinement of the conductive channel

gives rise to a high transconductance. However, most HFETs require doping in the channel layer

to make it conductive and this presents a large number of impurity scattering sites. As a result

the carrier mobility is low and the switching speeds are limited. To resolve this issue in gallium
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Figure 2.6: The layer structure and device topology of a typical power switching GaN-on-Si
HEMT with mesa isolation. The 2DEG forms at the top of the unintentionally doped (UID) GaN
channel, below the AlGaN barrier.

Figure 2.7: Typical DC (a) output and (b) transfer characteristics of a GaN HEMT. This data
was replotted from [60] with permission. These recently published data are representative of the
output and transfer characteristics currently achievable with GaN HEMTs.
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arsenide devices, modulation doped FETs (MODFETs) were developed wherein a region below

the heterointerface was doped to provide carriers in the channel with reduced impurity scattering.

However, in GaN, this challenge is automatically resolved by not requiring dopants at all to form

a conductive channel. Instead the polarisation induced 2DEG in GaN HEMTs provides all of

the advantages of doped HFETs without the drawbacks of impurity scattering. Namely, these

advantages are an increased transconductance, aided by the sheet charge being confined close to

the gate metal, increased carrier mobility, and the carrier density in a 2DEG is typically in the

order of 1013 cm−2 delivering the low specific on-resistance required for high power applications.

The typical DC current-voltage characteristics of a GaN HEMT are shown in Figure 2.7 and

demonstrate a transconductance of > 100 mS. The mobility of electrons in the 2DEG is far higher

than in the bulk material which permits faster switching. This is desired as the switching speed

dictates switching related loss and switching at a higher frequency reduces overall system size

when considering passives. Taking the example of a capacitor smoothing the output ripple of a

DC supply, at higher frequency a smaller capacitance can be used since ZC = 1/iωC. For device

fabrication on a wafer scale, each device is isolated by destroying the surrounding 2DEG. This is

achieved either by etching away a trench around the device to create a mesa (shown in Figure

2.6) or by implanting the area around the device with ions such as nitrogen to locally destroy the

crystalline properties of the material (and hence the 2DEG). These are referred to as mesa and

implant isolation respectively.

In the majority of power switching applications, transistors will be accompanied by high

power diodes such as in DC-DC converters. With the intention of developing GaN power ICs

in the future, lateral diodes are also being developed on the same GaN-on-Si epitaxies [61–63].

Even now, early stage all GaN-on-Si ICs featuring HEMTs and lateral diodes have already

been demonstrated [64, 65]. Lateral GaN-on-Si devices also allow for easy integration with Si

MOSFETs, delivering versatile and compact circuits [66, 67]. These lateral diodes are mostly

Schottky devices, modelled on the gate and drain of a HEMT. Thus these devices continue to

harness the advantages of the 2DEG and have been developed with a range of field plate designs

to increase the operating voltage [68, 69].

2.2.3 Vertical device design

In addition to lateral devices, vertical devices are also beginning to emerge. Despite the lack

of 2DEG, the advantages of a vertical topology include increased breakdown voltage without

increasing the device area, reduced peak surface fields and easier heat extraction [70]. In high

power applications, pn diodes are desired over Schottky diodes as they are able to withstand

higher voltages and have been reported to exhibit avalanche breakdown which is required for

surge protection [71–73]. As well as pn diodes, a range of vertical device designs on bulk GaN are

being investigated for a broad range of applications. For very high power devices, large areas are

required for power dissipation and to drop the high potential in the off-state. A lateral geometry
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Figure 2.8: Vertical device designs of advanced Schottky barrier diodes, (a)-(b), current aperture
vertical electron transistors, (c)-(d) and MOSFETs (e)-(f). Adapted from [19].

for this purpose is unfavourable since the cost of the device scales with the area of the wafer

real estate. Therefore vertical devices surpass their lateral equivalents in chip size and ease of

thermal management and present themselves as a more financially advantageous alternative.

However, vertical architectures are much more sensitive to material quality [33]. As will be

explained in section 2.3.2, these devices require low defect density material and this can be

provided by growth on native substrates.

Schottky barrier diodes (SBDs) are capable of switching faster than pn diodes and so are

more suited for high frequency applications. Schottky barrier diodes also have a lower turn-on

voltage than pn diodes but are less suited for high power applications as the reverse leakage and

breakdown characteristics are comparatively poor. Recently, trench schottky barrier diodes have

been developed using a metal-insulator-semiconductor (MIS) [74] or pn junction [75] to increase

the size of the depletion region in reverse bias. These devices are shown in Figures 2.8(a) and

2.8(b) respectively and enable the combination of the best properties of Schottky and pn diode

characteristics. Namely, the high forward current and low turn-on voltage from the Schottky

diode, with the high breakdown voltage and low reverse leakage of the pn diode. These structures

enable low turn-on voltages for vertical GaN devices which can block high voltages.
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In addition to diodes, vertical transistors are being developed. A key motivation for pushing

the development of vertical transistors over lateral devices is the possibility of achieving far

superior breakdown voltages. This is enabled by the bulk nature of the device and the resulting

absence of surface breakdown. A common vertical transistor design on bulk GaN is the current

aperture vertical electron transistor (CAVET) [76]. A p-type layer in the epitaxy impedes vertical

conduction apart from through an aperture. Control of the 2DEG above this aperture controls

the vertical conductivity of the device. This architecture, shown in Figure 2.8(c), maintains

the electron mobility of a lateral 2DEG and so has comparable gate control to a HEMT but

with the added advantage of no large surface fields around the gate, since the drain is on the

substrate. Moreover, this design can be adapted to an enhancement mode device by growing the

2DEG-forming heterointerface on the semi-polar facet [77] as shown in Figure 2.8(d).

A different approach to vertical GaN transistors is to revert to the metal-oxide-semiconductor

field effect transistor (MOSFET) topology, common in Si device design. A trench MOSFET is

shown in Figure 2.8(e) which has fewer growth steps than a current aperture vertical electron

transistor and defaults to enhancement mode behaviour [78]. The growth can be further simplified

by moving to the fin MOSFET design in Figure 2.8(f). This architecture gives rise to enhancement

mode operation without the need to grow any p-GaN [79]. Enhancement mode operation is desired

in power switches because it acts as a safeguard should the gate control circuitry fail. However,

the absence of a 2DEG in GaN MOSFETs means the carrier mobility is very low, typically around

150 cm2V−1s−1 [79, 80].

2.3 Growth

2.3.1 Heteroepitaxial Growth

The growth of lateral GaN devices is typically done by metal-organic chemical vapour deposition

(MOCVD) as this is a cost effective method for mass production and is faster than alternatives

such as molecular beam epitaxy (MBE). The principle of metal-organic chemical vapour deposition

is to combine two or more carrier gases over a high temperature substrate, typically 1000 ◦C,

where they react, resulting in the epitaxial deposition of GaN. Carrier gases often used are

tri-methyl-gallium (Ga(CH3)3), tri-methyl-aluminium (Al(CH3)3) and ammonia (NH3). Due to

the organic nature of the gases, carbon as well as other impurities are invariably incorporated

into the GaN. The concentration of these impurities can be controlled by tuning the temperature

and pressure of the reactor. In some cases carbon incorporation is desired in levels higher than

provided by the carrier gases. In this case the additional carbon is supplied by the introduction

of carbon tetrachloride (CCl4) as an additional carrier gas. Nitrogen vacancies and low levels of

other impurities such as oxygen make as-grown GaN n-type hence undoped GaN is often referred

to as unintentionally doped (UID) GaN.

For lateral devices, silicon is the substrate material of choice as it is low cost and the epitaxy
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Figure 2.9: A depiction of (a) a screw and (b) an edge dislocation in a crystal lattice with Burgers
vectors of 1c and 1a respectively. The arrow represents the Burgers vector and the extended
defect propagates up from the lattices as shown.

can be grown in existing Si foundries. However, a lot of work has been done to devise transitional

layers to make this growth possible due to the large lattice mismatch between Si and GaN as

well as the differing coefficients of thermal expansion (CTE). A generic diagram of the required

epitaxial layers for growth on Si is visible in Figure 2.6. When exposed to the tri-methyl-gallium

used in the metal-organic chemical vapour deposition reactor, the Si is etched causing damage

to large areas of the substrate. This effect is known as meltback etching and must be avoided

for successful growth [81]. A thin AlN layer is deposited on the Si for this purpose and both

protects the Si and provides a nucleation site for the growth. To manage the stress caused by the

lattice mismatch, a number of AlN and AlGaN layers are incorporated to transition from the AlN

nucleation layer to GaN. The exact design and composition of these layers, often referred to as

transition layers or strain relief layers (SRL), are generally not disclosed by growers. However,

they invariably consist of either a AlN/GaN or AlN/AlGaN superlattice, AlN interlayers or (step)

graded AlGaN. To compensate for the differing coefficients of thermal expansion, the silicon wafer

is intentionally warped to cause compressive stress during the growth of the III-N layers, which

compensates for the tensile stress on cool down. These tricks to reduce the strain of the lattice

mismatch and enable the growth of GaN-on-Si have their limitations. Currently, the maximum

achievable thickness of the wide bandgap epitaxy is limited to ∼ 7 µm including the strain relief

layers [36].

The strain relief layers also have the effect of reducing the dislocation density by approxi-

mately a factor of ten from 1010 to 109 cm−2 [82]. This is due to the many junctions of differing

strain each introducing a chance of causing dislocations to turn over by 90◦ where they may find

another dislocation of the opposite Burgers vector and annihilate. The Burgers vector represents

the magnitude and direction of a lattice distortion. For example, Figures 2.9(a) and 2.9(b) show a

screw and an edge dislocation with Burgers vectors of 1c and 1a respectively. When tracing a cir-

cuit around the dislocation, following the lattice planes, the circuit does not return to its starting

point by the displacement of the Burgers vector. Reduction of the dislocation density is important
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since these extended defects give rise to leakage paths, explained in section 2.4.5. As leakage

current flows along dislocations, these epitaxies with a high density of vertical dislocations are

unsuitable for vertical devices. However, fortunately, there appears to be little impact on the

lateral leakage and lateral mobility, likely because the high density of the 2DEG screens these

scattering centres. As the operation of a lateral device never requires low resistance vertical

conduction below the 2DEG, heavy doping of the buffer and strain relief layers with carbon can

be used to reduce vertical leakage and increase the vertical breakdown voltage.

2.3.2 Homoepitaxial Growth

For vertical devices such as pn diodes, where reducing the vertical leakage is critical, the dislo-

cation density is one of the most important epitaxial characteristics to consider. Homoepitaxial

growth is desirable in this case since it introduces no additional strain or defects other than those

already existing in the substrate. Bulk GaN substrates can be grown by hydride vapour phase

epitaxy or by the ammonothermal method. The hydride vapour phase epitaxy process first reacts

hydrogen chloride with gallium at high temperatures to produce gallium tri-chloride (GaCl3).

This is subsequently reacted with ammonia (NH3) to produce GaN and is generally deposited on

foreign seeds such as sapphire. The latter reaction takes place near equilibrium conditions with

growth rates as high as 500 µm per hour [83]. In contrast, the ammonothermal method takes

place in a high pressure autoclave. GaN solution is dissolved in ammonia and transported by

convection to an area containing GaN seeds. The presence of the temperature gradient causes

the solution to become supersaturated, forcing deposition onto the native seeds and prompting

crystal growth [84]. This method has been able to produce 2" substrates of high structural quality

but with a high point defect density and a growth rate of only a few µm per hour [85]. The

ammonothermal method has also been used to grow seeds for faster hydride vapour phase epitaxy

deposition resulting in a rapidly grown, low strain substrate. Bulk GaN substrates typically have

dislocation densities in the order of 105 cm−2 but are currently much more expensive than Si

substrates and only widely available in small, 2" wafers. However, advances in growing technology

are rapidly driving down the cost and increasing the size of the available substrates.

2.4 Selected semiconductor physics

2.4.1 p- and n-type doping of GaN

GaN can be doped both n- and p-type by introducing impurities during the growth which

incorporate substitutionally. For n-type doping during metal-organic chemical vapour deposition

growth, silane gas (SiH4) is introduced which causes the incorporation of silicon on the gallium

site [54]. This is associated with a shallow donor level of 12-17 meV [54] creating conductive n-

GaN. Conversely, p-GaN can be grown by introducing bis-cyclo-penta-dienyl-magnesium (Cp2Mg)

into the metal-organic chemical vapour deposition reactor which results in the incorporation
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of magnesium on the gallium site [86] with an acceptor energy level of ∼112 meV when in

high densities [87]. This level is deep compared to the thermal energy at room temperature,

therefore these acceptors are only partially ionised. In addition, as grown, the magnesium is

generally incorporated in complexes with hydrogen which passivate the dopant, rendering it

electrically inactive. The hydrogen can be removed by annealing in a hydrogen poor environment,

reactivating the dopant [88, 89]. However, the deeper level means that very high donor densities

are required for conductive p-GaN. Typically, densities as high as 1020 cm−3 are required as only

1-10 % are ionised at room temperature. Increasing the magnesium density beyond this value

results in material degradation and a drop off in the hole density [87].

2.4.2 pn diodes

A pn diode is a junction between p- and n-type material and exhibits an asymmetric current-

voltage characteristic, described by the Shockley equation as

I = I0

(
exp

(
qV

nkbT

)
−1

)
(2.4)

where I0 is the reverse saturation current, n is the ideality factor and kb is the Boltzmann

constant. When forward biased, carriers flow across the junction causing minority carriers to be

injected on both sides. At low defect densities, the minority carrier lifetime is sufficiently long

that the minority carriers travel all the way through the junction into the bulk quasi-neutral

region where they recombine either by a band-to-band process or via defects. Conversely, in a

junction with very high defect densities, the recombination of minority carriers can occur in

the junction before the carrier has seen the full potential drop of the junction. At most, this

halves the voltage drop seen by the carrier i.e. the voltage is divided by an ideality of two. More

realistically, both of these two cases occur resulting in an ideality between one and two depending

on the defect density at the junction. Study of the ideality over temperature is a good way to

identify thermally activated defects in the junction and identify the activation energies. From the

exponential term in the Shockley equation it looks like the forward current should be reduced

at higher temperatures. Instead, the current increases and the turn on voltage shifts to lower

voltages as the temperature is increased. This is because the reverse saturation current is also

temperature dependant, with the form

I0 = epn0

√
Dp

τp
+ enp0

√
Dn

τn
(2.5)

where pn0 (np0) is the minority carrier density in the n (p) side of the junction, τp (τn) is the

minority carrier lifetime for holes (electrons) and Dp (Dn) is the diffusion constant for holes

(electrons). The diffusion constants are defined by the Einstein relation;

De,h = kbTµe,h

e
(2.6)
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which linearly increases with temperature. The minority carrier density also increases with tem-

perature but less strongly. Therefore, the reverse saturation current increases with temperature

while the exponential term in the Shockley equation decreases with temperature. Overall, the

temperature to the power of a half wins, resulting in an increase in forward and reverse current

with temperature.

2.4.2.1 Minority carrier lifetime

The minority carrier lifetime is the mean time a minority carrier exists before recombination. This

can occur via band-to-band recombination, via a defect state known as Shockley-Reed-Hall (SRH)

recombination, or via Auger recombination. In Auger recombination the recombination energy

is donated to a third carrier which typically de-excites non-radiatively. Shockley-Reed-Hall and

Auger recombination generally deposit the additional energy as heat into the crystal (phonons),

while band-to-band recombination emits the energy as photons. The effective minority carrier

lifetime, τe f f , is governed by the recombination option with the shortest time constant, described

by the equation

1
τe f f

= 1
τBand

+ 1
τSRH

+ 1
τAuger

(2.7)

where τBand, τSRH and τAuger are the time constants for recombination via band-to-band,

Shockley-Reed-Hall and Auger recombination respectively. As GaN is a direct bandgap semi-

conductor, band-to-band recombination does not require any momentum exchange and so can

occur without requiring phonon interaction. This greatly increases the likelihood of band-to-band

recombination compared to an indirect bandgap semiconductor and reduces the band-to-band

recombination time constant accordingly. Shockley-Reed-Hall recombination via defect states

intuitively depends on the defect density. The higher the material quality, the lower the recom-

bination rate and the longer the time constant. Auger recombination is only significant at high

current densities.

In metal-organic chemical vapour deposition grown GaN, the minority carrier diffusion length

has been measured as 0.28 µm corresponding to a minority carrier lifetime of 6.5 ns [90]. In

hydride vapour phase epitaxy grown GaN which has a much higher material quality, the minority

carrier diffusion length has been measured as high as 2.5 µm corresponding to a minority carrier

lifetime of 40 ns [91]. In order to achieve a diode ideality near 1, the minority carrier diffusion

length must be greater than the depletion region size. In equilibrium, the typical depletion width

of a GaN diode is around 0.5 µm and reduces in forward bias. This is less than or in the same

order of magnitude as the diffusion lengths reported above meaning near ideal GaN diodes are

achievable given a sufficiently high material quality, despite the direct bandgap nature of GaN.
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Figure 2.10: (a) The energy levels in GaN resulting from carbon incorporation with their charge
states. Density functional theory simulations of the formation energies of these defects are
reproduced from Lyons et al. [92]. These results are shown as a function of Fermi level in (b)
Ga-rich and (c) N-rich growth conditions.

2.4.3 Carbon doping in GaN

In GaN-on-Si HEMTs for power switching applications, carbon is often intentionally incorporated

in high densities in the buffer and strain relief layers to increase the material resistivity, sup-

pressing buffer conduction and increasing the vertical breakdown voltage [93]. Carbon doped

GaN (GaN:C) has been measured to have a resistivity in the order of 1013 Ωcm and its use in

power devices is based on this empirical observation [35]. The exact mechanism that makes

GaN:C highly resistive is only now becoming clear. Density functional theory (DFT) simulations

by Lyons et al. [92] predict that carbon will incorporate in GaN primarily substitutionally with

trap levels shown in Figure 2.10(a). This figure shows that carbon in GaN is amphoteric since

depending on how it incorporates, it can act as a donor (+/0) or an acceptor (0/-). Substitutional

carbon on the nitrogen site (CN) forms a deep acceptor level at 0.9 eV above the valence band. It

is predicted that this defect can undergo a lattice relaxation and become a donor-like complex by

capturing a second hole. However the result is a very deep donor level 0.35 eV above the valence

band and so is of little importance. Substitutional carbon on the gallium site (CGa) is predicted

to incorporate as a shallow donor in or near the conduction band [92] while the lowest energy

interstitial carbon configuration (Ci) forms a level of 1.35 eV above the valence band. These defect

levels have also been observed spectroscopically [94–96]. The formation of these defects costs

energy, so carbon will be incorporated in whichever configuration has the lowest formation energy.

Therefore, the lower the formation energy the higher the relative abundance of a particular

defect. Figures 2.10(b) and 2.10(c), show the simulated formation energies of each defect type

in Ga-rich and N-rich growth conditions respectively. In these figures, the x-axis represents the
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position of the Fermi level during growth. At a given Fermi level position the relative formation

energies are a good indicator of the expected relative abundances of the defect states since a

higher formation energy means a slower incorporation rate. The interstitial carbon defect only

has the lowest formation energy when the Fermi level is very near the valence band in Ga-rich

conditions. Most as-grown GaN is n-type because of unintentional dopants such as H and O and

so interstitial carbon is unlikely to form in normal growth conditions. In both Ga-rich and N-rich

conditions in n-type GaN, CN is the most energetically favourable and so is predicted to be the

most abundant. CGa is only the lowest energy in N-rich growth when the Fermi level is below the

midgap and so in n-type GaN will not be the most abundant but can still be present in a lower

density in addition to CN.

The presence of both acceptors and donors in a semiconductor leads to a phenomenon called

compensation. Compensation occurs when the electrons donated by a donor are accepted by an

acceptor and no carriers are available for conduction despite the presence of dopants. The term

self-compensation applies when both the donor and acceptor states are a result of the same

amphoteric impurity. In this particular case, the donors and acceptors are the CGa and CN defects

respectively in Figure 2.10. Since the CGa level is very shallow, all these donors will be ionised

at room temperature. In the absence of any other states, this would pull the Fermi level up to

near the conduction band. However, with the presence of the CN acceptor states at 0.9 eV, lifting

the Fermi level towards 0.9 eV will begin to cause the ionisation of these acceptors which will

push the Fermi level down again. From the discussion above there will always be more carbon

acceptors than carbon donors but acceptors will only become ionised to match the charge of the

ionised donor density. Therefore in equilibrium an equal number of donors and acceptors will

be ionised and the Fermi level will be located in the vicinity of 0.9 eV. This pinning of the Fermi

level in the midgap explains the experimental observations of increased resistivity in carbon

doped GaN.

The high acceptor concentration pinning the Fermi level in the lower half of the bandgap

makes GaN:C slightly p-type [41] and the hole concentration, p, can be calculated using standard

equations for compensated semiconductors [97];

p =−N ′
V +ND

2
+

√
(N ′

V +ND)2 +4N ′
V (NA −ND)

2
(2.8)

Here, NA and ND are the acceptor and donor densities respectively and N ′
V is the adjusted

effective density of states in the valence band, since the acceptors are only partially ionised. This

adjusted density of states is defined as

N ′
V = NV exp(−EA/kbT)

2
(2.9)

where EA is the difference in energy between the trap level and the valence band edge and

NV is the effective density of states, which laterally in GaN is 8.9×1015 ×T3/2cm−3. Since the

carbon acceptor level is deep, N ′
V is very small and is treated as N ′

V << NA, ND . Under this
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Figure 2.11: The hole concentration and resistivity of carbon doped GaN as a function of the
compensation ratio, plotted from Equations 2.8, 2.10 and 2.11. This result is independent of the
carbon density though a value of 1018 cm−3 was used in this plot at a temperature of 20 ◦C.

assumption, it has been shown that a Taylor expansion of this expression about (NA −ND)= 0

gives an excellent first order approximation of the hole concentration as [98]

p = N ′
V (

NA

ND
−1)+O (N ′2

V ) (2.10)

Second order terms of this expression are negligible since N ′
V is so small. Equations 2.8 and

2.10 are plotted, indistinguishably in Figure 2.11 along with the resulting resistivity, ρ, calculated

by

ρ = (epµh)−1 (2.11)

where µh is the hole mobility, assumed to be 10 cm2V−1s−1.

Therefore, in a compensated material, Equation 2.10 demonstrates that the carrier concentra-

tion is determined by the ratio ND /NA alone, and not the net dopant density. This ratio is defined

as the compensation ratio and through the carrier concentration, sets the material resistivity. In

the special case of both the donor and acceptor being shallow with the total dopant density much

higher than the intrinsic carrier density, and neglecting carrier freeze-out, equation 2.8 can be

instead approximated as p ' NA −ND [99], but this is not the case here. This understanding is

relevant to Chapter 4 which explores the value of the carbon self-compensation ratio in AlGaN.

2.4.4 Capacitance in semiconductors

A depleted region in a semiconductor may exist at a junction as carriers are driven away by a

built-in junction potential. If the edges of the depleted region are approximated to be abrupt, it can

be treated as the dielectric of an ideal parallel plate capacitor. With this depletion approximation,
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several properties of the materials and the junction can be extracted. From electrostatics, the

depletion width, Wd, of a highly asymmetric pn junction or a Schottky junction can be expressed

as

Wd =
√

2ε
qND

(Vbi −V ) (2.12)

where ε is the permittivity of GaN, ND is the dopant density of the lower doped material, Vbi is

the built-in junction potential and V is the applied bias. It is apparent from this equation that

the depletion width expands with increasing applied reverse bias. As such, the capacitance is

also a function of voltage, expressed as

C(V )= εA
Wd(V )

(2.13)

where A is the area of the junction. Therefore, measurements of the capacitance can be used to

identify the depletion width as a function of voltage. The doping density, and built-in junction

potential can also be extracted with this technique using the following analysis.

A small increase in the reverse bias, dV , causes a small volume of material at the depletion

edge to become depleted, expanding the depletion volume. To do this, a number of carriers,

carrying a total charge of dQ, must be swept out of the newly depleted region. By definition, the

capacitance measures this change in charge with voltage since

C = dQ
dV

(2.14)

The charge that left the depletion region can be expressed as

dQ = qAND dW (2.15)

Therefore, combining equations 2.14 and 2.15, the capacitance of the depletion region can be

written as

C = qAND
dW
dV

(2.16)

Differentiating equation 2.12 with respect to voltage and substituting into equation 2.16 removes

the depletion width term and gives

C(V )= qAND

√
ε

2qND(Vbi −V )
(2.17)

where the dependence of the capacitance on voltage as been made explicit. Re-arranging this

result in terms of 1/C2 gives
1

C2 = 2(Vbi −V )
qA2NDε

(2.18)

There are a few useful reasons to re-plot capacitance data as 1/C2 against voltage as in Figure

2.12. Firstly, using equation 2.18, the doping density can be derived from the gradient in Figure
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Figure 2.12: (a) Capacitance-voltage data of various diameter diodes plotted as 1/C2. Inset, the
data near zero was extrapolated to find the built-in junction potential. The dopant density is
shown as a function of (b) voltage and (c) depth using equation 2.13.

2.12(a) with some other constants. As a plot of equation 2.18 will be a straight line provided the

doping is constant, it is easy to see changes in the doping with depth. Secondly, as the value of

1/C2 is only sensitive to the dopant density at the depletion edge, as this edge moves through the

sample with increasing applied voltage, the dopant density through the full volume of the sample

can be profiled as demonstrated in Figures 2.12(b) and 2.12(c). Finally, by linearly extrapolating

the 1/C2 curve to V = 0, the built in junction potential can be determined (inset to Figure 2.12(a)).

2.4.5 Transport mechanisms

Beyond carrier promotion to the conduction or valence bands, there are other, non-Ohmic, means

of transport by which leakage processes can occur. Direct tunnelling of carriers can occur through

a barrier that is sufficiently thin, shown in Figure 2.13(a). The likelihood of this occurring

decreases exponentially with barrier thickness so this is only possible over very short distances

in the order of 1 nm. Tunnelling through thicker barriers is possible by (multi-step) trap assisted

tunnelling (TAT) wherein the carrier tunnels a shorter distance to an unoccupied defect state

within the barrier as one or more intermediate steps (Figure 2.13(b)). With the built-in electric

fields of III-nitrides or with an applied bias, barriers can become triangular and this enables

Fowler-Nordheim tunnelling; tunnelling to the conduction band of the barrier. This is shown

in Figure 2.13(c) and provides a shorter tunnelling distance than the total barrier thickness.

Another field enabled mechanism is Poole-Frenkel barrier lowering, shown in Figure 2.13(d).

This is not directly a conduction mechanism but rather field assisted emission which can lead

to current flow when repeated. The lowered barrier reduces the energy required for detrapping,

reducing the effective depth of a trap.
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Figure 2.13: Transport mechanisms are presented through a barrier by (a) direct tunnelling, (b)
trap-assisted-tunnelling, (c) Fowler-Nordheim tunnelling and (d) Poole-Frenkel barrier lowering
where βPF is the extent of the barrier lowering.

Table 2.2: The dependence of various conduction mechanisms on electric field (E)
and temperature (T). This table was adapted from [103].

Mechanism Expression E-Field dependence

Poole Frenkel [100] I = I0 exp
(
βPF E0.5

kBT

)
ln(I)∝ E0.5

Variable range hopping [101] I = I0 exp
(

CE
2kBT

(
T0
T

)0.25)
ln(I)∝ E

Surface leakage [102] I ∝
(

E
ρ

)
I ∝ E

βPF is the lowering of the barrier shown in Figure 2.13(d), C is a constant and T0 is a
characteristic temperature.

Similar to multi-step trap-assisted-tunnelling is the mechanism of variable range hopping

(VRH) which equally involves carriers sequentially occupying multiple point defect states to

cross a barrier. However, in the case of variable range hopping, each hop is thermally activated

into states which are classically accessible and no tunnelling is required. Because of this, a vari-

able range hopping current exhibits a temperature dependence while a trap-assisted-tunnelling

current does not. Another leakage mechanism is hopping along surface states which exist from

dangling bonds at the crystal surface. The dependence of this mechanism and those previously

mentioned on electric field and temperature are shown in Table 2.2 with the exception of tun-

nelling mechanisms. Tunnelling currents are dependent on the barrier thickness and the density

of states either side of the barrier and therefore are not dependent on temperature and have a

more complicated dependence on voltage.

As stated in section 2.3.1, the presence of dislocations can give rise to leakage paths. It was

originally thought that the very high dislocation densities in GaN would lead to rapid failure as

the material degraded under stress due to the high number of leakage paths, as had been seen in

II-VI semiconductors [104]. In this respect GaN is unusual and it appears that a large fraction of

the dislocations are not electrically active. Recent work by Usami et al. identified the location

of leakage paths in a structure using IR emission microscopy [105]. Cathodoluminescence (CL)
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images of the same sample showed numerous dark spots signifying extended recombination

centres. However, not all of the dark spots coincided with leakage points indicating the presence

of non-leaky extended defects. Transmission electron microscope images of cross-sections taken

through the leaky dislocations showed only pure screw dislocations with a Burgers vector of 1c

[105]. Study of the current voltage characteristics of dislocation leakage and correlation with the

dislocation density indicates that the mechanism for this transport is variable range hopping

[106], along sites in the dislocation cores [107].

An additional method available for probing the conductivity of dislocations is conductive

atomic force microscopy (CAFM). It has been observed that after surface etching, dislocations

form pits with the pit size depending on the Burgers vector. Therefore the pit size and the

conductivity can be correlated to the dislocation type. This was attempted by Cao et al. [108]

however, analysis of conductive atomic force microscopy results requires great care; since the tip

current depends on the contact area and force between the tip and the surface, scanning over a

pit will always increase the leakage current when pushing forward up out of a pit. This issue of

topology artefacts makes drawing conclusions from this technique challenging.

2.5 Reliability

Despite the promising material properties of GaN and the ability to fabricate lateral and vertical

devices, there are still a number of reliability issues which need to be resolved. In lateral devices,

although already in the early stages of commercialisation, HEMTs continue to suffer from issues

related to the management of peak electric fields. While regarding the more early phase vertical

devices, these challenges are related to optimising device designs but are equally related to

electric field management, particularly at device edges. An ideal transistor presents an infinite

resistance in the off-state and zero resistance in the on-state. In reality neither of these are ever

true, but a constant, low on-state resistance is desired.

2.5.1 HEMT reliability

First discussing lateral GaN HEMTs, one reliability issue is current collapse. For a normally-on

HEMT in the off-state, the gate is at a negative potential and the drain is at a large positive

potential. The drain potential is dropped both laterally and vertically and results in high electric

field regions. In these regions, 2DEG electrons can be accelerated to high energies and become

trapped in acceptors in the GaN:C. This introduces a population of negatively charged trap states

below the channel in the off state. When the device is turned on by setting the gate voltage to 0 V,

the 2DEG channel does not fully recover because the negatively charged traps below it act as a

back gate. Over time, these defect states thermally de-trap and the 2DEG density recovers to

the initial density. This phenomenon is referred to as current collapse since the channel current

is lower (has collapsed) after switching back to the on-state compared to the channel current
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Figure 2.14: An illustration of the primary degradation mechanisms governing the reliability of
AlGaN/GaN HEMTs as well as leakage and reversible charge storage phenomena.

before switching the device off. This phenomenon is equally described as dynamic on-resistance,

referring to the higher than nominal channel resistance after switching to the on-state which

gradually reduces to the nominal on-resistance. Both of these terms are used in equal measure

but are both referring to the same physics. Dynamic on-resistance directly translates into power

losses during switching since an increase in the on-resistance increases joule heating. However,

the magnitude of the losses in a power converter will depend on the duty cycle of the switching. If

the device is in the off-state most of the time, the buffer will not have time to de-trap and the

channel resistance would be permanently higher, but if the device is mostly in the on-state, there

will be little time for trapping and the on-resistance will remain low. A typical limit imposed on

the dynamic on-resistance is a maximum increase in the on-resistance of 10% after switching on

compared to the on-resistance before switching the device off.

The source of the increased on-resistance is the continued partial depletion of the 2DEG after

the channel is turned on and is related to trapped charge on the surface and in the buffer. For

both normally-on and normally-off devices in the off-state, the device experiences high electric

fields between the gate and the drain. In the buffer this can mean the generation of hot electrons,

which have been accelerated to have a kinetic energy far greater than the conduction band edge.

These electrons can easily transit into the buffer where they are trapped in deep states with long

time constants. On the surface, states associated with dangling bonds can allow surface hopping

and the occupation of these states. If unaddressed, electrons can migrate onto the surface of the

barrier from the gate, effectively increasing the gate length. This is referred to as a virtual gate

[109]. After switching to the on-state, the electrons in the surface states remain, and continue

to partially deplete the 2DEG. Likewise, the charged buffer traps act as a back-gate, partially

depleting the 2DEG from the bottom. These charge storage phenomena are shown in Figure 2.14
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as negative charge around the 2DEG.

Surface related current collapse can be resolved by the use of a passivation layer which

reduces the density of surface states [38, 110, 111]. Additionally, surface migration can be further

curbed by reducing the surface electric field at the gate edge. This can be done through the use

of properly designed field plates [112–115]. Field plates are the extension of the contact metals

laterally above the device. The T shaped gate and the source and drain field plates in Figure

2.6, reduce the peak electric field by causing the gate-drain voltage to be dropped at the edge of

each field plate rather than all at the drain side of the gate edge [114–117]. The electric field is

further reduced by increasing the gate-drain separation. For this reason, the gate is closer to the

source to provide a larger distance over which the potential is dropped when the drain is biased.

Field plates redistribute the electric field both on the surface and in the channel. In the semi-on

state, the reduction of peak electric fields reduces impact ionisation, which can otherwise lead to

degradation and accelerated device failure. Therefore this part of the device design also increases

the lifetime of GaN based devices [118, 119].

The issue of buffer related current collapse has proved more difficult to address. Deep levels in

the buffer layers are invariably present from unintentional dopants and even required to increase

the resistivity of the buffer (see section 2.4.3). Therefore, rather than minimising the density of

buffer traps, their impact can be managed by allowing them to discharge more quickly. This has

been approached by reducing the resistivity of the top of the stack which has the effect of injecting

positive charge from the surface and expediting the neutralisation of the buffer [42]. It has been

shown that processes which result in positive buffer charge injection can successfully reduce

buffer related current collapse in this way [120]. The on-resistance determines the conduction

losses which along with switching losses make up the total power losses. Therefore, resolving

current collapse is essential for realising low loss devices [40, 121].

The magnitude of the leakage currents in the off-state places another constraint on the device

performance since any leakage current represents another loss mechanism and the possibility

of device degradation [122]. Unlike in the on-state, the drain bias will be much higher than the

source, gate and substrate and the resulting electric fields can give rise to high off-state leakage

currents and hot electrons. Lateral gate-drain leakage on the surface can generally be suppressed

by a good passivation layer and well designed field plates, just like the virtual gate [113]. Lateral

source-drain leakage can also occur through the buffer, below the gate depletion region. This is

referred to a punch through and is the reason for carbon doping the layer below the channel,

rendering it highly resistive and minimising such lateral leakage [123, 124]. Finally, vertical

drain-substrate leakage can also occur and effectively limits the maximum device operating

voltage. This vertical leakage can be managed by increasing the total thickness of the epitaxy as

well as increasing the resistivity of the buffer and strain relief layers by carbon doping. Therefore,

as the solution for off-state leakage is to increase the density of trapping defects, there is an

apparent trade off between buffer related current collapse and off-state leakage [125].
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2.5.2 Vertical device reliability

As introduced in 2.2.3 the development of vertical GaN devices is an active research field with

a wide variety of design concepts. Beyond material quality and cost which are continuously

improving, the primary challenge faced by vertical GaN devices is the optimisation of electric

field management at the device edges. Unlike in lateral devices, vertical transistors do not suffer

from current collapse or virtual gate issues. As can be seen in Figures 2.8(c)-(f), with the drain

on the substrate, the surface contacts consist of only the source and gate terminals yielding low

surface fields and so completely resolving virtual gate and surface leakage issues. Furthermore,

as buffer conduction is a requirement in the off-state, there is no intentional carbon doping and

so no buffer related current collapse. However, for vertical transistors in the off-state and vertical

diodes in reverse bias, high voltages are blocked across the device creating high vertical electric

fields. In the bulk of the device, the breakdown field of high quality GaN can begin to approach

the material limits. However, device failure is determined by the weakest point of the device

which is the periphery. Here, the material may be defective due to implant isolation or surface

states may be present from mesa etching. The solution to this issue is the implementation of an

appropriate edge termination method.

2.5.2.1 Edge termination

In addition to extending the breakdown voltage, it has also been indicated that management of

surface failure at the edge of vertical devices is the key to avalanche breakdown, a requirement

for robust operation [19]. Edge termination is all about extending the distance over which

the potential is dropped. In Si and SiC devices, a typical edge termination method is junction

termination extension (JTE) [126, 127]. Junction termination extension involves the inclusion

of a lower doped region around the surface of the structure which reduces the peak fields by

increasing the width of the depletion region. A qualitative sketch of the electric field profile after

junction termination extension is shown in Figure 2.15(b) compared to an unterminated structure

in Figure 2.15(a). Junction termination extension can be taken even further with field rings which

are annular ion implanted regions around the device of varying width and separation. Correctly

implemented, these selectively doped rings distribute the electric field, dropping the potential

over multiple junctions and thus reducing the peak electric field as shown in Figure 2.15(c). In

some materials such as Si, where the diffusion rate is sufficiently high, the selectively implanted

field rings can be annealed to drive-in and spatially redistribute the dopants. This results in

the new dopant distribution shown in Figure 2.15(d) and the electric field is spread yet more

evenly. These edge termination methods are a commonly implemented solution in more mature

semiconductors such as Si and SiC and adaptation of these edge termination methods to GaN

has been attempted with some success, both with termination extension [34, 128, 129] and field

rings [130, 131]. However, these processes are more difficult in GaN due to material processing

challenges related to the activation of selectively doped areas [132]. Due to the immaturity of
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Figure 2.15: Vertical pn diodes with (a) no edge termination, (b) junction termination extension
(JTE), and (c) field rings. Annealing of the field ring structure gives the dopant distribution shown
in (d). A sketch of characteristic electric field profiles along the dashed lines are shown below
each diagram. The peak electric field is much higher in the geometry with no edge termination.

selective area doping technologies in GaN, the resulting implanted material is highly defective

and yields low quality devices [75]. As such, the development of edge termination technology has

been identified as the target of future optimisation work [133].

An alternative and immediately achievable edge termination method in GaN devices is to

bevel the structure. A properly designed bevelled edge on a planar pn junction can result in a

reduction of the electric field on the surface. This increases the likelihood that breakdown will

occur uniformly in the bulk and not unpredictably at the surface. A schematic example of how

this can be done is shown in Figure 2.16. The surface field is reduced by redistributing the voltage

drop to change the surface field profile [134]. This is only effective for small bevel angles after

which the peak surface field rises above the peak internal field [135]. In this small angle range

bulk breakdown is ensured, however at a fraction less than the ideal infinite planar junction,

determined by the bevel angle. [136]. The effectiveness of the bevel in reducing the surface field

compared to the bulk field is influenced by the doping levels. Calculations suggest that increasing
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Figure 2.16: A schematic of the bevelled edge of a planar pn junction with equal doping densities.
The dashed lines represent the depletion edge. In the depletion region, the space charge is shown
and must be equal on each side of the junction. Where the pn junction reaches the surface, the
lack of p-type material requires it to depleted further away from the junction to match the positive
space charge in the n side. This results in an increased depletion width and a reduced surface
electric field.

the background donor density in the n-type drift region would increase the bulk field, and the

surface field would also increase but to a lesser extent [135]. This indicates that the bevel is more

effective at higher doping densities since the surface field is a smaller fraction of the bulk field.

The surface depletion width is extended since where the junction meets the surface, there is not

sufficient p-type material to match the charge exposed in the n-type material, and so the depletion

on the p-side must extend further up the bevel. This extension of the depletion width by depleting

the material up to the surface is a similar principle to the reduced surface field (RESURF) effect

which can increase the breakdown voltage in lateral GaN devices [137]. Management of the

surface electric field is critical to reduce surface related reverse bias leakage. Surface states can

give rise to a hopping current across the junction in this device geometry. As with surface issues

on HEMTs, this can be addressed with a good passivation layer and by reducing the electric field,

in this case by a bevelled edge termination. This principle of tapering edges to reduce peak fields

has already been applied to vertical transistors [138]. As edge termination can extend the device

operating voltage, it can be useful to study the effectiveness of different termination techniques

using more simple structures such as pn diodes. As with test structures, studies of simple devices

like pn diodes provide the foundations for more complicated structures such as the advanced

schottky barrier diodes and vertical transistors of Figure 2.8.

34



C
H

A
P

T
E

R

3
CHARACTERISATION TECHNIQUES

To build up a physical understanding of device behaviour, various characterisation tech-

niques have been employed in this thesis. This section begins by detailing the capabilities

of the laboratory instrumentation and then goes on to detail the experimental methods

and simulation processes applied in later chapters.

3.1 Measurement capabilities

3.1.1 Measurement environment

The devices throughout this work are unpackaged and measured on-wafer. This allows rapid

feedback in device development as new samples can be measured and characterised without the

need to spend time and money developing and optimising packaging. On-wafer measurements

also allow finer control of the device conditions such as temperature and optical inspection of the

device after breakdown is simple. However, on-wafer measurements require the use of a probe

station and, in this case, extended cabling to source measurement units which cause the test

circuit to have a high loop inductance. This limits the speed at which a device under test can be

switched and the maximum switching speed of a device may be difficult to assess. Measurement

of this device parameter is crucial for estimating switching losses. Quantitatively, the inductance

of a typical power switching circuit is ∼ 2 nH, whereas an estimate of the loop inductance of a

probe station used in this work is around 100 times higher. In this thesis, all measurements were

at sufficiently low frequencies that they were not affected by this limitation. Performing electrical

measurements in the dark is important for unpackaged semiconducting devices since any light

can affect the results, either by increasing the carrier density through photo-excitation or by

introducing photo-currents. To avoid this problem, measurements were carried out in darkness
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Figure 3.1: A cross-section of a triaxial cable with a diagram of the simplified biasing circuitry
internal to the source measurement unit. Current measured by the source measurement unit
cannot be attributed to leakage through the cable dielectric since the buffer input presents an
ideally infinite impedance and there is no potential difference between the signal and guard.

inside a measurement enclosure. Since these enclosures are metallic they also act as a Faraday

cage and help with the reduction of EM noise and interference.

3.1.2 Triaxial cabling

The grounded shield of co-axial cabling offers shielding of the core signal from electromagnetic

interference. Coaxial cable is thus well suited for sensitive electrical measurements. However, at

very low currents, leakage in the dielectric between the core and shield can become significant

and mask the measurement signal. This can be addressed by the inclusion of an additional

concentric sheath between the core and shield, referred to as the guard. As shown in Figure 3.1,

the guard is biased through a current buffer to the same potential as the core and as such, there

is no electric field across the dielectric surrounding the core. Thus, no leakage current due to

the cable is present during low current measurements. Leakage from guard to shield remains

present but this current is provided from the current buffer and so not included in the current

measurement.

3.1.3 Probe stations

Measurements were performed on probe stations from Wentworth labs. These are composed of a

top illumination microscope above a chuck for device positioning and probing and surrounded by

space for magnetically attached micro-positioners. This is shown in Figure 3.2 inside the dark

measurement enclosure. The probe stations and chucks are massive to reduce the amplitude of

any vibrations. The positioners each have three degrees of translational freedom with a 3 µm

36



3.1. MEASUREMENT CAPABILITIES

Figure 3.2: The probe station inside the measurement enclosure with a top illumination micro-
scope, micro-positioners and a guarded chuck.

spacial precision and with a tungsten probe tip of nominally 5 µm diameter. As with triaxial

cabling, the chuck is guarded; the top surface of the chuck sits on an insulator on top of another

conductor, biased at the same potential through a current buffer. This way the chuck surface

is guarded and ensures that current measured from the top conductor must be from the device

under test since there are no other electric fields.

For measurements at elevated temperatures, the chuck contains resistive filaments which

offer heating to a maximum temperature of around 300◦ C. In addition, the chuck can be

actively cooled by pumping an ethylene-glycol based coolant through channels below the chuck.

With both heating and cooling, the chuck temperature can quickly reach any set-point using a

proportional-integral-derivative (PID) controller. The temperature of the chuck in Figure 3.2

is controlled by varying the heater power and coolant circulation via pulse width modulation

(PWM). This is common for proportional-integral-derivative controlled heaters since it is cheap

and easy to implement, however, pulse width modulation introduces unmanageable RF noise to

low current measurements. Therefore, for measurements requiring very low noise ( < pA) at high

temperatures an alternative method of regulating the current is required such as adjusting the

magnitude of an applied DC voltage.
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Figure 3.3: The semiconductor characterisation instrumentation available in the laboratory and
their connectivity.

38



3.2. ELECTRICAL CHARACTERISATION TECHNIQUES

3.1.4 Laboratory Instrumentation

The laboratory is equipped with a number of source measurement units (SMUs) which are

measurement instruments capable of sourcing either a current or voltage while simultaneously

measuring the other. These units typically have two tri-axial connections for force and sense per-

mitting kelvin configuration measurements. Each of the three systems have different capabilities

as outlined below and shown in Figure 3.3.

Firstly, the Keithley 4200-SCS instrument has four medium resolution source measurement

units with a current resolution down to 100 pA and a voltage range of ±200 V. In addition

the system is equipped with a high voltage capacitance measurement unit (CMU) allowing CV

measurement up to 200 V with the use of bias tees and in the frequency range of 10 kHz to 100

MHz. The system can also be configured with a low current pre-amplifier unit which improves

the current resolution of one source measurement unit to 10 fA. The HP 4156A is composed of

four high resolution source measurement units with a maximum current resolution of 1 fA and

a voltage range of up to ±100 V. This is accompanied by the 41501B expander unit which adds

an additional high power source measurement unit with a voltage range of up to ±200 V and

current resolution of 1 nA. Lastly, the Keithley 2657A is a single high power source measurement

unit sourcing up to ±3 kV at 1 mA or ±100 V at 100 mA with nA resolution. For safety, each

system is equipped with an interlock connected to a micro-switch on the enclosure door. If the

enclosure is opened while a source measurement unit is supplying a lethal voltage, the interlock is

triggered and all voltage sources are set to zero volts. All of these instruments are equipped with

a general purpose interface bus (GPIB) enabling external control for measurement automation

and coordination making possible the simultaneous use of multiple systems for the same device

measurement. The latter may be required in some measurement techniques, for example, when

applying high voltages but measuring small currents as is the case in Chapter 7. The national

instruments software, LabVIEW, was used for this purpose. New control programs were written

by the author and existing programs were modified to perform the measurements in this thesis.

3.2 Electrical Characterisation Techniques

The primary measurement techniques applied in this thesis are outlined in this section.

3.2.1 Current-voltage

Measurement of current-voltage (I-V) characteristics is a simple but very effective characterisa-

tion tool. By rescaling the results with the dimensions of the device, the I-V can be expressed in

terms of the current density versus electric field (J-E). The dependence of the current density on

the electric field can be used to identify the transport mechanism based on known relations [139]

such as those shown in Table 2.2. The dependence of the I-V on temperature can also be studied

to determine if the transport process is thermally activated. This is performed by changing the
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chuck temperature to set the temperature of the sample. Using the Arrhenius equation,

I = I0 exp
(

EA

kbT

)
(3.1)

the current dependence on temperature can be used to extract an activation energy, EA, often

corresponding to the trap energy responsible for the leakage. Current-voltage sweeps form the

basis of all electrical characterisation and as such, are used throughout this thesis.

3.2.2 Capacitance-voltage

One method to measure the capacitance of a sample is the capacitance-voltage (CV) technique.

This entails applying a small amplitude AC signal across the sample which is modelled as a leaky

capacitor. The current which flows through a leaky capacitor with parallel capacitance, Cp, and

resistance, Rp is expressed as

I = V
Rp

+ iVωCp (3.2)

where ω is the angular frequency of the applied voltage and i is the imaginary unit due to the

phase shift of 90◦. The amplitude and phase of the measured current is fit to this model to

extract the material parameters. Throughout this measurement a DC bias can be applied to

the sample which is isolated from the small amplitude AC signal by a bias tee. This works well

since the inductor in the DC branch of the bias tee presents no impedance to the DC voltage

but presents a high impedance to the AC signal and the opposite is true for the capacitor in the

AC branch. By varying the DC bias, the capacitance and depletion width can be identified as

a function of voltage. As explained in section 2.4.4, this data also facilitates the extraction of

the dopant density, profiled as a function of distance, and the built-in junction potential. It is

necessary to perform a calibration of the system to correct for the capacitance and inductance of

the system and setup. This is approached by assuming any parasitic capacitances are in parallel

with the device under test and so simply add together. Parasitic inductances are treated as in

series and measurements at multiple frequencies are used to distinguish these elements through

their frequency dependence [140]. With the Keithley capacitance measurement unit used here,

the calibration process is automated. With the device under test removed from the setup, the

response of the system is measured and from this, a correction is applied to future measurements.

This capacitance-voltage technique is primarily used in Chapter 6 to characterise the size of the

depletion region of a pn diode and to profile the uniformity of the dopant density through the

drift region.

3.2.3 Quasi-static capacitance-voltage

The Keithley capacitance measurement unit used for the capacitance-voltage technique described

above is limited in frequency range to a minimum of 1 kHz [141]. In practice, measurements

at frequencies below 10-100 kHz are obscured by noise and so it is not possible to use this
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technique. However, measurement at low frequencies may be desired, for example, to measure

slow dynamics such as RC networks with time constants much longer than the period of the small

amplitude signal. In this case, a different approach can be taken in the form of the quasi-static

capacitance-voltage (QSCV) technique. This entails applying a constant voltage ramp across the

sample and measuring the resulting current. From the definition of a capacitor, Q = CV , the time

derivative gives rise to a displacement current, Idisp, of

Idisp = C
dV
dt

+V
dC
dt

(3.3)

Assuming a constant capacitance such that dC/dt = 0, the second term goes to zero and the

displacement current is directly related to the capacitance. In reality, the measured current will

be the sum of this displacement current and any leakage current. Conveniently, the displacement

current is separable from the leakage current since it depends only on the ramp rate of the

voltage and not the magnitude or polarity. That is, reversing the direction of the voltage ramp

will change the sign of the displacement current but not the leakage current. Therefore, if the

polarity of the voltage is kept the same (e.g. always above zero) and the ramp is performed in

both directions, the displacement current can be identified from the difference between the two

ramp directions.

Another possible addition to the measured current is the effect of trapping or charging. This

may increase with voltage and may also partially change sign with ramp direction, and so may

introduce some error in the separated displacement current. If present, this contribution adds

to the separated displacement current and makes it appear to increase with voltage rather

than depend only on the ramp rate. Therefore, this technique is not suited for capacitance

measurements on samples which show a very large charge storage. Conveniently, this contribution

is often small compared to the displacement current, especially at faster ramp rates.

It is important to ensure that the ramp is smooth and not stepped as would be provided by a

source measurement unit. A stepped voltage ramp would result in displacement current spikes

during the step followed by a decay during the current measurement. As the source measurement

unit integrates the current for some time after the step, this would measure a lower current and

underestimate the capacitance. On the other hand, a smooth ramp ensures the displacement

current is constant and the full displacement current will be measured, regardless of integration

time. This is assuming a constant capacitance which is a fair assumption over a small voltage

change.

A smooth ramp was generated by an integrator circuit based on an op-amp with a capacitor in

the feedback loop, shown in Figure 3.4. This causes the output voltage, Vramp, to linearly increase

at a rate set by the time constant of the RC network and the input voltage, Vset. The gain of an

op-amp is determined by the ratio of the feedback impedance to the input impedance. Considering

the definition of the impedance of a capacitor, ZC = 1/iωC, the gain of this integrator circuit is
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Figure 3.4: The integrator circuit used to generate the ramp is shown in (a) along with the labels
of the source measurement units used for each task. Photographs of the ramp generator as shown
in (b) with the terminals labelled.

given by

G = 1
iωC1R1

(3.4)

This equation describes the gain if Vset is an AC signal. If Vset is constant, the gain can be

described (as derived here [142]) by the dimensionally equivalent form

G = t
R1C1

(3.5)

which results in the output voltage, Vramp increasing over time until the op-amp saturates at one

of its voltage rails (40 V in this case). This circuit was used in conjunction with the Keithley 4156A

and 41501B systems to set the ramp rate by applying a constant voltage to the Vset terminal

using source measurement unit 5. Source measurement units 3 and 4 were then used to measure

the voltage applied to and current flowing through the device under test. A switch was included

in the circuit to discharge the capacitor, as required, before beginning a ramp. This technique is

used in Chapter 5 to measure very low frequency capacitance.

3.2.4 Back-biasing

The back-biasing technique, also referred to as the substrate bias ramp or substrate bias technique

is a method of identifying charge movement in the epitaxy below the 2DEG. A small potential

difference is applied between two contacts in the same active area to monitor the conductivity of a

2DEG resistor. This is normally 0 V and 1 V as shown in Figure 3.5(a). The substrate is then used

as a back gate and ramped to a negative bias to pinch off the 2DEG. This negative substrate bias

results in vertical electric fields of the same polarity as in a HEMT with a positively biased drain
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Figure 3.5: (a) A 2DEG resistor is used to sense the substrate bias. (b) An example of the
measurement results that are possible from this technique. The measured channel current is
normalised to the initial value, effectively normalising the conductivity to the 2DEG area between
the contacts. Positive and negative charge refers to the injection of carriers into the buffer which
may accumulate or become trapped.

and a grounded substrate. The rate of depletion of the 2DEG by this back gate can be analysed

to identify charge movement and storage in the buffer. A useful advantage of this technique

is that the 2DEG completely screens the surface from any strong electric fields. Therefore the

measurement is sensitive only to charge in the buffer and surface effects can be ruled out. If the

stack were an ideal dielectric, the epitaxy could be treated as the dielectric of an ideal capacitor

with the 2DEG and substrate as the conductive plates. For an ideal capacitor, applying a bias

to one plate would have the effect of inducing a charge of opposite polarity on the other plate of

magnitude CV . It follows that applying a negative bias to the substrate would reduce the 2DEG

density by CV per unit area. Therefore applying an increasingly negative bias at a constant rate

would pinch off the 2DEG at a rate proportional to the stack capacitance per unit area. This is

shown as the capacitive coupling line in Figure 3.5(b). Asserting an initial 2DEG density of n0,

the 2DEG density with an applied substrate bias, n2DEG, would deplete as

n2DEG(V )= n0 − ε|V |
d

(3.6)

where ε and d are the average permittivity and thickness respectively of the stack below the

2DEG.

When analysing measurement data, two deviations from this ideal behaviour are possible; the

2DEG depletes faster than ideal or slower as shown in Figure 3.5(b) . First discussing the 2DEG
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Figure 3.6: The inferred internal potential and charge movement through the epitaxy with a
-400 V substrate bias (a) with the lower part of the stack leaking, (b) with a carbon doped region
forming a dipole and (c) with the upper part of the stack leaking. The potential in red indicates
an increase in the vertical electric field compared to an ideal dielectric.

depleting faster than the ideal case, this must be caused by excess negative charge near the

2DEG. There are two common ways this can occur depicted in Figures 3.6(a) and 3.6(b). Firstly,

as the epitaxy begins to exhibit vertical leakage due to the high vertical field, if the lower part of

the stack begins to leak first, this causes an injection of electrons from the substrate. Since the

same potential must be dropped over the epitaxy it can be seen from Figure 3.6(a) that this must

increase the potential in the top of the epitaxy compared to the ideal case. This increased negative

potential causes a greater depletion of the 2DEG. An alternative way that excess negative charge

can manifest below the 2DEG is the polarisation of carbon doped layers shown in Figure 3.6(b).

Carbon is often present is layers below the channel and under a sufficiently high field, holes can

be swept away from thermally ionised acceptors. These holes then accumulate or become trapped

at a heterointerface lower in the epitaxy. This spatial separation of the positive free holes and

negative ionised acceptors creates a dipole layer. The negative pole of this dipole will be closer to

the 2DEG since the holes will be swept towards the negative substrate. Therefore the 2DEG will

see a net negative charge and deplete more rapidly than in the absence of the dipole layer [120].

The other observable behaviour is the depletion of the 2DEG at a slower rate than expected

from an ideal dielectric stack. This can only be attributed to excess positive charge below the

2DEG which acts to screen the 2DEG from the substrate bias. This can occur when, under the

high vertical field, the top of the epitaxy begins to leak first. This is shown in Figure 3.6(c) and

causes an injection of holes into the epitaxy, reducing the potential under the 2DEG.

When ramping back to 0 V, the stored charge continues to influence the 2DEG density. In

the case of positive buffer charge, when the substrate bias is sufficiently small, stored positive

charge can lower the barrier confining electrons to the 2DEG. This allows electrons to rapidly

neutralise these positive charges and causes a saturation of the 2DEG density near or slightly

above the initial unbiased density. Ultimately at the end of the measurement, the 2DEG density

is unchanged or slightly higher than the initial density. This makes positive buffer charge
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storage benign. In the opposite case, there is no equivalent mechanism to neutralise stored

negative charge, meaning it is trapped with much longer time constants, causing the 2DEG

density to remain partially depleted after the measurement. This lack of recovery is indicative

that transistors on the same epitaxy will suffer from buffer related current collapse as the root

cause is the same. Further detail on this analysis technique can be found in other material

[42, 143, 144].

3.3 Test structures

Test structures are used to isolate specific device characteristics which cannot be measured on a

complete device. For example, contact resistance and the sheet resistance of the 2DEG cannot be

distinguished in a HEMT, since they are in series. Both of these quantities should be minimised

to reduce conductive losses. These parameters can be quantified through the use of a transfer

length measurement (TLM) structure shown in Figure 3.7. The transfer length measurement

structure consists of a series of Ohmic contacts connected by a 2DEG, each increasingly further

apart. By measuring the resistance between two contacts at various separations, the 2DEG

sheet resistance and contact resistance can be distinguished. On a graph of resistance vs. length

of 2DEG, the y-intercept is twice the contact resistance and the gradient is the 2DEG sheet

resistivity. Extrapolating this line back to the negative x-axis gives two times the transfer length.

During the measurement, current flows laterally in the 2DEG under the contact metals for a

distance determined by the 2DEG sheet resistance and the contact resistance. This distance is

called the transfer length, as it is the distance the current takes to transfer from semiconductor

to metal, hence the name of the structures. Moving from the edge towards further under the

contact, the current density and potential are reducing and the resulting potential distribution

under the contact is described by the function [145]

V (x)= I
√

RsρC cosh[(L− x)/λ]
Z sinh[L/λ]

(3.7)

where Rs is the sheet resistance and ρC is the contact resistivity, L and Z are the length and

width of the contact and λ is the transfer length.

Another useful test structure is the isolation structure. This consists of a single Ohmic contact,

isolated by a mesa trench or implantation and can be used for characterising the vertical leakage

though a stack and assessing the vertical breakdown. This is done by applying a bias to the

Ohmic contact with the substrate at 0 V. Two such structures can also be used to evaluate the

lateral leakage by measuring the current at a second isolation structure, biased at 0V like the

substrate. It may not be obvious, however, if the lateral leakage is through the bulk or on the

surface. A further test structure to make this distinction is the guard ring structure [146], shown

in Figure 3.8. Here, a Schottky metal is deposited in a loop around the biased Ohmic contact

and is also held at 0 V. All surface leakage will flow to the guard ring and be measured there.
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Figure 3.7: Top down view of a transfer length measurement structure. The structure consists of
a series of Ohmic contacts with varying separation in the same active area. Outside of the mesa
or implant isolation is more 2DEG but this is electrically isolated from the structure. Plotting
the resistance of each gap vs. gap size allows determination of the contact resistance RC, sheet
resistivity and transfer length, λ.

Figure 3.8: One half of a surface leakage structure. In the full structure, the Schottky guard
ring completely surrounds the central Ohmic contact. The Ohmic contacts are surrounded by an
implant isolation and the arrows indicate the flow of surface and buffer leakage currents.

Whereas the external Ohmic contact will measure only the current that has flowed through the

buffer under the guard ring. A small fraction of the buffer current will flow to the guard ring but

the Schottky junction limits this undesirable effect. This structure is used in Chapter 5 to study

surface leakage and charging.

3.4 Materials analysis

3.4.1 Scanning transmission electron microscopy

Transmission electron microscopy permits the study of material structure and composition and

allows the observation and characterisation of structure cross-sections. The principle uses a
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focused electron beam which interacts with the sample as it is transmitted. The sample must

be sufficiently thin for electron transmission and image clarity, therefore, in preparation, the

sample must be thinned down to less than 100 nm. This can be achieved by focused ion beam

(FIB), etching or mechanical polishing. As the electron beam passes through the thinned sample,

some of the electrons are scattered by a large angle and are observable in the high angle annular

dark field (HAADF), so named as scattering events to such a high angle have a low probability

rendering the annulus dark. The larger the atomic weight, the more high angle scattering events

occur, resulting in a brighter high angle annular dark field image. This is referred to as z-contrast

since the image intensity is proportional to the proton number of the scattering centre. This

technique can be adapted to scan over the surface of a sample (scanning transmission electron

microscopy, STEM), and a profile of the atomic composition can be determined over an area.

An image measured using this technique is used in Chapter 4 to determine the profile of the

aluminium content in a nominally abrupt junction AlGaN/AlN/AlGaN heterostructure.

3.4.2 Secondary-ion mass spectroscopy

Secondary-ion mass spectroscopy (SIMS) is a destructive method of measuring the atomic

composition of a sample. An ion beam is used to bombard the sample, causing the constituent

atoms to be ejected as secondary ions. These secondary ions are then accelerated away from

the sample surface and identified using typical mass spectrometry methods. Profiling of the

composition as a function of depth is possible in this method since the ion beam ejects matter

from deeper and deeper into the sample over time as it cuts through. The primary ion beam has

a sputter rate of around 10 µm per hour giving depth profile resolutions of around 20 nm. The

sensitivity of this technique varies depending on the element but is around 1015 cm−3 for the

common dopants and impurities in GaN (C, Si, Mg, H, O). This method is applied in Chapter 4

for measuring the concentration of dopants in an AlGaN/GaN epitaxy.

3.5 Simulation

Correlation of experimental measurements with simulations enables the understanding of

internal, unmeasurable or unintuitive processes. Electrical device simulations in this thesis have

been carried out using ATLAS, a drift diffusion simulator produced by Silvaco. This framework is

specifically designed for the electrical simulation of semiconducting devices.

A 2D device cross-section is simulated in which the carrier concentration, electric field, etc.

are calculated based on circular boundary conditions in and out of the plane. The device cross-

section is designed in a program called DevEdit which also handles the triangular meshing of the

structure for the finite element calculations shown in Figure 3.9. A high density mesh is required

in areas experiencing high electric fields or with sharp features such as heterointerfaces. If the

mesh density is too low, it can lead to the simulation failing to converge and terminating without
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output. If the simulation does converge, it is still possible that some device behaviour may be

underestimated such as 2DEG density or peak electric fields. For example, in the mesh around

the 2DEG, the vertical spacing of nodes should be approximately 1 nm since the 2DEG is only a

few nanometers in thickness. The lateral spacing is less important provided there are no strong

lateral electric fields. In general, a dense mesh is better but the higher the mesh density, the

longer the simulation takes to run. DevEdit contains a library of standard material properties,

thus in design, only the name of the desired material need be selected for the layer to be assigned

an associated electron affinity, bandgap, mobility, etc. and these properties can be modified as

required for specific device geometries. For example, in the channel region, the electron mobility

must be increased from the bulk mobility to accurately simulate the 2DEG. The addition of

dopants and trap levels can also be done at this stage as required. Traps are added by specifying

the region, density and energy level as well as the capture cross section and degeneracy. The

simulator is called by the program DeckBuild, in which the desired physical models are selected

such as transport, scattering or generation/recombination statistics. The more models selected

increases the computation time and not all models are always required. For example if currents

are always low, the effect of joule heating need not be calculated. Polarisation charges at interfaces

can be set here, either by instructing ATLAS to calculate them automatically or manually using

the "interface charge" statement as demonstrated in Appendix C. Setting the polarisation charge

in this way, using equations from the literature, ensures that strain/relaxation are accounted for.

When simulating a HEMT epitaxy it is possible to set the charge of the simulated surface in order

to tune the 2DEG density. This may be required for more accurate comparison of simulations

with measured data and is also achieved using the "interface charge" statement.

It is also in Deckbuild that the details of the desired measurement are specified. In this

input deck, the voltages of the contacts and ramp rates are set as well as the specification of

the output parameters. The simulator is fundamentally based on solving the Poisson equation,

carrier continuity and transport equations which together give the drift diffusion equations;

Jn = qnµnEn + qDn∇n (3.8)

Jp = qpµpEp + qDp∇p (3.9)

Here, Jn (Jp) is the electron (hole) current density, n (p) is the electron (hole) concentration,

µn (µp) is the electron (hole) mobility, and Dn (Dp) is the diffusion coefficient for electrons (holes).

En and Ep are the effective electric fields experienced by electrons and holes and may differ

between the two carriers as they depend on the local gradients of the quasi-Fermi levels [147].

These equations along with any other models specified are solved at each node in the device mesh.

The variation of an output parameter (e.g. electric field) along a 1D path through the device can

be extracted by drawing a cut-line and the parameter along that path is plotted. This simulation

tool is used in Chapter 4 to simulate buffer charge and substrate bias measurements.
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Figure 3.9: A section of a device simulation showcasing the finite element mesh where the
equations are solved at each node. Note the high mesh density near the surface 2DEG and buried
interlayer at 1.3 µm.
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4
THE SELF-COMPENSATION RATIO OF CARBON IN ALGAN

As previously discussed, carbon is often incorporated into the buffer and strain relief

layers of AlGaN/GaN HEMTs. This is to increase the buffer resistivity by the mechanism

explained in section 2.4.3. The purpose is to increase the breakdown voltage and suppress

buffer conduction [93, 148]. In turn, this facilitates higher voltage operation leading to more

efficient switching. Equations 2.10 and 2.11 explicitly showed that the compensation ratio alone

determines the free carrier density. Therefore, in the absence of parallel defect related conduction,

the compensation ratio sets the resistivity and bulk leakage of carbon doped GaN. This chapter

works towards determining this unknown ratio, of which a reasonable estimate is required for

accurate device simulation.

The samples used in this study were grown by the Inter-University Micro-Electronics Cen-

tre (imec). Imec also performed the secondary-ion mass spectroscopy, scanning transmission

electron microscopy and Hall measurements on these samples. The substrate bias ramps and

lateral leakage measurements as a function of contact separation presented in section 4.3 have

been published in IEEE Transactions on Electron Devices [149]. Significant content has been

reproduced from this publication. The flow of the research in this chapter is presented in Figure

4.1.
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Figure 4.1: The flow of the research in this chapter.
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4.1 Introduction

Despite the widespread use of carbon doped GaN, there is still some debate about the underlying

physics of how it increases the material resistivity. Carbon can incorporate into GaN in multiple

different ways; substitutionally on the nitrogen or gallium sites, interstitially, or in a variety

of complexes with other point defects [92, 150, 151]. Early theoretical calculations struggled

to identify the energy levels of these traps and predicted that carbon would exist primarily

substitutionally on the nitrogen site (CN) as an acceptor at Ev +0.3 eV and on the gallium site

(CGa) as a donor at Ec −0.2 eV [152]. However, experimental attempts to observe these carbon

levels through the use of various transient and optical spectroscopy techniques were unsuccessful.

Instead, two different trap levels were experimentally correlated with carbon density; a deep

acceptor around Ev +0.9 eV and a shallow donor near the conduction band [94, 96, 153]. Today,

after considerable debate, consensus has been reached on the depth of carbon levels in GaN. More

recent theoretical work, improving on initial approximations [92], predicted that carbon on the

nitrogen site is a deep acceptor with a level of Ev +0.9 eV and carbon on the gallium site is a

shallow donor in or near the conduction band. This acceptor level is much deeper than previous

estimations and in agreement with the spectroscopic data. In addition, device simulations with

this deeper CN level agree well with experimental results [154].

There are no definitive results or methods for measuring the compensation ratio (ND/NA).

The total carbon concentration can be profiled using secondary-ion mass spectroscopy, however,

no information is gained with this technique about the compensation ratio. This is because the

crystal structure is destroyed in the process and with it, the information about the site of origin of

each atom. The resistivity of GaN:C inferred from electrical measurements of AlGaN/GaN HEMT

epitaxies is in the order of 1013 Ωcm [42, 155]. This is in agreement with measurements of this

property presented in Chapter 5. If all of the carbon were incorporated on the nitrogen site as

deep acceptors the resistivity would be much lower - in the order of 106 Ωcm for a typical carbon

density of 2×1018 cm−3 [42]. Therefore, donors must be present in high densities in order to

compensate these acceptors and increase the resistivity to observed levels. From Figure 2.11, these

indirect electrical measurements of resistivity indicate the compensation ratio must be between

0.1−0.6. Dislocations through the GaN:C give rise to additional leakage, possibly via defect band

conduction [156]. Therefore the ideal, bulk resistivity of GaN:C may be greater than what is

measured. This means that the compensation ratio inferred from those measurements represents

a lower limit. Regarding an upper limit, electrical measurements have directly observed Fermi

level pinning near the carbon acceptor level demonstrating that CN is dominant i.e. ND/NA < 1

[157]. This chapter presents electrical measurements and simulations which are able to refine

this interval by identifying the donor charge required to neutralise known polarisation charges.

Identifying a reasonable estimate of the compensation ratio improves understanding of the role of

carbon in AlGaN which is pivotal in the management of buffer leakage and vertical breakdown.
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Figure 4.2: The samples used in this study differed only by the carbon doping level in the
back-barrier; unintentional doping or 2×1019 cm−3. In both samples a 2DEG formed in the
unintentionally doped GaN channel below the AlGaN barrier, represented by the blue dashed line.
In the sample with the unintentionally doped back-barrier the location of the 2DHG is shown
above the top interlayer as a series of red crosses. A sketch of the band structure is presented to
the right of both structures.

4.2 Experimental Details

4.2.1 Samples

The two samples in this study were grown by metal-organic chemical vapour deposition and

are shown in Figure 4.2. The layer structures were typical of an AlGaN/GaN HEMT grown on

silicon. The strain relief layers were implemented with 10 nm AlN interlayers in carbon doped

Al0.08Ga0.92N, with a total thickness of 2.8 µm. These AlN interlayers were under tensile stress

to introduce compressive stress into the buffer. This was followed by a 0.8 µm Al0.08Ga0.92N

back-barrier, a 0.5 µm unintentionally doped GaN channel and an AlGaN barrier to form a 2DEG.

The two samples differed only by the doping level in the Al0.08Ga0.92N back-barrier. The layer was

either highly carbon doped with a concentration of 2×1019 cm−3, as measured by secondary-ion

mass spectroscopy, or unintentionally doped which is typically a level of ∼ 1016 cm−3 in metal-

organic chemical vapour deposition GaN [158]. These samples will be referred to as the carbon

doped and unintentionally doped samples respectively. Generally, back-barriers are made with

GaN:C to provide a highly resistive layer and suppress buffer leakage below the channel, but

trapping in the carbon related defects can lead to current collapse. AlGaN back-barriers were

included in these epitaxies in an attempt to introduce a blocking hetero-interface and reduce

trapping in the back-barrier [159]. This design is not commonly used however, presumably for

reliability reasons pertaining to stress; the high electric fields in the top device layers and the

inverse piezoelectric effect could cause delamination at heterointerfaces. Only Ohmic contacts
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were processed on these samples which were made with an annealed Ti/Al/Ni/Au metal stack.

Each cell of the mask-set contained transfer length measurement structures, isolation structures

and a Hall bar structure. Isolation was implemented with a mesa trench with a depth of ∼ 600 nm,

ending in the back-barrier. The depth of this trench isolated the 2DEG but was not sufficiently

deep to reach the back-barrier/AlN interlayer interface.

4.2.2 Measurement techniques

The samples were subjected to a substrate bias ramp as described in section 3.2.4. The channel

conductivity was measured by applying 1 V across two contacts of a transfer length measurement

structure with a Keithley 4200. The substrate bias was ramped at 5 Vs−1 in both directions, from

0 V down to −350 V and back to 0 V with a Keithley 2657A. Measurements above |−350| V were

not performed due to the high substrate current densities in the unintentionally doped sample.

Lateral leakage measurements were performed on the isolation structures which were

100 µm×100 µm in area. This entailed applying a bias to one isolation structure which was

ramped to −150 V. The current on a second isolation structure which was biased at 0 V was

measured. This was done using the Keithley 4156A with a 41501B expander which also biased the

substrate at 0 V during the measurement. No electric field between this second structure and the

substrate ensured all current measured on the second structure must have flowed laterally. This

measurement was performed with various separations between the isolation structures to identify

the trend of the leakage current with separation. Additional lateral leakage measurements were

performed with a constant separation between the two isolation structures but increasing the

area of the structure at 0 V. Since all of the isolation structures were 100 µm×100 µm the

effective contact area was increased by probing multiple isolation structures and shorting them

together as shown schematically in Figure 4.3. The additionally probed structures were further

away from the biased structure leaving the separation and the surface electric field unchanged

as the effective area was increased.

Finally, vertical leakage and charging properties were investigated in the low field range with

up to 40 V over the epitaxy. This was a two terminal measurement applying a positive ramped

bias to the substrate and measuring the current flowing through an Ohmic contact on the surface

which was held at 0 V using a Keithley 4156A. In order to accurately measure any charging

effects, a continuous ramp was required. If a stepped ramp was used, charging currents would

decay during the current integration time. Therefore, a linear ramp generator was used to apply

the substrate bias like that used for the quasi-static capacitance-voltage measurements described

in section 3.2.3. The measurements were performed at various ramp rates between 0.1 and 1

Vs−1.
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Figure 4.3: A schematic of three isolation structures demonstrating the way the effective area of
the 0 V contact was increased. Overlaid is the equivalent circuit diagram of the structures. The
diode-like behaviour over the channel layer is from to the band bending near the barrier which
confines the electrons to the 2DEG.

4.3 Results

The substrate bias ramp measurement data are shown in Figure 4.4(a). The measurements were

performed on a transfer length measurement structure with a channel length of 20 µm. These

results are displayed with the capacitive coupling line which was calculated from the epitaxial

thickness and mean permittivity as explained in section 3.2.4.The 2DEG density in the carbon

doped sample showed an approximately linear dependence on substrate bias, similar to the ideal

capacitive line. After the return sweep, the conductivity returned to slightly less than the initial

value indicating an insignificant negative charge storage. This behaviour is consistent with other

carbon doped epitaxies [42]. In stark contrast, the behaviour of the unintentionally doped sample

was far from the ideal dielectric case. The 2DEG showed very little substrate bias dependence

and on the return sweep appeared to saturate at the initial conductivity, as is typical for positive

charge storage (see Section 3.2.4). This indicated there was no negative charge stored in the

buffer after the measurement which is consistent with what has been observed in another study

[160]. The substrate currents measured during the substrate bias ramp are shown in Figure

4.4(b). The vertical current is ∼100 times higher in the unintentionally doped sample than in

the carbon doped sample at −350 V. The substrate bias measurements were repeated on the

sample with the carbon doped back-barrier with various transfer length measurement structure

contact separations. The results, shown in Figure 4.5 present a variation in pinch-off behaviour

with transfer length measurement structure gap. The smaller the transfer length measurement

structure gap, the smaller the changes in channel conductivity, indicating a weaker dependence

of the 2DEG density on the substrate bias.

The results of the lateral leakage measurements as a function of isolation structure separation

are presented in Figure 4.6. The structures were between 3 µm and 18 µm apart. The lateral

leakage current in the carbon doped sample decreased rapidly with increasing isolation structure

separation. This structure separation, d, is shown in Figure 4.3 where the left most contact is
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Figure 4.4: (a) The measured and simulated 2DEG conductivity during the substrate bias ramps
on the unintentionally doped and C doped samples. The voltage was ramped at 5 Vs−1. The
solid line shows the sweep down to −350 V with the dash line the return to 0 V. The capacitive
coupling line is the response of an ideal dielectric. (b) The substrate current density during the
measurements. The unintentionally doped sample shows an ∼ 100 times increase in vertical
leakage at −350 V.

Figure 4.5: The normalised 2DEG conductivity during a substrate bias measurement for transfer
length measurement structures of varying separation. The shorter the transfer length measure-
ment structure gap, the slower the pinch off of the 2DEG. The dashed line represents the ideal
capacitive line of the structure. The substrate bias was ramped at −5 Vs−1.
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Figure 4.6: Lateral current between two isolation structures (a) as a function of inverse separation
at 150 V and (b) as a function of voltage. (a) is plotted as inverse separation to show that on the
C doped sample, the lateral current follows an exponential dependence on inverse separation
whereas the lateral current on the unintentionally doped sample is & 100 times higher and only
weakly dependent on separation.

not used in this particular measurement. The exponential reduction in current with inverse

distance (I ∝ eC×V /d ∝ eC×E where C is a constant) seen in Figure 4.6(a) is indicative of a leakage

process which is exponentially dependent on the electric field such as variable range hopping

[101]. Again, the unintentionally doped sample showed a different behaviour than the carbon

doped sample with only a weak dependence on separation and a lateral current & 100 times

higher. When increasing the metal-semiconductor area of the isolation structure biased at 0 V

by probing multiple structures, additional probes were connected in parallel to the same source

measurement unit. This increased wiring connected to the measurement system increased the

noise floor into the pA level. This meant that the lateral leakage current level of the carbon doped

sample in Figure 4.7 was below the noise floor. However, the lateral current in the unintentionally

doped sample shows an approximately linear increase with increasing 0 V contact area.

The vertical leakage measurements on the sample with the carbon doped back-barrier showed

no measurable leakage current up to 40 V. This is consistent with the vertical current during the

substrate bias ramp in Figure 4.4(b) which was below the noise floor of 10 µAcm−2 until |Vsub| >
250 V. However, the results of the measurement applied to the sample with the unintentionally

doped back-barrier showed a surprising dependence on applied voltage and is shown in Figure

4.8. For ease of reference to these results, different stages in the current behaviour in this figure

are numbered and referred to in the text. Initially, 1 , the current increased with the voltage

as expected from the substrate bias ramp. At 2 , the voltage was constant for a few seconds

as the system prepared to change the ramp direction. During this time when the voltage was
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Figure 4.7: Lateral current between two isolation structures at a separation of 8 µm (a) as a
function of contact area of the 0 V contact and (b) as a function of voltage. On the unintentionally
doped sample, the lateral current shows a near linear dependence on area. The noise floor was in
the order of pA as a result of adding additional probes to the system which was above the lateral
leakage current level of the carbon doped sample.

fixed at 38 V, the vertical current increased. Then, as the voltage began to ramp down again, the

current continued to increase, 3 . At a point on the return ramp, 4 , and at a time dependent

on the ramp rate, the current turned over. Finally, 5 , the current quickly reduced with a steep

gradient. Increasing the ramp rate reduced the magnitude of the current and delayed the time in

the return ramp that the current began to decrease. This result of increasing vertical current

with decreasing field during the return ramp is obviously far from conventional field dependent

leakage current behaviour.

4.4 Discussion

4.4.1 Substrate bias ramps

First discussing the substrate bias ramps in Figure 4.4, since this technique is sensitive to the

electric field under the 2DEG, the weak dependence of the 2DEG conductivity on substrate

bias seen in the unintentionally doped sample, means the field below the 2DEG is very low.

Electrostatically, this screening of the substrate bias can only be caused by the accumulation

of positive charge in the buffer. As the substrate bias increases, the positive charge must also

increase to continue screening the 2DEG from the substrate bias as observed. On the return

sweep, the 2DEG density saturated at a fixed level. This occurs since, as the bias is removed, the

positive charge in the buffer is quickly neutralised as it lowers the barrier confining electrons to

the 2DEG (the diode in the equivalent circuit diagram in Figure 4.3 is forward biased). This is in
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Figure 4.8: The vertical current measured during a linear ramp of the substrate potential at
various ramp rates. An unusual hysteresis was observed in which the vertical current apparently
continues to increase as the vertical field is reduced.

contrast to stored negative charge which has much longer time constants for neutralisation [120].

Since this behaviour is only observed in the unintentionally doped sample it is reasonable to

infer that this behaviour is related in some way to the doping of the back-barrier. Therefore, two

possible explanations are proposed; either a polarisation induced 2D hole gas (2DHG) is present

at the unintentionally doped back-barrier/AlN interlayer interface [161–165], or, a population of

donors is present in the unintentionally doped back-barrier with a sufficient density to screen

the largest substrate bias [166].

Considering screening by ionised donors, the density required to be present can be calculated

using Poisson’s equation. Assuming that the donors are only present in the back-barrier and that

they are uniformly distributed in the region, the charge distribution forms the top hat function

as shown in Figure 4.9(a) with a height related to the charge density, ρ, from the ionised donors.

Using Poisson’s equation,

∇2ϕ=−ρ
ε

(4.1)

the maximum potential which can be screened for a given back-barrier donor density can be

calculated by double integration with respect to space. The form of the electric field and potential

are shown in Figure 4.9(b) and 4.9(c) respectively. Screening was experimentally observed up

to a substrate voltage of −600 V which from Figure 4.9 indicates a minimum donor density of

1.3×1017 cm−3. Such a high density is unlikely in a good quality unintentionally doped layer
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Figure 4.9: A calculation of the charge density required to screen a substrate bias of −600 V when
distributed uniformly in the back-barrier. The charge density, (a), electric field, (b), and potential,
(c), are each shown as a function of depth through the epitaxy.

as used here, therefore donors are unlikely to be the cause of the screening here. Instead, if the

hetero-interface at the top of the interlayer is blocking, positive charge could accumulate there,

either as free carriers or as ionised dopants. These two cases can be distinguished by considering

the lateral resistivity as free carriers will provide a low resistance lateral conduction path.

During the substrate bias measurements, the substrate current in the unintentionally doped

sample was observed to be 100 times higher than the carbon doped sample (Figure 4.4(b)). In

the unintentionally doped sample, the thickness of the stack doped with carbon was reduced

by a factor of ∼0.7 compared to the carbon doped sample. Therefore, it may be logical to try to

attribute this 100 times increase in leakage to the reduced thickness of highly resistive carbon

doped GaN. However, even in the most extreme scenario of the entire 2DEG-substrate potential

being dropped over only the carbon doped layers, a 0.7 times change in thickness would result in

an increase in the electric field in the unintentionally doped sample by a factor of 1.4. Although

the leakage current is likely to be exponentially dependent on the electric field, this is still a

very small change in field compared to the measured 100 times difference in the vertical current.

Therefore, this disparity cannot simply be attributed to the reduced thickness of highly resistive

carbon doped layers. On the other hand, the presence of a 2DHG can account for this increased

vertical leakage by considering that it spreads out over an area greater than the mesa area

[167]. This results in a higher vertical leakage current since the same potential is dropped over

additional parallel leakage paths because the active area is effectively increased.
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4.4.2 Lateral leakage

The lateral leakage measurements further verify the presence of a 2DHG at the unintentionally

doped back-barrier/AlN interlayer interface. With reference to the equivalent circuit diagram in

Figure 4.3, the weak dependence on separation in the unintentionally doped sample in Figure 4.6

indicates the lateral resistivity is much lower than vertical resistivity. Assuming Ohmic transport

through all the resistors, the current-distance gradient implies the total lateral resistivity is

∼ 10 times lower than the vertical resistivity. In reality the vertical conductivity is far from

Ohmic and so the lateral resistivity will be much less. This is consistent with the model of a

low resistance 2DHG acting as a deep lateral conduction path below the mesa isolation trench.

The lateral current increasing with the area of the unbiased contact in Figure 4.7 is particularly

interesting. Proceeding with the assertion that the lateral resistance is small compared to the

vertical resistance, the equivalent circuit diagram in Figure 4.3 reduces to two back-to-back leaky

diodes. With −150 V on the biased isolation structure, the diode below that contact is forward

biased resulting in a negatively biased 2DHG. The 2DHG will not be at a potential of −150 V

since it will also be coupled to the 0 V substrate by some leakage process, but it will certainly

be below 0 V over an extended area (since the 2DHG is not confined by the mesa isolation). The

diodes below the isolation structures at 0 V will therefore be reverse biased and the current in

Figure 4.7 represents the reverse bias leakage. It follows that any additional isolation structure

biased at 0 V will experience the same bias conditions and so the measured leakage current scales

linearly with the number of structures at 0 V. Therefore, the model to explain this data requires a

p-type layer below the 2DEG, a blocking back-barrier and low resistance lateral conduction. The

presence of a 2DHG satisfies these requirements and can explain the behaviour of the leakage

current increasing with the total area of the isolation structures biased at 0 V.

As the density of the 2DHG must vary in order to change its potential, an obvious question

is how far does this change in density extend and what limits it from extending over the entire

sample? One model proposed by Chatterjee et al. [167] suggests the extension is limited by

preferential leakage paths which pin the potential around them by sourcing electrons from

the substrate. This is illustrated in Figure 4.10 as Model 1 with the vertical resistors in the

strain relief layer representing dislocations. The preferential leakage paths are shown as orange

resistors and the potential along the 2DHG is shown in orange. Since the potential at the

dislocation is pinned and the potential in the active area is pinned, the 2DHG potential must

drop linearly between these two potentials. In this model, the 2DHG extension area under a

given isolated structure is fixed, based on the locations of these preferential leakage paths. An

alternative model considers that the 2DHG is in AlGaN and so alloy scattering and dopants can

give rise to a percolated potential. This would lower the hole mobility and increase the sheet

resistance of the 2DHG so a lateral electric field and hole density gradient could be sustained. In

this way, the 2DHG could be bound by many parallel vertical leakage paths with the magnitude of

any lateral extension equivalent to a transfer length. This second model assumes the equivalent
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Figure 4.10: An epitaxy is presented with a 2DHG and a negative substrate bias. Overlaid is
an equivalent circuit diagram where vertical resistors represent dislocations and the arrows
represent hole flow. In the active area the 2DHG potential (and density) is increased relative to
the rest of the wafer and the extension is limited by two possible models. In orange, the Chatterjee
model whereby the potential is completely dropped at preferential leakage paths. In purple, the
extension is limited by dropping the potential over many dislocations.

circuit diagram of the strain relief layer is instead composed of the many purple resistors in

Figure 4.10. The resulting potential distribution, shown in purple, follows the same potential

drop as in a 2DEG along the transfer length under a contact described in Section 3.3. Although

here, the contact resistivity instead represents the dislocation resistivity and the transfer length

is the extension outside of the mesa. Moving away from the isolated area, each time the hole gas

encounters a dislocation, some of the potential is dropped until, eventually, the potential is the

same as elsewhere in the wafer. The dislocations in this model would not need to be as leaky

as those in the Chatterjee model since at the edge of the 2DHG, the potential is dropped over

multiple dislocations rather than just one.

Electrical measurements of the 2DHG extension beyond the mesa area by Chatterjee et al.

indicated an average extension length of 100 µm. Reinterpreting this as a 100 µm transfer length,

λ, the sheet resistance of the hole gas can be estimated using the equivalent circuit diagram in

Figure 4.11. It is assumed that the resistivity of the epitaxy below the 2DHG is ρ2 ∼ 1013 Ωcm.

To further simplify the model, it is assumed that the resistivity above the 2DHG, ρ1, is much

smaller such that it can be neglected. Under these assumptions, the sheet resistance, Rs, can be

approximated as

Rs = ρ2L2

λ2 (4.2)
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Figure 4.11: A circuit diagram to explain the transfer length interpretation of the 2DHG extension.
The thickness and resistivity of the epitaxy above the 2DHG are represented by L1 and ρ1
respectively and likewise, L2 and ρ2 below the 2DHG. Rs is the sheet resistance.

where L2 is the thickness of the strain relief layers in [167] (guessed as 2 µm). These model

assumptions give rise to a sheet resistance in the order of 1013 Ω�−1 which is exceptionally

high for a free sheet charge and much higher than that interpreted from the lateral leakage in

Figure 4.6. Further, assuming a sheet density of 1012 cm−2, the apparent hole mobility from that

sheet resistance is 10−6 cm2V−1s−1, much lower than the bulk mobility of ∼ 10 cm2V−1s−1 [168].

Discarding the assumption that ρ1 is small, a numerical simulation of the equivalent circuit

was performed. Here, it was instead assumed that ρ1 = ρ2 and the thicknesses L1 and L2 were

guessed as 1.5 µm and 2 µm. No longer assuming a negligible series resistivity for ρ1 reduced

the required sheet resistance to 1012 Ω�−1, though only by a factor of 10. The experimental data

clearly shows a low resistance 2DHG, therefore based on these calculations it is clear that either

the model or some other assumptions are incorrect. The most likely issue is in assuming that all

the dislocations have the same resistivity and give rise to a ‘bulk’ resistivity of ρ2 ∼ 1013 Ωcm.

In reality, different dislocations with differing Burgers vectors (see Section 2.3.1) may vary in

resistivity by orders of magnitude. This way the most leaky dislocations may limit the 2DHG

after much smaller extensions. Unfortunately, it is not possible to test this as the density and

conductance of such dislocations are not known.

4.4.3 Vertical leakage and charging

The measurements of the vertical current through the epitaxy with the unintentionally doped

back-barrier, in Figure 4.8, showed some surprising results, most notably an apparent negative

resistance when reducing the positive substrate voltage. This measurement was applying a

positive substrate bias and hence the opposite polarity to the substrate bias ramps in Figure 4.4.

The linear ramp used in these measurements would give rise to a displacement current based on

the capacitance of the epitaxy. However, the displacement current expected from this structure
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Figure 4.12: The vertical charging model is shown as a series of band and equivalent circuit
diagrams. Holes flow from the 2DHG while its potential is less than zero, increasing the number
of available vertical leakage paths. In the band diagrams, the arrow on the substrate indicated
the direction of the substrate ramp. In the circuit diagrams the resistors in red indicate vertical
leakage paths carrying current. The thick horizontal lines represent the region of the 2DHG at a
reduced potential with the arrow heads indicating the direction of extension.

is a few pA, much smaller than the measured current. Since no leakage mechanism could give

such a result, an alternative model has been constructed to explain this behaviour which again

requires the presence of a 2DHG. Working around the current loop and with reference to the

circled numbers in Figure 4.8, the model processes are described in each phase. For clarity, this

description is also represented pictorially in Figure 4.12.

1 As the substrate voltage increased, the vertical current increased. As the positive bias

was applied to the substrate, the potential of the entire epitaxy became more positive as it was

capacitively coupled between the substrate and the surface. A hole leakage current flowed from

the interlayer 2DHG to the surface at 0 V. The potential of the 2DHG locally under the mesa was

reduced compared to the rest of the 2DHG and this potential difference was dropped laterally

along the 2DHG which is resistive. The resistivity of the strain relief layers below the 2DHG is

constant and so the vertical current through this portion of the epitaxy is proportional to the area

over which the potential is applied. As the substrate voltage was increased and the hole current

continued, the area of the 2DHG at a reduced potential grew and so the vertical leakage through

the epitaxy below the 2DHG increased with this area.

2 The substrate voltage was constant but the vertical current continued to increase. The

sustained vertical field meant the hole current continued and the area of the 2DHG at a lower

potential outside the mesa area continued to expand. This caused the substrate leakage to

continue to increase with the increasing size of the effective active area.

3 The substrate voltage began to ramp down but the vertical current continued to go up

as if the epitaxy had a negative resistance. Reducing the substrate potential caused the 2DHG

potential to capacitively reduce everywhere. However at this point, the 2DHG under the mesa
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was still at a more positive potential than the surface so the leakage current between the two was

reduced but continued. As such, the area of the 2DHG with a reduced density and at a reduced

potential continued to expand. This expansion led to a continued increase in the current through

the stack.

4 During the return to 0 V, there was a turning point in the vertical current and it began to

decrease. The substrate potential decreased to the point where the 2DHG potential was exactly 0

V and the hole current to the surface stopped as there was no longer any electric field through

the top of the epitaxy. The 2DHG under the mesa stopped expanding and the current through the

epitaxy stopped increasing.

5 Finally, as the potential of the 2DHG continued to capacitively decrease, the 2DHG

potential under the mesa became more negative than the surface and the leakage current

restarted but in the opposite direction, with holes flowing from the surface to replenish the 2DHG

density and keep its potential at 0 V. The area of the depleted 2DHG rapidly decreased in this

phase causing a rapid decrease in the vertical leakage current.

The ramp rate dependence of the measurements can also be explained with this model. At the

fastest ramp rate, the leakage in the top of the epitaxy occurred for less time so there was less

time to change the 2DHG density. Therefore, the area of the reduced density 2DHG stayed small

and the vertical leakage current stayed low. The time at which the turn over point, 4 , occurred

in the return ramp was also ramp rate dependent. If this measurement were performed so slowly

that everything came into equilibrium, the high leakage between the surface and the 2DHG

would keep the 2DHG at 0 V. Then on the return sweep, the 2DHG would instantly have a lower

potential than the surface and the turn over would happen immediately. Conversely, considering

an extremely fast measurement so that only a few holes flowed from the 2DHG to the surface

during the positive substrate ramp. When ramping back down, the potential of the 2DHG would

continue to be more positive than the surface right until the substrate was nearing 0 V and then

the leakage current would reverse, and the few holes would return to the 2DHG. Therefore, the

slower the ramp rate, the sooner the leakage current begins to decrease on the return ramp.

4.4.4 Sub-contact leakage

As established in section 4.4.1 the potential of the 2DHG must be able to change in order to

screen the substrate bias in the substrate ramp measurement. This requires it to be in electrical

contact with the Ohmic contacts. Electrical contact is also required to explain the lateral leakage

and vertical charging measurements. Possible ways this can occur includes contact spiking,

metal in-diffusion and the decoration of dislocations with the contact metals. Although it is not

obvious which, if any of these, is the cause, the presence of these leakage paths is apparent

from the substrate bias screening in the unintentionally doped sample. Since the only difference

between the two samples is the doping in the back-barrier, the sub-contact leakage should be the

same in both. Therefore, the sub-contact leakage can be further investigated by substrate ramp
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measurements on the carbon doped sample, using transfer length measurement structures of

varying channel length. These measurements are shown in Figure 4.5 on the sample with the

carbon doped back-barrier. The 2DEG is depleted at a rate that depends on the distance between

the contacts with the largest distance depleted fastest. This behaviour can only be explained by

the field driven injection of positive charge into the buffer, just under the contacts. In this case

with a carbon doped back-barrier, the positive charge is much less able to transport laterally as

there is no 2DHG providing a low lateral resistance. Therefore, only the 2DEG near the contacts

is affected. The size of the area around the contact that the holes extend into is determined by the

time constant of the GaN:C (ρε∼ 10 s) and the ramp rate of the measurement. As the contacts

are moved closer together, a greater fraction of the total 2DEG is affected by the lower vertical

field caused by the positive charge and so the rate of depletion is separation dependent. This

phenomenon of increased vertical leakage under the Ohmic contacts will be investigated in depth

in Chapter 5.

4.4.5 Self-compensation

By now there is a strong argument for the presence of a polarisation induced 2DHG in the

unintentionally doped back-barrier. Equally compelling is the evidence that this 2DHG is not

present when the back-barrier is carbon doped. Therefore it is a reasonable assertion that the

presence of carbon is the cause of the 2DHG suppression. Only donors can suppress the 2DHG

[169, 170] and this is explained considering the band diagram around the top interlayer as shown

in Figure 4.13. The polarisation discontinuities at the top and bottom interfaces of the AlN

interlayer result in the presence of interface charges; negative at the top interface and positive at

the bottom. The negative interface charge at the top interface is neutralised either by free holes

forming a 2DHG or by ionised donors. When the back-barrier is carbon doped, deep acceptor

and shallow donor levels are present. At room temperature all of the shallow donors are ionised.

Far from the interface, the net charge will be neutral despite the ionised donors, since an equal

number of deep acceptors become ionised, pinning the Fermi level. However, in the depletion

region above the interlayer, all of the deep acceptors will be neutral as the bands are pulled up

by the interface charge. In this region the positive donor charge is revealed and if the donor

density is sufficiently high, can completely neutralise the interface charge, suppressing any hole

gas. The AlGaN layer below the interlayer is carbon doped in both samples. As the bands bend

down at this interface, the ionisation of additional deep acceptors will neutralise any positive

interface charge at the lower interface. As a result, no 2DEG will be present in either sample at

the interlayers.

From this model of 2DHG suppression, it is required that donors are introduced by carbon

doping, meaning that carbon is self-compensating. These measurements can be used with simula-

tions to put limits on the minimum donor density (and therefore the minimum compensation
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Figure 4.13: Diagram of the band structure around the AlN interlayer (a) with the carbon
doped back-barrier and (b) with the unintentionally doped back-barrier. With carbon doping, the
depletion region above the interlayer (in red and of width Xn) causes an ionised donor charge
to be revealed which can neutralise the upper interface charge. Without carbon, the interface
charge is not neutralised by donors and free holes can accumulate. In both cases, a net negative
charge from additional ionised acceptors in the depletion region below the interlayer, neutralises
the lower interface charges.

ratio) required to neutralise the polarisation charge. This is approached in the following section

using technology computer aided design (TCAD) simulations. The purpose of these simulations is

to quantify the carbon donor density required to reproduce the experimentally observed 2DHG

suppression. The simulations will accurately model the magnitude and distribution of the polari-

sation charge around the interface and vary the carbon donor density (i.e. the self-compensation

ratio). This will allow simulation of the 2DHG density and the minimum donor density required

for 2DHG suppression can be identified. This result can then be converted into the lower bound

of the carbon self-compensation ratio in these samples.

4.5 Simulations

Simulations of the epitaxy in Figure 4.2 are discussed both with and without carbon doping

in the back-barrier. By varying the carbon self-compensation ratio it is possible to identify the

minimum donor density required to suppress the formation of a 2DHG. The polarisation charges

are calculated as a function of the aluminium composition following from the work of Ambacher

et al. [48]. The exact composition profile was measured using a scanning transmission electron
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Figure 4.14: An scanning transmission electron microscopy z-contrast image of an AlN interlayer
in AlGaN is shown in (b), acquired with a high-angle annular dark-field detector (courtesy of S.
Stoffels, imec). The mean Al composition through the interlayer is shown in (a) along with the
model used in the simulations. A square profile is also shown demonstrating the deviation from
the ideal composition profile.

microscope image in the high angle annular dark field, shown in Figure 4.14(b). This technique,

detailed in Section 3.4.1, looks at high angle scattering events of the electron beam. The heavier

the atoms in the sample, the more high angle scattering occurs and the brighter the image.

Therefore the Al composition was inferred by assuming the darkest point was AlN and the

average grey far from the interlayer was Al0.08Ga0.92N. The image was averaged along the length

of the interlayer to generate Figure 4.14(a). A model of the Al profile of the interlayer, used in the

simulation, was approximated from the measured profile and is shown overlaid. This is compared

to a square profile of an ideal 10 nm AlN interlayer in 8% AlGaN.

Since the structure was grown by metal-organic chemical vapour deposition, when rapidly

changing Al composition, residual carrier gases in the reactor lead to a transition in Al content

over a few nanometres of growth. As the junction is not abrupt, the polarisation charge is

distributed over the transition. In calculating the polarisation charges it was assumed that the

AlN layer was completely relaxed. This is a fair assumption since the nominal interlayer thickness

was 10 nm which exceeds the critical thickness for relaxation of AlN on GaN [171]. However, if

the interlayer were partially strained this would have introduced a piezoelectric polarisation to

add to the spontaneous polarisation, resulting in an underestimate of the calculated interface

charges.

The simulations were implemented using Silvaco’s ATLAS drift diffusion simulator described

in section 3.5. Donor and acceptor levels were included in the simulation to represent carbon
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based on the energy levels determined by Lyons et al. [92] and discussed in section 2.4.3. To

simulate a given self-compensation ratio, ξ, the total carbon density was divided into a donor

density and an acceptor density by consideration of two constraints; the compensation ratio is

defined as ξ= ND /NA , and the total carbon density must remain as Ncarbon = ND+NA . Combining

and rearranging these two constraints derives the formulae for the two trap densities as

NA = Ncarbon

1+ξ (4.3)

ND = ξNcarbon

1+ξ (4.4)

As required, the sum of these donor and acceptor densities recovers the total carbon density

(ND +NA = Ncarbon). The shallow donor level representing CGa was included at 0.02 eV below

the conduction band of the Al0.08Ga0.92N with a density of ND . In addition, the deep acceptor

representing CN was included with a density of NA and at a depth of 0.98 eV above the valence

band. The depth of the donor in the simulation is not too important, so long as it is sufficiently

shallow that it is thermally ionised at room temperature. The depth of the CN deep acceptor

level is 0.9 eV in GaN and 1.88 eV in AlN, the level used here of 0.98 eV in 8% AlGaN was

determined through a linear interpolation between these levels. The total carbon density on both

sites (ND +NA) was kept constant at the secondary-ion mass spectroscopy measured density of

2×1019 cm−3. In addition to these trap levels in the carbon doped layers, unintentional donors

were incorporated throughout the structure with a density of 1016 cm−3 at a level of 0.02 eV below

the conduction band. The surface charge above the AlGaN barrier was set to 5×1012 cm−2 to

bring the simulated 2DEG density in line with the Hall measured density of 5.9×1012 cm−2. The

simulated surface charge was lower than the simulated 2DEG density as some 2DEG electrons

were provided by bulk donor states. To include the sub-contact leakage paths, described in section

4.4.4, some creative simulation was required. In a real device this leakage presumably occurs

through a band-to-band trap-assisted-tunnelling process, however, this is currently beyond the

capabilities of the simulator. Instead, small 15 nm p++ spike regions were added below the

contacts which allowed a space charge limited hole current to flow locally in the unintentionally

doped GaN when the structure was in reverse bias conditions. This was similar to the way

preferential sub-contact leakage was implemented by Uren et al. [41]. Although there, the

p-type spikes were much longer which would have contacted the 2DHG in these simulations.

Generally in device simulations, only the top few layers of the epitaxy are simulated along with

the processed device. This is done to reduce the simulation complexity and also because often

the exact composition of the lower layers is not disclosed to protect intellectual property. The

simulations performed here included the entire stack, including the deep buffer structure, which

was absolutely necessary to understand the role played by the interlayers. The full simulation

files required for this simulation of the structure with a carbon doped back-barrier are included

in Appendix C.
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Figure 4.15: Simulated 2DHG density as a function of donor density (and compensation ratio) in
the back-barrier. The simulations were repeated with realistic and square interlayer composition
profiles. The 2DHG is completely suppressed at donor densities greater than 5.5×1018 cm−3 with
a realistic profile corresponding to compensation ratios & 0.4. Whereas with a square interlayer
profile the 2DHG is not suppressed even at a donor density of 7×1018 cm−3. This figure corrects
that published in [149] where the tick mark positions on the compensation ratio axis were
incorrectly linearly spaced between the extremal ratios.

4.5.1 Equilibrium conditions

For clarification, all of the parameters in this simulation have been set based on measured

material properties, measured composition profiles and defect energy levels presented in the

literature. The total number of carbon defects has been measured experimentally but the fraction

that are donors and the fraction that are acceptors is varied in this set of simulations. Therefore,

the only parameter which is varied in this set of simulations is the carbon self-compensation ratio.

The minimum carbon self-compensation ratio required for 2DHG suppression was determined

by running the carbon doped simulation with a range of carbon self-compensation ratios. In

these simulations, no bias was applied and the density of any 2DHG formation at the back-

barrier/AlN interlayer interface was monitored. The simulated 2DHG density as a function of

self-compensation ratio is shown in Figure 4.15 where the 2DHG was completely suppressed at a

donor density of 5.5×1018 cm−3 corresponding to a compensation ratio of ∼ 0.4.

The simulated cross-section of the unintentionally doped back-barrier with this compensation

ratio is shown in Figure 4.16(b) and displays hole concentration. Figures 4.16(a) and 4.16(c)

show the band structure and net charge of the carbon levels respectively from a cut-line mid way
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Figure 4.16: Simulation results of a transfer length measurement structure on the sample with
the unintentionally doped back-barrier with all terminals at 0 V. A cross-section of the epitaxy
showing hole concentration is presented in (b). The band structure from a cut line mid way
between the contacts is shown in (a) and the net trap charge (ionised donors minus ionised
acceptors) is shown in (c).

Figure 4.17: Simulation results of a transfer length measurement structure on the sample with
a carbon doped back-barrier with all terminals at 0 V and ND /NA = 0.4. A cross-section of the
epitaxy showing hole concentration is presented in (b). The band structure from a cut line mid
way between the contacts is shown in (a) and the net trap charge (ionised donors minus ionised
acceptors) is shown in (c).
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between the contacts. At the upper and lower interfaces of the unintentionally doped back-barrier,

holes accumulate with a density of 1.5×1012 and 8.6×1012 cm−2 respectively. The carbon doping

results in a net negative trap charge below the interlayers as additional acceptors are ionised

(as explained in section 4.4.5), which suppresses any 2DEG formation. The equivalent results

for the simulation of the sample with a carbon doped back-barrier are shown in Figure 4.17

also with ND/NA = 0.4. In contrast to Figure 4.16(b), this simulation shows no accumulation of

free holes in the back-barrier demonstrating a complete suppression of the 2DHG. Examination

of Figure 4.17(c) presents the explanation; the interface charges are now neutralised by a net

positive charge, revealed from the ionised carbon donors in a depletion region above the interlayer

which was not present in Figure 4.16(c). The size of this depletion region was ∼ 20 nm with

ND/NA = 0.4 and increased up to ∼ 35 nm with ND/NA = 0.1. The cause of this depletion region

was outlined in section 4.4.5 and depicted in Figure 4.13. The indication is that the 2DHG can

indeed be suppressed by carbon dopants but requires a compensation ratio of at least 0.4, in

agreement with the previously estimated lower range of 0.1−0.6 [42]. Coupled with the previously

discussed upper bound of 1 [157], the carbon self-compensation ratio in Al0.08Ga0.92N must be

0.4<ND/NA < 1.

This set of simulations was repeated with the square interlayer profile rather than the

realistic model. In that case, the 2DHG density was much higher and was not suppressed even at

donor densities of 7×1018 cm−3. This was because the polarisation charge was entirely located

at the ideal heterointerface rather than being spread out over a few 10s of nm. The smearing of

the interface charge from the gradient in Al composition means that it can be neutralised with

a lower donor density since the depletion volume is larger. This demonstrates the necessity of

modelling the aluminium composition profile realistically in simulations of the deep buffer.

The simulations require a donor density of at least 5.5×1018 cm−3 be present in the carbon

doped back-barrier to suppress the 2DHG. In converting the donor density to a compensation

ratio it was assumed that all of the donors were a result of carbon on the gallium site. In reality,

to incorporate carbon during the growth, the growth temperature was reduced. This increases the

generation rate of point defects such as nitrogen vacancies which also act as donors [172, 173].

This consideration implies the minimum bound of the self-compensation reported here is an

overestimate. However, the density of additional point defects will be much lower than the

required 5.5×1018 cm−3 donors and so the large majority must be related to CGa. Therefore, this

will only introduce a small error in the lower bound of the compensation ratio.

4.5.2 Substrate bias ramp simulations

In order to verify these simulations were accurately representative of the samples, the simulated

structures were subject to the same substrate bias ramps as in the experimental measurements.

The simulation results are shown overlaid with the measurements in Figure 4.4(a). As in

the experimental results, the 2DEG conductivity is independent of the substrate bias in the
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Figure 4.18: Simulated transfer length measurement structure with an unintentionally doped
back-barrier and an applied −350 V substrate bias. A cross-section of the epitaxy showing hole
concentration is presented in (a). The band structure from a cut line mid way between the contacts
is shown in (b).

Figure 4.19: Simulated transfer length measurement structure with a carbon doped back-barrier
(ND /NA = 0.4) and an applied −350 V substrate bias. A cross-section of the epitaxy showing
hole concentration is presented in (a). The band structure from a cut line mid way between the
contacts and directly through the contact spike is shown in (b), with a solid and dashed line
respectively.
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unintentionally doped sample and depletes linearly in the carbon doped sample. At applied

substrate biases of |Vsub| > 250 V, the measured 2DEG conductivity on the carbon doped sample

begins to deviate from the simulation. This is most likely related to the upper part of the stack

starting to leak via a trap-assisted-tunnelling mechanism which is not included in the simulation.

The simulated device cross-section with an unintentionally doped back-barrier is shown in Figure

4.18(a) with a substrate bias of −350 V. The corresponding band structure is shown in Figure

4.18(b) from a cut-line mid way between the contacts. From these results it is clear that the

screening occurs from the top interlayer and all the field is dropped between this interlayer and

the substrate. Holes are seen here flowing from the contact spike all the way to the interlayer

where they are blocked and accumulate. The corresponding simulation result for the sample with

the carbon doped back-barrier is shown in Figure 4.19. In this case, the vertical electric field is

dropped linearly between the 2DEG and the substrate in areas not under a contact. Since the

GaN channel layer is the same in both samples it is unsurprising that the holes are injected in

the same way. However, with the carbon doped back-barrier, these injected holes pool under the

contacts at the channel/back-barrier interface and form a locally reduced vertical electric field

seen in the dashed grey line of Figure 4.19(b). The formation of these pools lower the electric

field directly below the contact at the expense of increasing the vertical electric field in the

back-barrier. This is an example of the Maxwell-Wagner effect which describes the accumulation

of charge at discontinuities in material resistivity [174, 175]. This simulation result is consistent

with the observed transfer length measurement structure gap dependence during the substrate

bias ramps on the carbon doped sample and with the model discussed in section 4.4.4. These

results are also relevant in Chapter 5 where the electric field below the contacts is discussed.

4.6 From AlGaN to GaN

This study has been concerning carbon doping in an Al0.08Ga0.92N back-barrier. However, as

discussed earlier, the back-barrier is more commonly GaN and so there will be interest in the

transferability of these results to GaN. This is approached by examining the formation energies

of CN and CGa from the density functional theory simulations introduced in section 2.4.3. The

root cause of the self-compensation is a result of the incorporation rates of the CN and CGa

configurations depending on the position of the Fermi level [92, 151]. If the Fermi level is high in

the bandgap, the formation energy of CN decreases, increasing the generation rate of acceptors

and lowering the Fermi level. Equally, as the Fermi level becomes low, the formation energy of

CGa becomes small giving rise to a large incorporation of donors, raising the Fermi level. In this

way, an equilibrium Fermi level is found during growth which sets the self-compensation ratio.

Therefore, based on this information it is likely that carbon will also be highly self-compensated

in GaN, just as in AlGaN. There are other factors which influence the position of the Fermi

level during growth such as the incorporation of hydrogen and these may explain why the
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self-compensation ratio deviates from unity.

4.7 Conclusions

Substrate bias, lateral leakage and vertical charging measurements have been performed on

two samples which differ only by the carbon concentration in the back-barrier. The differing

behaviour of the samples was attributed to the formation of a polarisation induced 2DHG at

the unintentionally doped back-barrier/AlN interlayer interface. The assertion was made that

the presence of the carbon was the cause of the suppression of the 2DHG in the carbon doped

sample. As only donors can neutralise the polarisation charge and suppress the 2DHG, this

result allowed the determination of the minimum donor density introduced by the carbon. It

was shown that the donor density required to suppress the 2DHG depended strongly on the

composition profile through the interface. The same simulations with an ideal abrupt interface

lead to unrealistic results, demonstrating the importance of accurately representing such features

in these simulations. Additionally, leakage under the contacts was required in the simulations in

order to match the experimental data. During the substrate bias ramps, these preferential leakage

paths gave rise to substrate bias screening and transfer length measurement structure gap

dependence in the unintentionally doped and carbon doped samples respectively. The simulated

minimum donor density to suppress the polarisation induced 2DHG was found to be 5.5×
1018 cm−3. With the knowledge of the total carbon density from secondary-ion mass spectroscopy,

the minimum carbon self-compensation ratio was shown to be 0.4 assuming an insignificant

density of other point defect donors. The self-compensation ratio must also be less than unity

since otherwise carbon doping would not increase the material resistivity. Therefore the carbon

self-compensation ratio was determined to be 0.4 < ND/NA < 1. The carbon self-compensation

ratio is the key parameter for setting material resistivity and therefore strongly influences the

vertical leakage and breakdown voltage. This value also defines the depletion behaviour under

the gate in the off-state. Therefore, knowledge of this previously unknown value is fundamental

for accurate device simulations.
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5
VERTICAL LEAKAGE AND BREAKDOWN UNDER TI/AL CONTACTS

The presence of preferential leakage paths under Ohmic contacts and the need to include

them in simulations has already been observed in the previous chapter. This leakage

reduces the resistivity and breakdown field of the GaN, thereby degrading the properties

that make it desirable. This chapter uses a set of purpose designed structures to study and

characterise the sub-contact leakage. Vertical leakage and quasi-static capacitance-voltage mea-

surements were interpreted to identify the depth of the affected region under the contacts and

place bounds on the resistivity of the leakage paths.

The work in this chapter was performed in collaboration with imec who grew the samples

and processed the structures which were designed by Michael J. Uren. The structures were

characterised here and a model was developed to explain the data. The results have been

published in the IEEE journal Electron Device Letters [155]. Significant content has been

reproduced from this publication. The flow of the research in this chapter is presented in Figure

5.1.
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Figure 5.1: The flow of the research in this chapter.
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5.1 Introduction

The high breakdown field associated with AlGaN/GaN HEMTs means they have the potential

to make systems more efficient by operating at higher voltages. Growing the nitride layers on

silicon, makes these devices more affordable and competitive since the substrates are cheap

compared to SiC or bulk GaN and growth can take place in existing Si foundries. Coupled with

the high electron mobility and high carrier density offered by the 2DEG, these devices are capable

of sustaining high fields in the off-state and permitting high currents in the on-state.

However, point defects and other imperfections in the material quality introduce non-ideal

behaviour such as current collapse and buffer leakage. As explained in section 2.5, current

collapse, also referred to as dynamic on-resistance, is the phenomenon of a short term increase

in the transistor on-state resistance after switching from the off-state to the on-state. It occurs

when charge is trapped in the buffer (or the surface) during the high electric fields experienced in

the off-state, which later act as a back-gate to the 2DEG. A reduced resistivity in the channel and

buffer layers has been shown to allow this trapped charge to leak away on shorter time scales

and thus has been linked to improved device performance. The presence of enhanced leakage

paths in the sub-contact region has been observed to, at least partially, reduce current collapse

in this way [41, 42]. As seen in the previous chapter and elsewhere [144], the inclusion of these

leakage paths in simulations is required to match experimental data. Despite the importance

of these sub-contact leakage paths, little is known about the extent to which they impact the

vertical leakage or how far they extend. Prior speculative explanations have suggested the cause

is contact spiking, metal in-diffusion into the GaN or the decoration of dislocations [41, 42] and

all of these will increase the vertical leakage. Managing the off-state leakage and breakdown is

critical for maximising the device operating voltage. Both of these can be achieved by minimising

the peak electric fields. Lateral electric fields like those experienced in HEMTs in the off-state

can be controlled by an optimised field plate design and a sufficiently large gate-drain access

region. The challenge comes with management of the vertical electric fields. Historically, the

solution to higher voltage operation has been to increase the thickness of the epitaxy. However,

the maximum achievable thickness of AlGaN/GaN layers on Si is about 7 µm, after which the

strain from the lattice mismatch causes cracking [36, 37]. An alternative solution is to optimise

the breakdown field of the epitaxy in order to increase the hard breakdown voltage and this

has been achieved with some success [176, 177]. Previously published work has shown that

the vertical leakage through the epitaxy is influenced by the choice of contact metals [58]. In

that work it was demonstrated that Ti/Al based contacts gave rise to an increase in the vertical

leakage. However, contact metal stacks based on Ti/Al are desirable since they have been shown

to offer low contact resistances and are compatible with fabrication in silicon foundries which

cannot permit gold. This chapter studies the impact of Ti/Al/TiN contacts on the resistivity of an

AlGaN/GaN HEMT epitaxy. Vertical breakdown and transient vertical leakage measurements

have been applied to purpose designed vertical leakage structures to quantify the impact of
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the contacts. Together with analysis of quasi-static CV data, the resistivity and depth of the

preferential leakage paths have been evaluated. These results provide much needed information

required for understanding the leakage dynamics through the epitaxy under the contacts, which

is related to both buffer leakage and current collapse.

5.2 Experimental details

5.2.1 Epitaxy and structures

The structures in this work were fabricated on an AlGaN/GaN-on-Si epitaxy optimised for power

HEMTs. The nitride layers detailed in Figure 5.2 were grown by metal-organic chemical vapour

deposition on a silicon substrate which had a resistivity of > 1 Ωcm. AlN and AlGaN transition

layers were grown on the silicon followed by an AlGaN/GaN superlattice for strain relief with

a combined thickness of 1.9 µm. This was followed by a 1 µm carbon doped GaN buffer layer, a

0.3 µm unintentionally doped GaN channel and an AlGaN barrier to form a 2DEG. The epitaxy

was passivated with Al2O3 and SiO2 and the 2DEG sheet resistance was measured as 550 Ω�−1.

The Ohmic contacts were fabricated using the optimised process developed by Firrincieli et al.

[59]. This entailed a full recess of the AlGaN barrier and the deposition of a Ti/Al/TiN metal

stack. The Ti/Al thickness ratio was 0.05 and the contacts were annealed at 550◦C which is lower

than other equivalent processes. This resulted in fully Si CMOS compatible contacts with a low

contact resistance of ∼ 0.6 Ωmm. The unit Ωmm applies here since this contact resistance was

measured using the lateral transfer length method described in Section 3.3. In a metal-2DEG

junction the transfer length is much smaller than the length of the contact, so only the contact

width affects the contact resistance. Taking a typical value for the transfer length as 1.6 µm, this

result corresponds to a specific contact resistance of 0.01 mΩcm2.

On this epitaxy a suite of vertical leakage structures were fabricated (shown in Figure 5.2)

which were designed to study the impact of the contacts on the resistivity of the epitaxy. All

structures had the same active area of 110 µm×110 µm, isolated by a nitrogen implantation.

The maximum energy of the nitrogen ions was 375 keV which equated to a maximum depth of

∼ 550 nm. In the centre of each active area, a square hole was opened up in the passivation and

the AlGaN barrier was recessed to make an Ohmic contact. The contact areas varied in size from

5 µm×5 µm to 95 µm×95 µm. On top of the Ohmic contacts a probing pad was deposited with

an area of 100 µm×100 µm which was the same for all structures. The design of the structures

was motivated by the assertion that all structures with the same active area should show the

same vertical current unless the presence of the contact affects the vertical leakage.

In addition to these structures, surface leakage structures were used which were capable

of isolating and separating surface and buffer leakage [146]. This structure, those topology

was introduced in section 3.3, centres on an isolated 100 µm×100 µm Ohmic contact which is

surrounded by a Schottky guard ring at a distance of 20 µm. Surface and buffer leakage with a
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Figure 5.2: A cross-sectional diagram of a vertical leakage structure showing the layers of the
epitaxy. The Ohmic contact area is defined by the window in the passivation but the active area
is defined by the implant isolation.

lateral electric field were determined by applying a bias to the central Ohmic contact and 0 V on

the guard ring and external Ohmic contact.

5.2.2 Characterisation

Vertical breakdown measurements of the epitaxy were performed using a simple 100 µm×100 µm

isolated Ohmic contact. This was compared to the same measurements on a vertical leakage

structure with a contact area of 5 µm×5 µm and an active area of 110 µm×110 µm, as always.

In all vertical measurements in this chapter, a negative bias was applied to the substrate such

that the electric field in the epitaxy was of the same polarity as a biased HEMT with a positive

drain with a grounded substrate. A Keithley 2657A was used to apply the substrate bias and the

current was measured when applying 0 V to the surface with a Keithley 4200. The breakdown

criterion was defined as a vertical current density of 103 Acm−2 (∼ 100 mA).

In order to test for the presence of lateral conduction paths in the epitaxy, substrate bias

ramps were performed as described in section 3.2.4. In the absence of lateral conduction paths,

the magnitude of the substrate bias required to pinch off the 2DEG should be constant regardless

of the active area. However, if such a lateral conduction path were present, it could extend

laterally outside the isolation and effectively increase the active area. An example of this is a

2DHG which can extend up to 100 µm outside the active area [167]. A smaller isolated area

would be more susceptible to this change in effective active area as it is a greater fractional

change. Therefore, the pinch off voltages of smaller structures would differ more and more as the
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isolated area became comparable to the extension area of lateral conduction paths.

The vertical leakage structures were measured by applying −200 V to the substrate using a

Keithley 41501B and the current was measured from the surface contact at 0 V using a Keithley

4156A. The current was measured over 30 s and the current at the end of the transient was

assumed to be only leakage current. The use of a transient measurement to determine the

leakage current ensured the absence of any displacement or surface charging currents which

may otherwise be present during a voltage ramp. Applying the voltage step at the start of

the measurements causes a spike in displacement current which decays with a time constant

determined by the resistivity and permittivity of the layers. The sampling time of 30 seconds

was selected as it was sufficiently late that the decaying displacement current did not effect

the measurement. This sampling time was equally sufficiently short that it was not sensitive

to any change in the current over longer time scales as a result of, for example, (de)trapping of

deep levels. An additional reason to use a transient measurement to assess the vertical leakage

was the ability to account for surface charging. If surface charging were occurring, applying a

ramped voltage would lead to the erroneous addition of a surface current. By using a transient,

surface charging may only appear as a transient with a certain decay time constant which can be

measured separately to assess its impact. This was done using the intentionally designed surface

leakage structure shown in Figure 3.8. The structure was designed to measure the surface and

buffer leakage components by biasing the central Ohmic contact as described previously. An

additional, alternative application was to use the structure in the vertical leakage measurements.

The central Ohmic and the guard ring were both held at 0 V with the substrate at -200 V. This

guaranteed the current measured on the central Ohmic contact was only vertical current, since

any lateral surface charging current would be supplied by the guard ring and not measured.

More than 35 of each of the vertical leakage structures were measured to ensure a sufficient

distribution size. Following this, three vertical leakage structures of each geometry exhibiting

mean vertical leakage behaviour were selected for quasi-static capacitance-voltage measurements.

As described in section 3.2.3, a negative substrate bias was applied to the substrate using a

linear ramp generator. The current was measured from the vertical leakage structures which

were biased at 0 V using a 4156A. The bi-directional, continuous ramp was applied at a rate of

−1 Vs−1 down to a voltage of −40 V.

5.3 Results

The vertical breakdown of the epitaxy, measured on isolated 100 µm×100 µm Ohmic contacts is

shown in Figure 5.3. A maximum breakdown voltage of 2.7 MVcm−1 was seen, demonstrating

excellent breakdown performance. The same measurements were applied to vertical leakage

structures with contact areas of 5 µm×5 µm for comparison. The leakage current level and

final breakdown field were both improved with the smaller contact, showing the same vertical

82



5.3. RESULTS

Figure 5.3: Vertical breakdown measurements on an isolated 100 µm×100 µm contact (large
contact) and a vertical leakage structure with a contact area of 5 µm×5 µm (small contact). The
measured current was normalised to the active area. The large contact structures showed an
increased vertical leakage and on average, breakdown at an electric field 0.13 MVcm−1 lower.

leakage current at an electric field approximately 0.45 MVcm−1 higher. Meanwhile, the mean

hard breakdown field increased by approximately 0.13 MVcm−1 with a smaller contact.

The results of the substrate bias ramp measurements on three different active areas are

shown in Figure 5.4. The substrate bias was ramped down to −400 V and back at a ramp rate of

−5 Vs−1. Each of the curves were very similar and showed the same rate of pinch off, indicating

no dependence on the size of the active area. On the downward ramp, the rate of depletion slowed

between 70 < |V | < 180 V followed by a return to a steeper gradient. On the return ramp, the

2DEG density returns to and saturates near the initial value by |V | ∼ 80 V.

The surface leakage structure was first used by applying a bias to the central Ohmic and 0 V

to the other contacts as shown in Figure 3.8. The lateral field between the central Ohmic and the

guard ring was used to measure the surface resistivity. The guard ring current is shown in Figure

5.5(a). No buffer leakage was measurable above the noise floor on the external Ohmic contact. At

20◦C the guard ring measured a surface current of 3.3 pA at the highest applied lateral field of 5

kVcm−1. This corresponds to a ‘sheet’ resistance of ∼ 7×1013 Ω�−1. The current followed a power

law relation with the electric field of I ∝ E1.32 and the current level increased with temperature

like an activated process with an activation energy of EA = 0.7 eV.

Secondly, the surface leakage structures were used to evaluate the effect of surface charging

on the vertical leakage transient when −200 V was applied to the Si substrate. The central Ohmic

and the guard were both set to 0 V ensuring only vertical current was measured by the Ohmic
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Figure 5.4: Substrate bias ramps on three different active areas showing pinch-off voltage
independence from the active area. The substrate bias was ramped at −5 Vs−1 with the solid and
dash lines showing the ramp down and back respectively. The dotted line shows the capacitive
coupling line that would be followed by an ideal dielectric. A reduced gradient was observed on
the downward ramp in the substrate voltage range 70< |V | < 180 V.

inside the guard. The results are shown in Figure 5.5(b) and are compared with the transients of

the vertical leakage structure with a similar contact area of 95 µm×95 µm. At short time scales

there are some subtle differences, but this does not affect the current level by 30 s.

The vertical leakage transients of the vertical leakage structure with the smallest geometry

are shown in Figure 5.6(a). These transients have a decay time constant of τ =∼ 5 s which is

similar to that expected of carbon doped GaN, τ= ρε=∼ 10 s The gradient of the current at 30 s

was small compared to the initial gradient indicating that processes with short time constants

such as the displacement current spike had decayed. The current at 30s was used to make the

histogram in Figure 5.6(b) which exhibits a Gaussian distribution. The same measurements and

analysis were applied to all of the vertical leakage structure geometries and the parameters

of the Gaussian fits are shown in Figure 5.7(a). Here it is apparent that the vertical current

increases approximately linearly with contact area. From the y-intercept of the linear fit, the

current density through the 110 µm×110 µm active area in the absence of an Ohmic contact

can be estimated as 120 pAmm−2. Similarly, from the gradient of the fit, the additional current

density due to the contacts is 325 pAmm−2. This indicates that with 200 V across the epitaxy, the

vertical leakage current under the contact metal is increased by a factor of ∼ 3.5. The same data

is shown on log-log axes in Figure 5.7(b). The approximately constant size of the bars indicate

that the ratio of the standard deviation to the mean is approximately constant.
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Figure 5.5: Results of measurements on the surface leakage structures when applying (a) a lateral
field and (b) a vertical field. The guard ring current is shown in (a), indicating a lateral resistivity
in the order of 1013 Ω�−1 at 20◦C. The current-field relation was a power law I ∝ E1.32 and the
process is activated with an energy of 0.7 eV. The current on the central Ohmic contact, biased
at 0 V, during vertical transient measurements is shown in (b) with a substrate bias of −200 V.
Compared with the unguarded structure, these results show that charging of the surface only
changes the first few seconds of the transient.

Figure 5.6: (a) The vertical transients measured on the vertical leakage structure with a contact
area of 5 µm×5 µm and a substrate bias of −200 V. The current at 30 s was binned to form the
histogram in (b). The histogram was fitted with a Gaussian distribution to extract the mean and
standard deviation of the distribution.
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Figure 5.7: (a) The mean vertical leakage of the vertical leakage structures increases linearly
with contact area. The bars show the standard deviation of the distributions. The same data is
plotted in (b) on log-log axes where the similar sizes of the bars indicates the ratio of the standard
deviation to the mean is approximately constant. The linear fit has a gradient of 325 pAmm−2

and a y-intercept of 1.47 pA.

The results of the quasi-static capacitance-voltage measurements on the vertical leakage

structures with the smallest and largest contact areas are shown in Figure 5.8. The direct

measurements are shown in Figure 5.8(a) followed by the decomposition of the bidirectional

current-voltage curve into the displacement and leakage components in Figure 5.8(b). Finally,

the displacement component of each measurement was used to infer the quasi-static capacitance

of the structures in Figure 5.8(c). A parallel capacitance of 0.93 pF was subtracted from an open

calibration. Like the vertical leakage, the capacitances of the structures increased approximately

linearly with the area of the contact.

5.4 Discussion

All of the vertical leakage structures had the same active area of 110 µm×110 µm, and regardless

of the area of the contact, electrical contact was made to a 2DEG which had the same area.

Therefore, with an ideal contact to the 2DEG, the vertical leakage between the 2DEG and

the substrate would be the same for all structure geometries. However, as seen in Figure 5.7,

increasing the area of the contact increases the vertical leakage current. This implies the presence

of the contact introduces additional vertical leakage paths below the 2DEG. The increase in the

vertical leakage current-voltage characteristics in Figure 5.3 with the larger contact indicates

the leakage mechanisms are strongly influenced by the contacts. However, the small shift in the

hard breakdown voltage indicates the final breakdown mechanisms remain similar.
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Figure 5.8: The quasi-static capacitance-voltage results of two vertical leakage structures. The
measured current-voltage characteristics of the smallest and largest structures are shown in (a)
which are then decomposed into the displacement and leakage components in (b) by identifying
the fraction of the current which changes sign with the ramp rate. The displacement current
is used with the ramp rate to identify the capacitance. The quasi-static capacitance of all the
vertical leakage structures are shown in (c) and increases with contact area.

The substrate bias measurements showed no dependence on the active area indicating the

absence of lateral conduction paths. This was expected since the buffer had been optimised to

maximise breakdown voltage which would have been negatively impacted by the presence of

lateral leakage paths. Therefore, the use of a 1D model in the analysis of the measurements on

this epitaxy is justified. The deviation from the capacitive coupling line can be interpreted to infer

the movement of charge in the epitaxy. One model to explain this data is that at |V |& 70 V the

top of the stack begins to leak, injecting positive charge into the buffer and reducing the vertical

electric field near the 2DEG. This reduces its rate of depletion at the expense of increasing the

electric field in the lower part of the epitaxy. Then at |V | & 180 V, the entire epitaxy begins

to leak and the 2DEG is resistively coupled to the substrate. On the return ramp, the 2DEG

remains resistively and then capacitively coupled to the substrate until it recovers to its initial

density. Then, the positive charge that was injected into the epitaxy lowers the barrier confining

electrons to the 2DEG which rapidly neutralise it. This neutralisation of the positive charge as

the substrate bias is removed causes the 2DEG density to saturate close to its initial value.

In Figure 5.5(a), a lateral field up to 5 kVcm−1 was applied between the central Ohmic and

the guard ring of the surface leakage structure with the resulting surface current of 3.3 pA

at 20◦C. The current-field relationship of I ∝ E1.32 was similar to that expected for a surface

leakage current which generally follows I ∝ E. The leakage was also seen to be an activated

process, consistent with surface hopping with an activation energy of EA = 0.7 eV, likely related

to the energy level of the surface states. Surface leakage on this process has been studied in

detail by imec [178] and their results agree very well with those shown here. Specifically, the
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near exponential increase in surface leakage with temperature. Apart from these data, all

measurements were performed at room temperature and with much lower lateral electric fields,

so surface leakage would have been at a minimum. In addition, there are two more considerations

which support the argument that surface effects would not have affected the measurements.

Firstly, during the quasi-static capacitance-voltage measurement, the magnitude of the applied

substrate voltage was always less than 40 V, so although lateral fields on the surface were not

well defined, those fields would be much lower than the 5 kVcm−1 experienced in the surface

leakage structure. It is worth noting that there were no metal structures in the vicinity of the test

structure, and all unbiased structures would be floating. Secondly, as shown in Figure 5.2, the

size of the window in the passivation determines the contact area but the probing pad extends on

top of the passivation to a 100 µm×100 µm pad which is the same for all structures and acts

as a field plate. Therefore, any residual surface charging would be the same for all structures

and would appear as an offset in the displacement current. Equally, lateral leakage over the

surface then down through the epitaxy would not affect the quasi-static capacitance-voltage

measurements since the technique relies on the displacement component which is separable from

the leakage current.

The vertical transients on the surface leakage structure in Figure 5.5(b) were able to isolate

the component of the transient related to the surface. This was compared to the vertical leakage

structure with the largest contact of 95 µm×95 µm which had a similar contact area to the

100 µm×100 µm of the central Ohmic in the surface leakage structure. When measuring the

transient with the vertical leakage structure, the measured current would have contributions

from both the vertical leakage and surface effects. Whereas with the surface leakage structure,

the central Ohmic and the guard were at the same potential, therefore, no current would flow

between them and the surface currents would flow from the guard. Consequently, the current

measured from the central Ohmic must be only vertical current. This means that the difference

between the transients of the two structures pertains to the surface leakage contribution. At

early time scales of a few seconds, the transients differ, probably related to some surface charging.

However, after 30 s the current was unchanged by the presence of the guard ring. Therefore,

by using a transient technique to measure the vertical leakage, the effect of displacement and

surface related currents have been removed.

5.4.1 Capacitance model

The quasi-static capacitance-voltage results indicated a linear relation between structure capac-

itance and contact area. An interpretation of this result is that the capacitance of the epitaxy

directly under the contact is higher than the capacitance in the remaining, uncontacted active

area. As the structure capacitance is the sum of these parallel capacitances, an increase in the

area of the contact (and a decrease in the area of the uncontacted active area) would result in

a net increase in the capacitance. An equivalent circuit diagram of this model is formalised in
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Figure 5.9: The equivalent circuit model constructed to explain the capacitance and vertical
leakage dependence on contact area. The epitaxy is simplified into a leaky dielectric and an
additional leakage path is included below the contact only, represented by ρ2.

Figure 5.9. In the uncontacted active area, the epitaxy is simplified into a single leaky dielectric,

represented by ρ1 and C1. Under the contact, the epitaxy is simplified into two layers; the top of

the stack which is influenced by the contact and the lower part of the stack which has the same

properties as in the uncontacted area. The resistivity of these two layers, ρ1,lower and ρ1,upper

combine to have the same total resistivity as ρ1 and likewise for the capacitances. The part

of the model which introduces the dependence of the vertical leakage and capacitance on the

contact area is the inclusion of an additional leakage path, represented by ρ2. This resistor is in

parallel with ρ1,upper, reducing the resistivity of the upper part of the epitaxy compared to the

uncontacted areas.

The effect of ρ2 is to increase the leakage through the layer such that the leakage current

is much greater than the displacement current of C2. This means the layer no longer has a

measurable capacitance and the capacitance of the epitaxy under the contact becomes C3 rather

than C1. The capacitance per unit area of C3 is higher than C1 since this is a thinner portion of

the epitaxy. An alternative way to interpret this is by looking at the potential drop between the

two series resistors under the contact. The lower combined resistivity of ρ1,upper and ρ2 compared

to ρ1,lower means more of the potential is dropped over the lower layer. Therefore, under the

contact a higher capacitance will be measured since the displacement current under the contact

will now be Idisp ∼ C3 × dV
dt . It follows that as the contact area is increased the capacitance of the

entire structure increases.

Assuming that ρ2 << ρ1, the resistivity directly under the contact is approximately equal

to ρ2 and is also small compared to ρ1,lower. Based on this, the exact change in the structure

capacitance with contact area depends only on the depth to which the region of reduced resistivity

extends below the contact. Accordingly, the only fitting parameter in this model is the depth that

89



CHAPTER 5. VERTICAL LEAKAGE AND BREAKDOWN UNDER TI/AL CONTACTS

ρ2 extends down from the contact. The simulated response of the vertical leakage structures

to the quasi-static capacitance-voltage measurements is shown in Figure 5.8(c) with different

depths of ρ2. The quasi-static capacitance-voltage measurements most closely follow the simula-

tions with leakage paths extending 1.6 µm below the contact. This implies there is a region of

reduced resistivity below the Ohmic contacts which extends all the way down into the top of the

superlattice.

In Chapter 4, simulations of a similar epitaxy are shown in Figure 4.19. The contact metal

stack of that sample was also Ti/Al based, though the process was different. In that process the

AlGaN barrier was not recessed and the metal stack was Ti/Al/Ni/Au rather than the Ti/Al/TiN

in this chapter. However, sub-contact leakage paths were included in that simulation and some

qualitative comparisons can be made. A vertical cut-line of the potential directly under the

contact spike is shown in Figure 4.19(b) as a dashed line. The effect of the contact spike with

an applied vertical field was to inject carriers which reduced the effective resistivity of the GaN

channel layer. In the channel layer, under the contact, there was no potential drop and this

caused an increase in the electric field in the back-barrier. Since the vertical current depends

on the electric field, this will cause an increase in the vertical leakage through the back-barrier

under the contact. The subtle point here is that the depth of the region which is affected by the

contact (and which is measured here) may be greater than the length of the sub-contact leakage

path. This is since below the region of reduced resistivity, the electric field is higher, increasing

field dependent leakage.

Regarding the physical cause of the additional leakage, transmission electron microscope

images of other Ti/Al contacts have been compared. In-diffusion of the contact metals has been

reported up to 30 nm down from the contacts [179, 180] and spiking has been seen as deep as

100 nm [181]. However, neither of these could explain a leakage path as deep as 1.6 µm. The

scanning electron microscope (SEM) and transmission electron microscope images of the contacts

here in this work are shown in Figure 5.10 and reveal a completely smooth metal-semiconductor

interface, confirming the absence of spikes or in-diffusion on the scale of microns. One possibility

which could give rise to such extended leakage paths without appearing in a transmission electron

microscope image is the decoration of existing dislocations through the epitaxy. It is plausible that

this could happen with the contact metals during annealing and such an affect has previously

been observed with Ti/Al contacts [182].

In order to measure a higher displacement current under the contact, it must be true that

the resistivity ρ2, is sufficiently small that the vertical current is limited by the displacement

current from C3. Therefore, an upper bound for ρ2 is the effective resistivity of the capacitor C3

during the ramp. The effective resistivity of a capacitor during a voltage ramp can be derived as

ρC = V
ε

(
dV
dt

)−1

(5.1)

by combining the definitions of a capacitor (C = εA/d), displacement current (I = CdV /dt) and
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Figure 5.10: (a) Scanning electron microscope and (b) transmission electron microscope images
of the Ti/Al/TiN contacts in this study [59]. The metal-semiconductor interface is flat and devoid
of spiking. ©2014 The Japanese Journal of Applied Physics.

Figure 5.11: (a) The CV profiles of the vertical leakage structures with the indicated contact
areas measured by quasi-static capacitance-voltage and conventional high frequency CV. The CV
at 1 MHz is approximately constant for all structures and agrees fairly well with the calculated
ideal capacitance. The capacitance as a function of measurement frequency in shown in (b). The
capacitances of the structures do not disperse down to the lowest measurable frequency of 100
kHz.

resistivity (ρ = RA/L). This puts an upper bound on ρ2 of ∼ 1011 Ωcm. The resistivity of the

epitaxy in the absence of an Ohmic contact can be evaluated from the y-intercept in Figure 5.7(a).

This intercept current with an active area of 110 µm×110 µm and a total epitaxial thickness of

3.2 µm gives an average resistivity of 5×1013 Ωcm. This value is in good agreement with other

estimations of the resistivity of carbon doped GaN [41, 183]. The implication is that the presence

of the contact has reduced the resistivity of the GaN below it by at least a factor of 100.

In order to identify a lower bound for the resistivity of the sub-contact leakage paths, ρ2,
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conventional high frequency CV was used. The capacitance of the vertical leakage structures at

1MHz is shown in Figure 5.11(a) and compared to the quasi-static capacitance-voltage measure-

ments. In contrast to the quasi-static results, all of the different structure geometries showed

the same capacitance. This is expected since the leakage time constant (τ= RC = ρ2ε) is much

slower than the 1 MHz modulation used in this measurement. The capacitances of the structures

were measured over a range of frequencies in Figure 5.11(b) in order to observe the capacitance

dispersion at low frequencies, seen in the quasi-static measurements. The highest frequency

at which dispersion is visible between the structures will indicate the time constant and hence

resistivity of ρ2. The lowest measurable frequency before the parasitic capacitances and induc-

tances of the measurement system increased the noise floor was 100kHz. No dispersion was seen

before this point which indicates at the very least that 1
ρ2ε

< 100 kHz resulting in the bounds

107 < ρ2 < 1011 Ωcm. This is the main result of this chapter; the assertion that leakage paths

extend below only the Ohmic contact for as far as 1.6 µm into the epitaxy, with resistivities

potentially as low as 10 MΩcm. The presence of such leakage paths, though not previously

studied to this extent, are evident in the transfer length measurement structure gap dependence

in a number of other back-bias studies [144, 149, 184], showing that this issue is widespread.

Reading from Figure 5.3, suppression of these leakage paths can reduce vertical leakage by two

orders of magnitude and increase device breakdown voltage by 5%.

5.4.2 Vertical leakage simulations

The distributions of the vertical leakage currents in Figure 5.7(b) showed an approximately

constant ratio of the standard deviation to the mean. At first sight, this is unexpected with

the model set forward in the previous section. The model attributes the additional leakage to

dislocations under the contact becoming more leaky. It follows, that increasing the contact area

increases the number of affected dislocations and so the mean leakage current is proportional to

the contact area. However, it may also be expected that the standard deviation is proportional

to the square root of the contact area. After all, the larger the number of dislocations under the

contact, the larger the variation that is possible. This would result in a scaling with contact area

of σ
µ
∝ 1p

contact area
but this is not what is seen.

In order to understand this discrepancy, the vertical leakage distributions were simulated

using MATLAB based on two simple model assumptions; (1) the vertical leakage occurs only

along dislocations (bulk leakage is ignored) and (2), under the contact, the dislocations are

more leaky than in the uncontacted active area. The procedure of the simulations is shown

in Figure 5.12. The vertical leakage structures were simulated in 2D, in plan view. Therefore,

vertical dislocations appeared as points whose locations were determined using a random number

generator. The simulation started by filling a 200 µm×200 µm area with dislocations until the

specified dislocation density was reached. An example of this 200 µm×200 µm area is shown

in Figure 5.12(a) with the square active and contact areas overlaid. Following this, for a given
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Figure 5.12: The procedure of the vertical leakage simulations is shown for a 20 µm×20 µm
contact. (a) A random spatial distribution of dislocations was generated with a random number
generator and the number in the contact region and in the uncontacted active region were counted.
(b) This was repeated 500 times to build up distributions for both regions. (c) The dislocations in
each region were multiplied by a ‘leakage per dislocation’ to generate a leakage distribution for
one structure (d) This was all repeated for a range of contact areas to simulate the scaling of the
distribution parameters with contact area.

contact area, the number of dislocations under the contact and the number in the uncontacted

active area around the contact were counted. This entire process was repeated 500 times to build

up the distribution in Figure 5.12(b) of the number of dislocations in each of the areas for a given

contact area.

To simulate the leakage distributions of the structure in Figure 5.12(c), the dislocations were

multiplied by a value of the average ‘leakage per dislocation’ with 200 V across the epitaxy. The

leakage current of the dislocations under the contact was increased by a factor which represented

the preferential sub-contact leakage. All of the above was then repeated for a range of contact

areas to build up the simulation of how the mean and standard deviation scaled with the area of

the contact. The value of the ‘leakage per dislocation’ and the sub-contact factor were used as

fitting parameters so that the simulated area dependence of the mean leakage agreed with the

measurements.

The dislocation density of this GaN-on-Si sample was in the order of 109 cm−2. It was initially

assumed that 1% of these dislocations were electrically active, based on the observation that

only dislocations with a Burgers vector of 1c are leaky [105]. The results of the simulation are

shown in Figure 5.13(a) with a conductive dislocation density of 107 cm−2. To fit the simulated

mean leakage current to the measured data over the full range of contact areas, the current per

dislocation was set to 1.1 fA and the factor of increased dislocation leakage under the contact

was 3.6. This gave a ‘leakage per dislocation’ under the contact of 4 fA. This factor of 3.6 is in

very good agreement with the measurement of this parameter (∼ 3.5) extracted from Figure
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Figure 5.13: A comparison of four simulations with the measured distribution parameters. (a)
With an electrically active dislocation density of 107 cm−2, (b) a density of 106 cm−2, (c) a density
of 107 cm−2 with dislocation clustering, and (d) a density of 107 cm−2 with variation in the
dislocation conductances.

5.7(a). To resolve potential confusion, this factor of 3.6 refers to the change in vertically averaged

resistivity of the entire epitaxy under the contact. This differs from the estimated 102−106 times

reduction in resistivity estimated by the quasi-static capacitance-voltage measurements which

was referring to just the material directly under the contact. This simulation shows all of the

same trends as the measurements. Specifically, the ratio of the standard deviation to the mean

is flat as seen in the experimental data. While this model may not be exactly what is going on,

it demonstrates that these leakage distributions (and in particular the constant ratio of the

standard deviation to the mean) can be explained using a simple model based on preferential

leakage paths under the contact.

The magnitude of the standard deviation with contact area is predicted by the simulation to

be much smaller. This suggests an additional source of random variation exists which is not being

accounted for in the simulation. One way to increase the standard deviation in the simulation

would be to lower the dislocation density by a factor of 10 and increase the dislocation leakage

by the same factor to maintain the same mean current. This is shown in Figure 5.13(b) and

is in better agreement with the measured data. However, this would correspond to only 0.1%

of the dislocations being electrically active which is unrealistic. Recent studies of the relative

densities of different dislocation types suggests the percentage of leaky dislocations is more like

1−10% [105]. Alternatively, the source of variation could be from dislocation clustering. This was

implemented in the simulation by introducing a clustering parameter, ξ. To generate a clustered

dislocation distribution with average density, n, the first n(1−ξ) dislocations were distributed

randomly, as in the previous simulation. After this, the remaining nξ dislocation were allocated
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sites within 1 µm of already existing dislocations. By this method, a clustering of ξ= 0 recovered

the original unclustered simulation whilst ξ= 1 placed all dislocations in one cluster. The results

of this simulation are shown in Figure 5.13(c) with ξ = 0.91 and gives an equally improved

result with the dislocation density back at 107 cm−2. It should be noted however, that the extent

of the clustering required to give this result was unrealistically high; 91% of the dislocations

are located near the site of the first 9% which were generated. Measurements of the spacial

distribution of dislocations on GaN-on-Si wafers by cathodoluminescence [185] show a clustering

of ξ= 0.013, much lower than that required here. The final investigated possible way to introduce

additional variation was by adding random variations into the amount of current carried by each

dislocation. The dislocation density was 107 cm−2 and the ‘leakage per dislocation’ was multiplied

by a random number between 0.8 and 1.2. This range of variation was chosen as it best fitted

the experimental data. The result shown in Figure 5.13(d) shows a very different shape to the

previous simulations with the standard deviation only increasing sharply at high contact areas.

The variation in leakage between different dislocations of ±20% may seem small. Considering

that dislocation conductivity appears to depend strongly on the Burgers vectors [105], different

dislocations could vary in leakage by orders of magnitude. However it is possible that the leakiest

dislocation type will dominate the total current, and then it is the variation in leakage current of

this dislocation type that defines the distribution which may only be small.

This idea that there may be orders of magnitude differences in leakage current between

different types of active dislocations suggests an explanation for the simulation in Figure 5.13(b).

The reduced dislocation density required to fit the measurements could be representative of 10%

of the active dislocations being much leakier than the rest and defining the distribution shape.

The 106 cm−2 density in this simulation would be referring to just these most leaky dislocations

which would have an average spacing of approximately 10 µm.

To summarise these simulations, a simple 2D model is able to simulate the observed constant

ratio of the standard deviation to the mean. The behaviour of σ
µ
∝ 1p

contact area
can be forced in a

non-physical simulation by setting the current carried by dislocations outside of the contact area

to zero. Therefore, this constant ratio is a result of the interplay between the two distributions

shown in Figure 5.12(b). The source of the underestimation of the distribution width in the

first simulation in Figure 5.13(a) is still unknown. Possible sources relate to an overestimation

of the electrically active dislocation density (or a fraction of the electrically active dislocations

dominating the leakage), the clustering of dislocations, or a combination of both. Alternatively, it

could be the case that this 2D model is oversimplified and a full 3D simulation is required, more

like reality, in which the dislocation conductivity changes some way down under the contacts.

However, adding a small random variation to the conductivities of the dislocations produced a

result that did not agree well with the measurement data so this is less likely to be the source.
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5.5 Conclusion

The effect that Ti/Al based Ohmic contacts have on the vertical leakage in AlGaN/GaN HEMT

epitaxies has been studied. Vertical leakage structures were characterised to identify and quan-

tify the additional vertical leakage as a result of the presence of the contact. Vertical current

transients were measured on these structures and the magnitude of the leakage current was

seen to increase linearly with the area of the contact. This is an important observation since

it indicates that the presence of the contact reduces the resistivity of the epitaxy and hence,

degrades the desirable properties of the GaN. Additionally, the vertical capacitance of these

structures was measured both with conventional CV and by quasi-static CV. The quasi-static

CV measurements revealed an increase in the structure capacitance, which was also linearly

related to the contact area. These measurements supported the notion of a region below the

contact with a reduced resistivity compared to the uncontacted epitaxy. The resistivity of this

region was estimated to have reduced from 5×1013 Ωcm to between 107 Ωcm and 1011 Ωcm. The

quasi-static capacitance-voltage measurements also indicated that the preferential leakage paths

extended ∼ 1.6 µm below the contact, all the way down into the superlattice. It was also observed

that these leakage paths reduced the hard breakdown field. Therefore, optimising the Ohmic

contacts is essential for maximising device operating voltages. These results indicate that the

impact of the contacting process is not limited to the surface but may also play a role in managing

current collapse and buffer leakage. The depth to which these paths extend is suggested here to

be much greater than previously expected with previous estimations not exceeding 100 nm. It is

worth noting that this was an unusually low temperature process and so a more typical 800◦C
process may have an even bigger effect. Inclusion of such paths in device simulations will enable

improved simulation accuracy as they are a requirement for the recovery of observed behaviour.
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IMPURITY BAND CONDUCTION IN GAN-ON-GAN PN DIODES

The previous two chapters were discussing the development of HEMTs for high power

applications. However, as explained in section 2.2.3, high power pn diodes with matched

capabilities are required to compliment these HEMTs in many power switching circuit

designs. The development of bulk GaN-on-GaN pn diodes for this purpose form the remainder of

this thesis. In this chapter, the mechanism of reverse bias leakage is studied, resulting in a new

model of leakage occurring through impurity band conduction in dislocation cores.

The devices in this section were grown by the Institute of Materials and Systems for Sus-

tainability at Nagoya University. The author performed the measurements and developed the

model to explain the data. The transient results and the model of impurity band conduction have

been published in the AIP journal Applied Physics Letters [186]. Significant content has been

reproduced from this publication. The flow of the research in this chapter is presented in Figure

6.1.
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Figure 6.1: The flow of the research in this chapter.
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6.1 Introduction

To meet the growing demand for efficient, high voltage and high power density switching systems,

diodes with low on-resistance and simultaneous high breakdown voltage are required. GaN is an

ideal material to meet this demand due to its high electron mobility and high breakdown field and

outperforms its Si and SiC equivalents [53, 71, 72]. However, to scale up the breakdown voltage

of lateral GaN-on-Si devices, the device area must be increased dramatically. This means a loss of

yield which drives up the cost of production [33, 187]. Instead, vertical device geometries permit

an increase in the breakdown voltage by increasing the epitaxial thickness rather than the area,

and the device footprint can be even further reduced by contacting on the top and bottom of the

wafer. In addition, as the forward biased current flows through the bulk material rather than

a 2DEG, the device is heated over a larger volume resulting in lower peak temperatures [33].

Low cost vertical GaN-on-Si diodes have already been developed with some success but there

are two main issues with this technology. Firstly, the devices exhibit reverse leakage currents

much higher than would be possible with bulk GaN due to the high dislocation density [28, 139].

Moreover, the large lattice mismatch in these epitaxies limits the thickness of the drift region to

1.5 µm which severely limits the breakdown voltage [70]. The solution to both of these issues is

homoepitaxial growth on bulk GaN substrates. Until recently, the development of GaN-on-GaN

devices was limited by the availability of low cost bulk GaN substrates. However, high interest

in this field has rapidly driven progress in the growth of affordable bulk GaN. Low dislocation

density substrates are now readily available in 2" wafers [71] and even 4" and 6" wafers in small

volumes [19], grown by hydride vapour phase epitaxy or ammonothermally as detailed in Section

2.3.2.

Dislocation density is a critical parameter in vertical GaN-on-GaN diodes as it puts a limit on

the reverse leakage. Recent work has combined leakage measurements with electron microscopy

techniques to identify the location of the vertical leakage. As described in section 2.4.5, analysis

of the leaky dislocations indicated that pure screw dislocations with a Burgers vector of 1c are

responsible for leakage in GaN-on-GaN pn diodes [105]. The dislocation density of free standing

bulk GaN wafers is typically in the order of 106 cm−2. This is much lower than GaN grown

on foreign substrates such as GaN-on-Si where dislocation density is typically in the order of

109 cm−2. This huge reduction in the dislocation density is the reason bulk GaN diodes can have

much lower reverse leakage currents compared to GaN-on-Si devices [34, 139]. There has been

extensive study of reverse leakage in Si doped GaN and many reports identifying the reverse

current-voltage characteristics are consistent with variable range hopping [101, 106]. Since the

leakage has already been correlated with the dislocation density, the logical conclusion is that

the hopping current occurs along the length of the dislocation core [107, 108, 139].

In this chapter, the reverse bias leakage and capacitance are studied in the time domain.

These transient measurements identify previously unreported leakage characteristics which are

explained here by a model involving impurity band conduction. It is suggested that conduction
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along the dislocation core is modulated by the charge state of surrounding point defect clusters.

Although previously speculated [156, 157], this work represents the first direct observation of

impurity band conduction along dislocations in GaN.

6.2 Device details

The vertical GaN-on-GaN pn diodes are shown in Figure 6.2(a) and were grown on an hydride

vapour phase epitaxy bulk GaN substrate. The junction layers were grown by metal-organic

chemical vapour deposition using Si as an n-type dopant and Mg as the p-type dopant. Starting

with an n+ interface layer on the substrate, an n− drift layer of 5 µm was grown with a doping

density of 3×1016 cm−3. This was followed by p-GaN with a doping density of 4×1019 cm−3 for

0.5 µm. Finally, this was capped by a thin p++ layer of 8×1019 cm−3 as part of an optimised

contacting recipe for Ohmic contacts to p-GaN.

As explained in section 2.5.2.1, the edge termination of the diode is critical as high surface

fields can limit the reliability of the device and ultimately set the hard breakdown voltage. These

devices were fabricated with a bevelled edge to reduce the surface electric field. The processing

steps used to fabricate the bevelled edge are outlined in Figure 6.2(b). First a layer of photo-resist

was deposited on the p-GaN. During exposure, the photomask was not in contact with the surface

and instead, an intentional ∼ 20 µm gap was present. This meant the exposure was not sharply

defined causing the edge of the hardened photo-resist to be tapered. The result, after inductively

coupled plasma etching, was a mesa structure with a slanted edge of 7-10◦. The surface of the

device was left unpassivated and Ohmic contacts were processed on the n- and p-GaN using

Ti/Al and Ni/Au respectively. This optimised contact recipe was originally developed for LED

fabrication and provided high quality Ohmic characteristics. Five circular device sizes were

fabricated with diameters between 126 µm and 565 µm. The dislocation density of the substrate

was stated by the manufacturer to be in the order of 106 cm−2. This translates to an average

distance between dislocations of 10 µm with around ∼ 1000 dislocations in the largest device area

of 0.25 mm2, of which as little as a few percent may be electrically active [105].

6.3 Device Characteristics

6.3.1 Current-Voltage

To build up a picture of the device behaviour, an initial characterisation was performed. This

began with the measurement of the reverse and forward current-voltage characteristics of which

typical results are shown in Figure 6.3. The forward bias current-voltage characteristics in Figure

6.3(b) can be modelled by the Shockley equation (equation 2.4). The measurement was repeated

over a range of temperatures with an obvious negative shift in the current-voltage characteristics

with increasing temperature as expected from section 2.4.2. Assuming the exponential term in
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Figure 6.2: (a) A cross-section of the device layer structure. (b) The fabrication process to achieve
a bevelled edge termination.

Figure 6.3: The reverse (a) and forward (b) current-voltage characteristics of the pn diodes.
The reverse leakage ranged from 0.4 pA to 3pA at 200 V with an exponential dependence on
voltage. The forward current-voltage characteristics of the largest diode are shown over a range
of temperatures. The diode turns on at lower voltages as the temperature increases and has a
peak ideality of 1.4 in forward bias (inset to (b)).
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the Shockley equation is much greater than 1, equation 2.4 can be rearranged into the form

n ' q
kbT

V
ln(I/I0)

(6.1)

This shows it is possible to determine the ideality from the gradient of the current-voltage

characteristics on a log-linear plot. From this equation, the ideality is shown inset to Figure

6.3(b). The lowest ideality is approximately 1.4 before diverging as the series resistance becomes

significant and limits the current. There is only a negligible change in the peak ideality with

temperature, indicating the absence of thermally activated defects in the junction.

The reverse bias leakage current is shown for the five device sizes in Figure 6.3(a). The

current-voltage characteristics were measured at a very slow ramp rate of 86 mVs−1 so that

any displacement current was small and did not completely obscure the leakage current. The

measured current appears to increase with size but not in any predictable way that obviously

scales with area or periphery. The reverse currents at 200 V were ∼ 0.4 pA and ∼ 3 pA for the

smallest and largest devices respectively. The approximately linear shape on this log-linear plot

indicates an exponential dependence on electric field, characteristic of a hopping current (see

Section 2.4.5).

6.3.2 Capacitance-Voltage

Capacitance voltage measurements were performed as described in section 3.2.2 to identify the

behaviour of the depletion region with reverse bias. The results shown in Figure 6.4(a) are the

only measurements from which all the analysis in this section is derived. When increasing the

reverse bias from 0 V to 100 V, the capacitance of the largest device decreased from 30.9 pF to

7.8 pF. The size of the depletion width can be estimated using the depletion approximation and

equation 2.13. The calculated depletion width of the four devices is shown in Figure 6.4(b). For

the largest diode, the capacitances at 0 V and 100 V correspond to the depletion width increasing

from 0.6 µm to 2.5 µm.

As explained in section 2.4.4, by re-plotting the data in Figure 6.4 as 1/C2, more information

about the junction can be learned. This has been done in Figure 6.5(a). The overlaid dashed lines

are the result of applying a moving average filter. This is a simple low pass filter to remove high

frequency noise. The filter generates a smoothed curve one point at a time by evaluating the

average value in a small window (5 points wide in this case) before moving the window by one

point and generating the next point in the smoothed curve. Once the smoothed curve has been

generated, this process can be repeated on the smoothed curve for further smoothing and was

repeated 100 times here. Linear extrapolation of the curves to zero indicate a built-in junction

potential of 3.7 V. The doping density can also be evaluated from this analysis. The derivative of

equation 2.18 can be re-arranged into an expression for the doping density as

ND = −2
qA2εd(1/C2)/dV

(6.2)
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Figure 6.4: (a) Capacitance-voltage measurements on the four largest diodes with the diameters
shown in the legend. The capacitance of the smallest diode was below the noise floor. (b) The
calculated depletion width based on the measured capacitance, the diode area and the vertical
permittivity of GaN which is 10.4 ε0. The dashed lines are the theoretical predicted profiles of an
ideal diode with the same properties.

Figure 6.5: The data from Figure 6.4(a) is re-plotted in (a) as 1/C2. The data was smoothed with
a moving average filter (dashed lines). Inset, the data near zero was extrapolated to find the
built-in potential of the junction of 3.7 V. The dopant density was evaluated using equation 6.2
with the smoothed curves in (a). This is shown as a function of (b) voltage and (c) depth from the
W(V ) curve in Figure 6.4(b).
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Figure 6.6: Reverse current-voltage measurements were repeated at various ramp rates on a
565 µm diameter device. The reverse current-voltage characteristics are shown in (a) and the
current at 20 V reverse bias is shown as a function of ramp rate in (b).

A plot of this equation is shown in Figure 6.5(b). This value of the doping density is a local

measurement at the edge of the depletion region which is why it may change with voltage as the

depletion edge moves through the material. In conjunction with equation 2.13, the voltage can be

expressed as the depth of the depletion edge. This allows the dopant density to be expressed as a

function of depth into the n-GaN in Figure 6.5(c).

These measurements indicate an average doping density of about 1.8×1016 cm−3. This is

lower than the nominal density of 3×1016 cm−3, however, these figures are fairly close considering

the difficulty in controlling dopants at such low levels. Using the built-in junction potential and

doping density it is possible to recreate the shape of the ideal diode CV profile from theory. This

is shown overlaid to the measurement data in Figure 6.4 as dashed lines and models the data

fairly well.

6.4 Transient behaviour

The current measured in the current-voltage curves was found to be strongly dependent on ramp

rate, as shown in Figure 6.6. This was due to the fact that the reverse leakage current of the

diodes was so low, that the displacement current was comparatively large and so made up a major

contribution of the measurement at ramp rates above 0.1 Vs−1. To identify the leakage current

only, transient measurements were carried out such that after the displacement current spike

(from the large dV /dt of applying the bias) had decayed, the current measured would be only
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Figure 6.7: A schematic of where the devices are illuminated during the stress and the two
possible outcomes of the measurement. (a) The transients are surface related: edge illumination
causes an increased current or (b) the transients are not surface related and illumination of the
bulk and the edge has the same effect.

the reverse leakage current at a fixed voltage. This is the same principle that was applied to the

vertical leakage structures on the HEMT epitaxy in Chapter 5. These measurements yielded

surprising transient results and are the subject of the remainder of this chapter.

6.4.1 Experimental details

Diodes with an area of 0.25 mm2 were subjected to current and capacitance transient measure-

ments. In both cases the devices were measured in a reverse bias stress for 1000 seconds then for

another 1000 seconds with 0 V across the device. This was repeated sequentially with increasing

reverse bias stress voltages between 20 V and 100 V. Immediate repeats of this measurement

gave the same results showing that there were no long term effects such as charging or degrada-

tion. Following the current transient measurements, the same sequence of stress and recovery

conditions were repeated to measure the capacitance transient behaviour. The current transients

were measured with a Keithley 4156A and the capacitance transients with a Keithley 4200 with

a high voltage capacitance measurement unit.

To investigate the possibility that any transient features were the result of surface effects,

the transients during reverse bias stress were carried out under illumination with a broadband

sub-bandgap light source. If a surface hopping current was present at the edge of the device,

illumination of the surface would lower the barrier to hopping and increase the surface leakage.

This was compared to a measurement where a part of the junction in the bulk was illuminated

through a hole in the contact so that surface hopping could be distinguished from a photo-current.

As shown in Figure 6.7(a), if a surface leakage were present, illumination on the surface would

increase the current but there would be no change when illuminating the bulk. Conversely, in

Figure 6.7(b), if illumination of the bulk and edge gave rise to the same increase in current this

would indicate the photo-generation of carriers was causing a photo-current and that any leakage

present was not due to the surface but a bulk process such as dislocation leakage.
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Figure 6.8: Transients of (a) capacitance and (b) current during reverse bias stress at the indicated
bias. The current transients showed a peak which occurred earlier in time at higher stress
voltages. The displacement current derived from the derivative of the capacitance transients in
(a) are shown as dashed lines in (b) and agree fairly well with the measured currents early on
and at low stress voltages. Capacitance and current transients are shown after the indicated
stress in (c) and (d) respectively. All devices recovered to the same static capacitance of ∼ 30.9
pF after 103 seconds. Evolution over a similar time scale was measured for the recovery current
transients.

6.4.2 Results

The capacitance and current transients during stress and recovery are presented in Figure 6.8.

The transients during stress in Figures 6.8(a) and 6.8(b) evolved over time scales of > 103 s with

the current showing a peak, occurring at a time which was dependant on the magnitude of the

stress voltage. This was accompanied by a subtle plateau in the capacitance transient occurring

at about the same time. The results during the recovery phase of the measurement are shown in

Figures 6.8(c) and 6.8(d). The capacitance transients show the devices recovering to the unbiased

capacitance of ∼ 30.9 pF over ∼ 103 s and a current transient, despite no applied bias, on similar

time scales. The sign of the recovery current was opposite to the current transient during the

stress.

The prominence of the current peaks in the stress transient varied from device to device. The

results shown here were the most distinct. The temperature dependence of the transients was

investigated over a range of 30◦C−120◦C, shown in Figure 6.9. Interestingly, there is no obvious

dependence indicating this is not an activated process.

The results of the illumination measurements testing for surface leakage are shown in Figure

6.10. An increase in the transient current was observed when the device was illuminated both
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Figure 6.9: The transient during reverse bias stress at 20 V and 100 V at various temperatures.
The time constants appear to be independent of temperature.

Figure 6.10: (a) Current transients at a reverse bias of 10 V in the dark and under illumination.
The current levels were normalised in (d) by the illuminated active areas shown with a yellow
border in (b) and (c). After normalisation, there was no difference in the illuminated transients.
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through the hole and on the device edge compared to in the dark. The illuminated active areas

are shown in Figures 6.10(b) and 6.10(c) circled in yellow and differ in size. When normalising

the current transient levels by the area of the illuminated junction, these transients overlap and

are very similar. This suggests that the increase in transient current seen when illuminating the

junction is due to a photo-current as carriers are photo-excited in the illuminated depletion region.

If the increased current were due to a surface leakage, illumination of the bulk junction through

the hole in the contact should have had no effect on the magnitude of the current transient.

Therefore, these results show no evidence to support the presence of a surface leakage current.

6.4.3 Impurity band conduction model

The peak in the current transients during stress is particularly intriguing since there is no

existing model that can explain this behaviour. Transient peaks in reverse biased diodes have

been reported before by Rosencher et al. [188]. However, that was in conjunction with a shrinking

depletion region, causing the electric field to increased over time. Field assisted emission processes

such as the Poole-Frenkel effect mean this causes an increase in the emission rate and the result

is an increase in the transient current. When all of the traps have discharged, the transient drops

and the overall shape is similar to that observed here. However, the capacitance transients in

Figure 6.8(a) were decreasing over time meaning the depletion region was expanding and the

electric field decreasing. Therefore, the model presented by Rosencher et al. cannot explain these

measurements. Additionally, models involving multiple trap time constants cannot be used since

this would cause a peak in the gradient of the transient but not a peak in the current. Surface

leakage is not responsible after this was tested for and no evidence was found to suggest that the

dark leakage was a surface phenomenon. Therefore, these results require a new model to account

for this behaviour.

Capacitance transients are due to a changing depletion width which in turn are caused

by a change in the trapped charge density. From the rate of change of the capacitance, the

displacement current can be evaluated using Idisp = V dC
dt . This can be applied to the data in

Figure 6.8(a) which is displayed as difference from the initial capacitance, because the subtraction

of a constant does not affect the gradient. This is shown in Figure 6.8(b) as dashed lines and

compared with the measured current transients. The measured current appears to follow the

displacement current at short time scales, particularly visible in the 40 V and 20 V transients.

However, starting at a time depending on the stress voltage, an additional current source is

clearly visible above the displacement current which reaches a peak and then drops. If this

charge flow were originating from the depletion region the capacitance would change and would

be accounted for in the displacement current. Therefore the charge must be flowing all the way

through the depletion region and must be a leakage current which turns on after a few seconds.

Considering the decreasing capacitance, it appears the depletion region is expanding. It is not

possible to tell whether the expansion is occurring in the n or p side of the junction but in either
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Figure 6.11: A sketch of the band structure of a pn diode (a) with no applied bias and (b) in
reverse bias. The shallow Si donors are shown along with deep donors. In a region near the
junction (shaded grey) some deep donors are neutralised in reverse bias. Below, the capacitances
between the trapping region from the quasi-neutral regions are shown in blue.

case it means, under stress, the space-charge much be decreasing. This can occur in the n-GaN by

a reduction of positive charge in the depletion region and in the p-GaN by a reduction of negative

charge. Considering the n-GaN (and the equivalent is true for the p-GaN), a reduction of positive

charge can occur with the neutralisation of donors or the ionisation of acceptors. During a reverse

bias stress, there is limited opportunity for this to happen, however, one possibility is shown

in Figure 6.11 where deep donors can be neutralised in reverse bias in a small region near the

junction. A similar diagram can be constructed with a deep acceptor level to produce the same

result of decreasing net charge in the n-GaN.

A model to explain the current transient peak was constructed based on two previously

published observations; Firstly, dislocations in n-GaN are negatively charged by as much as 2.5 V

[189–191] and in p-GaN are positively charged [189, 192]. This has been directly measured using

electron holography and is potentially related to Ga vacancies in the dislocation core, however

this remains a subject of debate. Based on this core charge, in the n-GaN, the band structure will

be bent upwards around the dislocation and can be treated loosely as having a p-type dislocation

core. The opposite is true for dislocations in p-GaN. Secondly, point defects have been observed to

diffuse through GaN during growth, and cluster around dislocations [193]. Assuming the p-type

dislocation core is in electrical contact with the p-GaN, when the junction is in reverse bias, the

dislocation core will be in reverse bias with the surrounding n-GaN. The defect clusters around

the dislocation will be in this depletion region and can change state, causing the displacement

current.
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As these clusters around the dislocation change their charge state, the conductivity of the

core can be modulated by the field effect, much like gating a transistor channel. As the clusters

change state, their charge will influence the Fermi level. Considering a leakage current along the

dislocation core by variable range hopping [194, 195], the hopping probability depends on the

density of states at the Fermi level [196, 197]. Therefore, movement of the Fermi level through

an energy range with a higher density of states can increase the dislocation core conductivity.

The peak conductivity is achieved when the Fermi level is in the middle of the impurity band and

the density of states (DOS) is at a maximum [198].

Therefore it is suggested that the decreasing capacitance transients and the displacement

current component of the current transients are a result of the discharging of deep defect states

which are clustered around the dislocations. The observed peak in leakage current is attributed to

a peak in conductivity along the dislocations as the Fermi level moves through an impurity band.

It is assumed that the leakage current is limited by the conduction along the dislocations and

that current flow between the dislocation core and the highly doped regions is lower resistance,

possibly making a tunnel junction.

Figure 6.12 shows how defect clusters around dislocations can move the Fermi level in the

dislocation core. In this example of deep donor states in n-GaN, the band diagram through the

dislocation core is depicted from the dashed cut line in Figure 6.12(a). Figure 6.12(b) shows the

equilibrium band structure where the shallow donors are not included for clarity. When stepped

into reverse bias in Figure 6.12(c), the deep donor states in the shaded trapping region will

neutralise, likely by tunnelling to the dislocation core. This is a temperature independent process

and would explain why the transients are temperature independent. As the surrounding clusters

discharge, they cause a displacement current and the depletion region must expand to maintain

the same total charge. Additionally, the Fermi level in the core will drop which, assuming the

presence of an impurity band, will temporarily increase the dislocation conductivity. The current

transients resulting from this model are shown in Figure 6.13 and result in the same shape as

the observed transients in Figure 6.8(b).

In line with this model, during recovery, the Fermi level would pass back through the impurity

band as the clusters return to their original charge states. However, no peak was observed in the

recovery transients in Figure 6.8(d). This is expected since despite a modulation of the dislocation

conductivity, no field is applied across the diode and so no leakage current flows. Therefore,

the measured current transients in recovery are proposed to be only displacement current. A

comparison cannot be made between the measured recovery current transient and the expected

displacement current like in Figure 6.8(b) because the potential distribution through the junction,

needed for the calculation, is not known and cannot be measured.

One possible reason why these transient features have not been seen before could be due

to the much higher dislocation densities in other devices. In these devices, the low dislocation

density means there may be just a few dislocations per device, allowing the study of the transient
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Figure 6.12: Band diagrams through a dislocation with the cut-line position indicated in (a) are
shown at equilibrium (b) and in while evolving in reverse bias in (c). For clarity, the shallow
donors are not shown. The proposed impurity band (IB) is represented by the blue shaded region.

Figure 6.13: A sketch of a current transient decomposed into two components; displacement and
leakage. Energy vs. density of states diagrams at progressively later times show how a monotonic
movement of the Fermi level can give rise to a peak in the leakage current.
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behaviour of just a few dislocations. The (dis)charging of the clusters by a tunnelling mechanism

to the dislocation core means that the (dis)charging time constants will depend on the cluster-core

separation. Random variation in this distance will introduce variation in the time at which the

peak conductivity along the dislocation occurs. As the measured current is the sum of all of

the dislocation currents, the greater the number of dislocation, the less defined the peak will

be. Therefore, the same modulated impurity band conduction may occur in devices with higher

dislocation densities, but the greater number of dislocations per device could mean the peak in

the current is not visible.

6.4.4 Image Charges

As discussed earlier, the capacitance transients are caused by a change in the trapped charge

density. During stress, the amount of charge moving out of the depletion region and causing

the capacitance transient can be calculated by Q =V ×∆C. Curiously, the charge causing each

of the transients in Figure 6.8(a) was approximately constant at (3.8±0.4)×1010 cm−2. The

same analysis cannot be applied to the capacitance transients during recovery, since the voltage

distribution in the junction is not known. However, the recovery charge can be determined from

the current transient. Since the potential across the device is 0 V, there will be no leakage current

and the current transient can be integrated to find the charge causing the transient. Once again,

the charge in each transient was approximately constant. Although this time the charge was ∼ 5

times larger at (2.31±0.04)×1011 cm−2.

In the model discussed in the previous section, clusters of point defects around the dislocation

charge and discharge. The capacitance transients and recovery current transients are assumed

to be a direct result of the (dis)charging of these clusters. Therefore, the amount of charge moving

into the clusters during stress should be exactly equal to the amount of charge moving out during

recovery - especially since repeat measurements yield the same result so there is no long term

charging. This apparent disparity is resolved by the consideration of image charges.

Reconsidering Figure 6.11 as the pn junction between the dislocation core and the n-GaN, the

depletion region around the dislocation expands when the device is in reverse bias. This has the

effect of reducing the total capacitance of this depletion region. For a given cluster, the distance

between the dislocation core and the cluster will be constant, with a constant capacitance C1.

However, as the junction is reverse biased, the distance between the cluster and the n depletion

edge increases as the depletion region extends. This means the unbiased capacitance between

the cluster and the depletion edge, C2, decreases to C′
2 in reverse bias as the depletion width is

larger.

Continuing with the impurity band conduction model set out in section 6.4.3 the effect of

this capacitance change is explained with reference to the locations designated by circled letters

in Figure 6.11(b). When evolving towards equilibrium after stepping into reverse bias stress

conditions, negative charge of magnitude Q moves from the dislocation core A to the trapping
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region B . To maintain net neutrality, an image charge flows around the external circuit from

C to A . It is the image charge flow around the external circuit that is measured and the

magnitude of this charge, Qstress, depends on the capacitances C1 and C′
2 as

Qstress =
QC′

2

C1 +C′
2

(6.3)

When recovering from the stress the band structure looks more like Figure 6.11(a), with a small

depletion region, and the same charge movement occurs in reverse; negative charge moves from

the trapping region B to the dislocation core A . However, this time the capacitances are

different and the image charge that is measured flowing around the external circuit is

Qrecovery = QC2

C1 +C2
(6.4)

These expressions show that a different charge flow around the external circuit can occur in the

two stress conditions, despite the same charge, Q, moving the same distance in the device in

both cases. The measured charge in the transients depends on the size of the depletion region.

Therefore, a difference in the total charge in the transients between stress and recovery is

expected. The factor of 5 difference measured here can be used along with a guess of the depletion

region size to approximate Q (the real magnitude of cluster charging) and to find approximate

values for the capacitances in Figure 6.11.

It has already been assumed in this model that the clusters are around the dislocations. This

means that in reverse bias, C1 remains high while C′
2 becomes small. At a high reverse bias

stress voltage C′
2 << C1 and Qstress can be simplified to

Qstress '
QC′

2

C1
(6.5)

The image charge equations and the measured difference in transient charge are shown in Table

6.1 along with measurements of the static capacitance in reverse bias and unbiased. These five

equations can be solved simultaneously to give an indication of the kinds of numbers which are

associated with the unknowns. The solution to these equations is presented in the final column of

Table 6.1. The high capacitance C1 is indicative of the proximity of the trapping region to the

dislocations. The magnitude of the charge density being trapped it also very reasonable since

its magnitude is much lower than the density of impurities in the crystal. This result not only

accounts for the large (apparently inconsistent) difference in measured charge during the stress

and recovery transients but also demonstrates how a small change in charge density of just

1012 cm−2 is sufficient to modulate the bulk leakage by orders of magnitude.

6.5 Conclusion

GaN-on-GaN vertical pn diodes with very low reverse leakage currents have been studied. The low

dislocation density allowed study of the transient behaviour of a few dislocations which showed a
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Table 6.1: The image charge equations and measurement results are shown in the first two
columns. These can be combined and solved simultaneously to produce the solution in the final
column.

Image charges Measurements Simultaneous solution
Qstress ' QC′

2
C1

Qrecovery = 5∗Qstress C1 ∼ 186 pF
Qrecovery = QC2

C1+C2

1
C1

+ 1
C′

2
= 1

6 pF C2 ∼ 37.2 pF
1

C1
+ 1

C2
= 1

30.9 pF C′
2 ∼ 6.2 pF

Q ∼ 1.2×1012 cm−2

time dependent behaviour with previously unseen features. The model constructed to explain

this data required the presence of an impurity band in the dislocations. If correct, this constitutes

the first observation of impurity band conduction along dislocations in GaN. The model presents

a mechanism whereby the Fermi level is driven through an impurity band in the dislocation

core by the discharging of surrounding clusters which diffuse towards the dislocation during

growth. The order of magnitude of the charge involved in the trapping/de-trapping processes

was estimated by analysing the total charge in the transients and considering the method of

images. These results and their analysis demonstrate the extent to which charged defects can

affect dislocation leakage. The efficiency of power diodes is strongly dependent on the magnitude

of the off-state leakage. Therefore, a full understanding of the off-state leakage mechanisms is

critical for the development and optimisation of GaN-on-GaN vertical power diodes.
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7
THE MEAN TIME TO FAILURE OF GAN-ON-GAN PN DIODES

Unlike with Si based technologies, the reliability of GaN devices is still an area of active

research and the factors which influence device lifetime are not completely understood.

Specifically regarding vertical bulk GaN diodes, there have been no studies estimating

the lifetime. This chapter applies a step stress measurement technique to the same bulk GaN pn

diodes introduced in the previous chapter. An analysis method not previously applied in this field

is used to extract the first estimations of the mean time to failure (MTTF) of this technology.

The devices were grown by the Institute of Materials and Systems for Sustainability at

Nagoya University who also performed the electric field simulations. The measurements and

the analysis were performed here. These results have been published in the Elsevier journal

Microelectronics Reliability [199]. Significant content has been reproduced from this publication.

7.1 Introduction

As discussed in the previous chapter, vertical GaN-on-GaN pn diodes can outperform Si and SiC

equivalents and operate at higher voltages with lower leakage currents than GaN-on-Si devices.

An additional advantage of vertical devices is the ability to manage surface fields using edge

termination techniques. In this way, peak electric fields can be moved into the bulk, away from

the surface, and so the breakdown field of the device can begin to approach the bulk material

limits [200].

Lateral GaN technology is maturing to the extent that devices are now being used in power

switching systems. This level of maturity requires rigorous qualification to prove the devices

are reliable and will not fail before a reasonable lifetime. Vertical GaN technology is not yet at
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the maturity level of lateral GaN devices and so there are only a few in-depth reliability studies

[201–204]. However as yet, there have been no estimations of the device lifetimes. In Si, failure

by breakdown under high electric fields is attributed to the field induced generation of point

defects. After the generation of a sufficient density of point defects, a percolation path can be

formed which causes elevated leakage and ultimately, device failure. Lateral GaN HEMTs have

been shown to follow similar failure distributions indicating that the failure of these devices can

be described by the same model. This chapter aims to identify the failure mechanism for the

vertical GaN-on-GaN pn diodes in Chapter 6 and to provide the first estimates of the mean time

to failure of these vertical devices.

An accelerated lifetime test is applied using a step stress technique. This method was chosen

over the more conventional time dependant dielectric breakdown (TDDB) technique as it ensures

a bounded time to failure, reducing the total measurement time. The data are analysed using

Weibull statistics which have been adapted to apply to step stress measurements. The results

indicated that the mean time to failure depends only on the length of the device periphery,

consistent with the formation of a surface percolation path. Through this analysis, a 126 µm

diameter device is predicted to have a mean time to failure of 10 years under a constant reverse

bias stress of 260 V.

7.2 Experimental details

The full growth and processing details of these devices were presented in section 6.2. One

point to stress is that these devices are unpassivated. In this aspect, the fabrication will differ

from commercial devices, when they are produced, as passivation increases the breakdown

voltage. Three of the device sizes were selected for this study with diameters 126, 276 and 451

µm designated small, medium and large respectively. The devices were subject to a gradually

increasing reverse stress which, starting from 0 V, was stepped up by 5 V every 60 s. As opposed

to a time dependant dielectric breakdown measurement where the device is biased at a constant

voltage until failure, this step stress technique is always increasing the reverse bias stress.

This means that device failure will occur within a reasonable time window rather than in an

unbounded time frame. Twelve of each device size were subjected to these measurements in order

to generate three failure distributions. The criterion for failure was a reverse leakage current

of 10 mA, corresponding to 6−80 Acm−2. The failure criterion was selected by experimentally

measuring the typical leakage current before hard failure on a few devices as ∼ 1 mA and

increasing it by an order of magnitude. The bias was applied using a Keithley 2657A and the

current was measured using a Keithley 4200 configured with a Keithley 4200-PA pre-amplifier.
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Figure 7.1: Step stress failure measurements on the small and large devices are shown in (b)
and (d) respectively. The failure time is indicated with a circle when the current exceeded 10
mA. These failure times are binned in the histograms (a) and (c) with the Weibull step stress
distribution fit and 95% confidence limits.

7.3 Results

The reverse leakage currents during the step stress measurements are shown in Figures 7.1(b)

and 7.1(d) for the small and large devices respectively. The stress voltage over time is indicated

on the right y-axis of these plots and the leakage current on the left y-axis. At low stress voltages,

with the current below the pA level, current spikes at the edge of each voltage step are visible.

While the leakage in this low current regime has been attributed to dislocation leakage [155],

the spikes are caused by spikes in the displacement current (C · dV
dt ). As the current increases

above this level, the leakage currents jump in steps both up and down before exceeding the

failure criterion, at a time indicated by the circles. The small devices began to fail after ∼ 2800

s at voltages greater than 230 V. This was later than the larger devices where failure began

after ∼ 2200 s corresponding to voltages greater than 185 V. The failure times of the small and

large devices were binned in the histograms in Figures 7.1(a) and 7.1(c) respectively. The small

devices demonstrated the ability to last the longest but also exhibited a broader distribution of

failure times. Optical inspection of the devices after the measurement revealed a surface failure

mechanism was responsible. Every device exhibited evidence of surface breakdown like that

shown in Figure 7.2. In this optical image, dendritic structures are visible, extending from the

bevelled junction towards the contact on the p-GaN.
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Figure 7.2: Photograph of the surface failure experienced by the devices. The dendritic structures
originate from the pn junction on the bevel surface and extend towards the contact.

7.4 Analysis

The analysis of conventional time dependant dielectric breakdown measurements and estimations

of device lifetimes are often achieved using Weibull statistics. In that analysis, the distribution

of device failure times under constant voltage stress conditions can often be fit by the Weibull

distribution of the form

F(t;Vi)= 1−exp
{
−

(
s
s0

)(
t
[

Vi

V0

]p)β}
(7.1)

where V0, p and β are fitting parameters, Vi is the constant stress voltage and t is the time

into the stress [205]. The factor s/s0 is a scaling factor for the distribution which permits the

comparison of distribution parameters between different device sizes [178]. The necessity of this

distribution rescaling can be understood by considering that any device can be treated as many

statistically independent units. A large device will be composed of more units and since failure of

any one unit results in the failure of the entire device, larger devices will be more prone to failure.

For devices with a failure mechanism related to the bulk material, the unit would be a unit of

area. Therefore, the factor s/s0 would be an area normalisation term (like in [178]). However,

as seen in Figure 7.2, the failure of these devices occurs on the periphery and so the failure

distributions here must be normalised by the length of the device periphery. In the following

analysis, s represents the diameter of the device and s0, the diameter of the large device.

Equation 7.1 is a cumulative distribution function (CDF) such that the value of F(t;Vi)

indicates the fraction of the population that will have already failed by time t during the constant

voltage stress ,Vi. However, since the stress voltage was not constant during these step stress

measurements, this conventional analysis cannot be directly applied. The adaptation of this

Weibull analysis to step stress measurements was shown in the setting of cable dielectrics by

Nelson in 1980 [205] and has not previously been applied to GaN devices. The basis of this

analysis method is as follows; A suitable form for a step stress Weibull distribution can be
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Figure 7.3: Construction of the step stress Weibull distribution with parameters (V0, p,β) =
(1000,4,1) with a 30 V step every 200 s. The vertical dashed lines show the time of a step and
the horizontal dashed lines show the fraction failed at that time. When the voltage steps, the
step stress distribution (thick, red curve) is continued by moving laterally onto the next constant
stress distribution at the same failure fraction.

constructed by using the constant stress Weibull distributions in equation 7.1 for every voltage

step. This is shown instructively in Figure 7.3, for a given set of parameters (V0, p,β). The step

stress Weibull distribution is initially described by equation 7.1 where Vi now corresponds to the

voltage of the ith step. Starting from t = 0, the step stress distribution follows the constant stress

distribution of the first step voltage, F(t;V1). As the voltage steps up, the step stress distribution

instead follows the constant stress distribution of the new voltage, F(t;V2). However, since the

device has already experienced some cumulative stress from the previous step, the distribution is

not started from t = 0. The value of F corresponds to the fraction failed and is a good measure of

the total cumulative stress experienced by the device. Therefore, the step stress distribution is

continued by moving along F(t;V2) starting from the same fraction failed that was reached by

F(t;V1).

The step stress Weibull distribution can be calculated for any parameter set (V0, p,β) in this

way. In order to apply this fit to the measured failure distributions, the measurement results in

Figure 7.1 were integrated into cumulative failure distributions, shown in Figure 7.4. The fitting

was achieved using a least squares algorithm and the 95% confidence intervals were evaluated

by varying one parameter at a time, after the fit. The result of the fitting to the small and large

device distributions is shown in Figure 7.4 and fit parameters of all three distributions are shown

in Table 7.1 with the 95% confidence limit in brackets. By differentiating the fits in Figure 7.4
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Figure 7.4: The failure time data in Figure 7.1 is integrated into cumulative failure distributions
for (a) the small and (b) the large devices. These data are fit with the step stress Weibull
distribution (solid line) and shown with the 95% confidence limits (dashed lines).

Table 7.1: Fit parameters of the three failure distributions with the inverse variance and the 95%
confidence intervals. The average value of each parameter, weighted by the inverse variance, is
included below. The values shown in this table are rounded but the exact values were used to
calculate the mean.

Device size Fit parameters
V0 p β

Value 1/Var 95% Value 1/Var 95% Value 1/Var 95%
Small 327 3.1e-2 13 20.9 0.29 4.1 0.176 1.5e4 0.018
Medium 312 5.5e-2 9.3 28.7 0.15 5.8 0.151 8.1e3 0.025
Large 324 9.0e-2 7.3 31.7 0.33 3.9 0.190 2.5e3 0.045
Weighted mean 320.5 26.98 0.1695

it is possible to recover the probability distributions which are shown with the histograms in

Figures 7.1(a) and 7.1(c). The probability distributions in these figures were multiplied by a

factor to scale them up to the same peak amplitude as the histogram bars, allowing an easier

comparison of the distribution shape.

7.5 Discussion

Analysing the V0 parameter from each of the three parameter sets in Table 7.1, it is clear that the

95% confidence intervals all overlap. This indicates that these parameters are not statistically

significantly different and the same is true for each of the β parameters. The three p parameters

show more variation with a difference between the largest and the smallest value of ∆p = 10.8.

Here the 95% confidence intervals do not overlap but this does not guarantee that the differences
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Figure 7.5: All three measured failure distributions are shown as symbols. Overlaid are the step
stress Weibull distribution curves, each with the same average parameter set and differing only
by the periphery scaling factor. The distribution curves represent the measurement data well,
indicating that all of the device sizes can be described by the same parameters.

are statistically significant. As each fit is independent, the variance of ∆p, σ2, is the sum of the

two p variances which is σ2 = 6.5. The 95% confidence interval of the difference ∆p is defined as

∆p±1.96×σ2 or (-1.94, 23.54). The factor of 1.96 comes about as 95% of the area of a normal

distribution is bound within 1.96 standard deviations of the mean. The inclusion of zero in the

95% confidence interval of ∆p indicates that the difference between the two p parameters is not

statistically significantly different from zero. Therefore all of the fit parameters, V0, p and β do

not differ significantly between the three distributions. As such, the measured distributions can

all be suitably represented by the step stress Weibull distribution generated using the average

parameter set. This average parameter set is shown at the bottom of Table 7.1 and was calculated

using the inverse of the variance as a weighting such that the larger the uncertainty, the lower

the weight. The three measured failure distributions are shown in Figure 7.5 and are plotted

with the averaged step stress distributions. Each of the distribution curves in this plot differ only

by the periphery scaling factor and show a good agreement with all of the data sets.

Equation 7.1 can be rearranged into the form

ln[− ln(1−F(t))]= ln
(

s
s0

)
+β ln(t)+ pβ ln

(
Vi(t)
V0

)
(7.2)

where here, F is being expressed solely as a function of time, since the stress voltage Vi(t) is a

function of time which increases monotonically. From this equation, the data in Figure 7.5 can be

replotted on ln[-ln(1-CDF)] vs. log(time) axes to recover a linear plot. This is shown in Figure
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Figure 7.6: (a) The data in Figure 7.5 is replotted on ln[-ln(1-CDF)] vs. log(time) axes to force a
linear fit. In (b), the failure distributions are shifted by the periphery scaling term and all align
well.

7.6(a). In equation 7.2, the first term is the constant distribution rescaling, while the second

and third terms are both linear in log(time). In this form it is possible to scale the measurement

data by subtracting the scaling factor of ln(s/s0), effectively shifting the data vertically along the

y-axis. This has been done in Figure 7.6(b) where the rescaled measurement data all overlay to

a good degree. The data and fit of the large devices are unchanged in this rescaled plot since

their rescaling term is zero. This alignment of the distributions reinforces that this rescaling

method is appropriate and the agreement between all of the rescaled data with the fit adds to the

confidence in the average Weibull parameter set.

The mean time to failure during a constant reverse bias stress can be evaluated from the

Weibull parameters using the function

MTTF(V ; s)=
(

V0

V

)p(
s0

s

)1/β
Γ

(
1+ 1

β

)
(7.3)

where Γ is the gamma function, Γ(z)= ∫ ∞
0 xz−1e−xdx. Apart from the fit parameters, this function

depends only on the stress voltage and the device size. As all of the devices can be well represented

by the same parameter set, this indicates that the mean time to failure of these devices is

determined only by the device geometry. The mean time to failure is shown as a function of stress

voltage for the three device sizes in Figure 7.7(a). A mean time to failure of 10 years in constant

operation places a maximum operating voltage of 260 V on the small devices, reducing to 196 V

for the large devices. Using the more rigorous metric of 1% failure, enforcing the same 10 year

lifetime, reduces the operating voltage of the small device to just 75 V. This enormous difference

comes about from the large variability in failure times and the consequently small β parameter.

The value of β< 1 seen here is indicative that the failure rate decreases over time. This means
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Figure 7.7: Lifetime estimations under constant stress using the average parameters set from
the Weibull analysis. The mean time to failure and 1% failure times are shown in (a) indicating a
mean time to failure of 10 years can be achieved on a small devices biased at 260 V. The periphery
scaling factor is shown in (b) which emphasises the dependence of the mean time to failure on
device size.

that the failure rate starts high and as a result, the Weibull failure distribution has a long tail at

low voltages where a few percent are predicted to fail at short time scales. The dependence of the

mean time to failure on device size is shown in Figure 7.7(b). This is the form of the periphery

scaling factor in equation 7.3 and indicates that at any given voltage, the small device will have a

mean time to failure 1000 times higher than the large device at the same voltage.

The fact that this failure data can be well represented by these statistics indicates that the

failure follows the same distributions as Si and lateral GaN devices. By extension, the same

failure model can be applied here in which a percolation path is constructed through the field

induced generation of point defects. In order to investigate this further and establish why surface

failure occurred rather than bulk failure, simulations of the devices were performed to extract the

internal electric field distribution. The dopant densities used in the simulation were the nominal

values of 4×1019 cm−3 and 3×1016 cm−3 in the p and n regions respectively as shown in Figure

6.2 and it was assumed that all the dopants were active. This may be an overestimation which

would have the effect of increasing the field at the simulated junction but should not greatly

affect the field distribution. The simulated reverse bias was increased until a peak electric field of

4 MVcm−1 was attained. Figure 7.8 shows the field distribution around this peak which occurred

at a reverse bias of 230 V. Although the peak field is in the bulk, it is very close to the surface at

the base of the bevel. Since the point defect generation rate depends on the strength of the electric

field, the probability of forming a percolation path in this high field region is much higher and

explains the observed surface failure [206]. This failure mechanism also completely explains the

dependence of the lifetime on the length of the periphery. If point defects are created randomly,

the probability of forming a percolation path (and device failure) increases with the length of the
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Figure 7.8: Simulations of the electric field in the device with a reverse bias of 230 V. The peak
field of 4 MVcm−1 occurs near the base of the bevel just away from the surface.

periphery where the field is high.

Of the small devices in Figure 7.1(b), two devices failed at voltages of 235 V and 465 V,

with almost a factor a two difference between these extremal breakdown voltages. The surface

breakdown mechanism depends strongly on the magnitude of the electric field which in turn

depends strongly on the bevel topology (see section 2.5.2.1). To investigate the cause of such a

large difference in failure conditions, the topology of these two extremal devices was investigated.

Atomic force microscope height profiles are shown in Figure 7.9(a), very close to the location of

the failures for each device. The angle of each point on the bevel to the horizontal is shown in

Figure 7.9(b) and both of the devices show a peak angle of about 25−30◦. This differs wildly from

the nominal 7−10◦ shown in Figure 6.2. The similarity of both of the device profiles indicates the

factor of two difference in breakdown voltage may not have been caused by a difference in the

electric field profile. One possible alternative cause of this difference in behaviour is a variation

in surface conductivity. On these unpassivated devices, the surface is susceptible to reaction and

exchange with the environment. Previous studies on GaN have shown that humidity can have a

strong influence on the material properties [207]. Although the humidity in the laboratory was

low and constantly regulated by air conditioning, the observed surface flashover could have be

affected by variations in surface chemistry. This can be addressed in future studies by conducting

the measurements with the devices submerged in a non-conductive fluid with a high breakdown

field, for example, Flourinert™ which has a breakdown field 5 times higher than air [117, 208].

Eventually, commercial devices would be fabricated with a surface passivation layer which would

increase the breakdown field of the device surface [209]. As the device failure is currently limited
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Figure 7.9: (a) Atomic force microscope height profiles, radially outwards, near the failure point
of the first and last small devices to fail in Figure 7.1(b). The reverse bias at the time of failure is
indicated. (b) The angle of the bevel to the horizontal is calculated from (a) and does not reveal
any large differences between the two devices.

by surface failure, this would increase the device breakdown voltage and could possibly even shift

the failure mechanism into the bulk material. As is, this surface failure indicates that the lifetime

of these devices is currently limited by the device design or fabrication, and not by the material

properties of the GaN. The noise measured in the leakage currents before failure resembled steps

and is best seen in Figure 7.1(b). These apparently discrete current levels, which stepped both up

and down with increasing time and voltage, are characteristic of telegraph noise [210, 211]. This

is not uncommon in surface leakage currents which are sensitive to configuration changes at the

surface such as those related to dangling bonds [212]. Therefore it is understood that the leakage

current leading up to failure and the final breakdown mechanism are both surface related.

7.6 Conclusion

Step stress measurements have been applied to vertical GaN-on-GaN pn diodes in order to

assess the reliability of the devices and identify a mean time to failure. An analysis technique

not previously applied in this field was used to interpret the step stress data with Weibull

statistics. The failure distributions of these vertical GaN devices were described well by a Weibull

distribution, indicating the same failure model can be used with vertical GaN devices as it is for Si

and lateral GaN devices. The failure mechanism was observed to be a surface related breakdown

and consequently the failure rate was dependent on the length of the periphery. This indicated
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that the lifetime of the devices was limited by the device design and not the material properties.

This observation is important since it highlights the need to focus on design improvements over

material quality issues. These results predict a mean time to failure of 10 years can be achieved

with the small devices at an operating voltage of 260 V. However, a large variability was seen

between devices leading to a very short 1% failure time. Benchmarking device performance is

essential for commercialisation of these devices and this chapter outlines a new methodology to

rapidly characterise the failure of future device generations.
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The availability of highly efficient, GaN based, power electronic systems can revolutionise

the power electronics industry. GaN technology looks promising to address the increasing

demand for light weight and high power density power conversion systems. One source of

this demand is from the automotive industry as is evolves toward the development of hybrid and

electric vehicles. The reduced size and weight of GaN systems compared to Si equivalents, as

well as the increased possible power densities can enable these and other emerging technologies.

Despite the very promising physical properties of GaN, a number of technical challenges must

be resolved before this technology can become ubiquitous. In lateral AlGaN/GaN HEMTs, these

issues include the management of current collapse for efficient switching at high frequency and

the optimisation of vertical breakdown fields to enable high voltage operation. In vertical GaN

diodes, which are at an earlier stage of maturity, these challenges centre around minimising

vertical leakage and maximising breakdown voltage through material optimisation and device

design.

The work in this thesis used electrical studies and device simulations to characterise GaN-on-

Si and GaN-on-GaN devices in order to identify methods and strategies to optimise the device

performance. One of the research aims in this thesis was the optimisation of the vertical break-

down and vertical leakage in GaN-on-Si HEMT epitaxies. Optimisation if these characteristics

is essential as they place a limit on the maximum device operating voltage and by extension,

the maximum operating efficiency. Two studies were performed with a view to furthering the

understanding of factors which limit vertical leakage and breakdown.

Firstly, this work focused on the material properties of carbon doped AlGaN and the evaluation

of the previously unknown carbon self-compensation ratio. This parameter sets the epitaxial resis-

tivity and so strongly influences the vertical breakdown and leakage. This was performed through
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the use of substrate bias and lateral leakage measurements. These techniques were applied to two

nominally identical samples differing only by the carbon doping in the Al0.08Ga0.92N back-barrier,

above an AlN interlayer. The presence of a 2DHG was identified at the back-barrier/interlayer

interface in the undoped sample but this hole gas was suppressed in the carbon doped sample.

As only donors can suppress a 2DHG, this indicated that carbon must partially incorporate as

donors as well as the more abundant acceptor trap. Through simulation of the device layers and

interface charges, the minimum required donor density to neutralise the polarisation charge

was determined. In conjunction with secondary-ion mass spectroscopy measurements of the

total carbon density, this allowed the determination of the self-compensation ratio of carbon

in Al0.08Ga0.92N to be 0.4<ND/NA < 1. The upper constraint is unity since if the compensation

ratio exceeded this value, carbon doped GaN would not be highly resistive. In carbon doped

GaN and AlGaN, it is the compensation ratio which determines the material resistivity and

therefore this parameter also impacts heavily on the vertical leakage and breakdown voltage.

In addition, this ratio also determines the depletion behaviour under the gate in a HEMT in

the off-state. Therefore, a good estimation of this previously unknown parameter is critical for

accurate device simulation and device design. Already, the ratio presented here has been applied

in multiple simulation works [213–215], highlighting the importance of this result to the GaN

device community.

Continuing on the theme of vertical leakage and breakdown optimisation, the impact of

device processing on the vertical resistivity of the wafer was investigated. It was identified that

the presence of Ti/Al based contacts on the surface of an AlGaN/GaN HEMT epitaxy can have

the effect of reducing the vertical breakdown voltage. This was found through measurements

of vertical leakage and characterised by a novel application of the quasi-static capacitance-

voltage technique. Bespoke structures were fabricated in order to study this effect, allowing

the separation of vertical leakage in active areas with and without an Ohmic contact. Results

indicated the region under the contact has a reduced resistivity and a higher capacitance. This is

a significant result since the contact should have no effect on the properties of the bulk material

below it. The capacitance data was used to infer that the resistivity of the effected region was

reduced by at least a factor of 100 and extended ∼ 1.6 µm down from the surface. This extension

accounted for half the thickness of the epitaxy and stopped at the top of the superlattice strain

relief layers. Maximising the operating and breakdown voltage is essential for exploiting the full

potential of GaN devices. Ti/Al based contacts such as these are standard for GaN-on-Si processes

so identifying and understanding limitations such as these is a high priority. Through further

study of this effect, it may be possible to reduce buffer leakage, increase breakdown voltage and

even manage current collapse. The discovery of these preferential sub-contact leakage paths is a

step forward in the understanding of these devices. The dissemination of this research will raise

awareness of the existence of such features which are not widely considered. As these paths are

required in some simulations to recover the measured device behaviour, the inclusion of these
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paths in all future device simulations will enable improved simulation accuracy.

In many GaN power electronic circuit designs, high power diodes are required along with

HEMTs. In order for these circuits to exploit the maximum efficiencies offered by GaN, these

diodes must be capable of operating at the same high voltages as the HEMTs with matched, low

off-state leakage. Vertical GaN diodes are most suited to this application over lateral devices since

with thicker epitaxies they can operate at higher voltages, with improved thermal performance,

and they have a low dislocation density leading to low reverse leakage. Targeting this application

space, the reverse biased leakage of bulk GaN diodes was evaluated and characterised. In reverse

bias, in the time domain, the devices exhibited previously unreported current and capacitance

features which could not be explained by any existing models. The observed peak in leakage

current after a few seconds of the stress was explained by a new model, attributing this behaviour

to a peak in the conductivity of the dislocation cores. In this model, the cause of the change in

conductivity was attributed to the Fermi level moving through a defect band, as surrounding

defect clusters discharged. These data constitute the first direct evidence for impurity band

conduction in dislocation cores which has only previously been speculated. Study of the image

current identified that the three order of magnitude change in leakage current was caused by a

discharging of only 1012 cm−2 carriers. This demonstrates the extent to which charged point defect

clusters can affect dislocation leakage. The efficiency of power diodes hinges on the suppression

of the off-state leakage thus a full understanding of these reverse leakage mechanisms is critical

for the development of GaN-on-GaN vertical power diodes. The generation rate of point defects in

GaN such as VN and VGa depends on the growth temperature [172, 173, 216]. Therefore, based

on this new model, it may be possible to reduce the conductivity of dislocations in GaN by tuning

the growth conditions. This work has not only furthered the current understanding of leakage

processes in bulk GaN, but has also supported the investigation of impurity band conduction and

conduction/charging mechanisms in GaN:C [213].

Finally, the reliability of these vertical GaN diodes was evaluated and the first estimations of

their lifetime were made. Establishing the reliability of these devices is essential before they can

be commercially traded and no prior lifetime estimations exist on vertical GaN diodes. This work

was achieved using a step stress measurement technique, where the reverse bias of the device

was gradually stepped up until failure. In order to analyse this data, methods from the field

of cable dielectrics were transferred to GaN for the first time and allowed the analysis of step

stress data with Weibull statistics. The Weibull distribution accurately described the failures,

indicating that vertical GaN devices can be modelled by the same failure models used with Si and

lateral GaN devices. Namely, the field induced generation of point defects and the subsequent

formation of a percolation path leading to failure. Using Weibull statistics, it was shown that the

device failure rates depended only of the device geometry, specifically the length of the periphery.

Optical inspection showed the failure occurred by surface breakdown, confirming that the failure

rate should be depended on the length of the device periphery. The Weibull fit parameters were
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used to estimate the mean time to failure. The smallest device was predicted to have a mean time

to failure of 10 years when continuously stressed at a voltage of 260 V. These current results

indicate these devices are limited by device design and further optimisation of the electric field

around the device periphery is required, either by optimisation of the edge termination or the

application of a passivation layer. These measurements provided a much needed evaluation of the

current state of reliability of this technology and present a new methodology for future lifetime

evaluations. This analysis will enable more rapid characterisation and reliability assessments of

GaN devices in the future.

8.1 Future work

Electrical measurements comparing the charge storage and leakage behaviour of different

strain relief layer designs has indicated superlattice strain relief layers give rise to superior

performance[160]. Following on from that work, a new study modelling an optimised superlattice

strain relief layers is set to begin between imec and the Centre for Device Thermography and

Reliability (CDTR). The aim of this new project is to understand the physical processes which

give rise to the improved behaviour in the superlattice strain relief layers when compared to the

interlayer strain relief layers featured in Chapter 4. The simulation work in Chapter 4 identified

that in the simulation of strain relief layers, it is imperative to construct the model with realistic

composition profiles in order to recover realistic results. Initial simulations with ideal, abrupt

interfaces yielded unrealistic, non-physical results, thus realistic profiles must be used in all

future simulations of the strain relief layers and buffer structure of metal-organic chemical

vapour deposition grown devices. Based on this assertion, this new study will rely heavily on

scanning transmission electron microscopy cross-sections to ensure realistic composition profiles

are implemented throughout the superlattice.

The results presented in Chapter 5 provide compelling evidence to support the presence of

preferential leakage paths below the Ohmic contacts. However, further work could be done to

verify the physical cause of this behaviour. It was suggested that the preferential leakage is

caused by the contact metals decorating existing dislocations under the contact. Future studies

could investigate this effect on structures processed with a different metal stack, i.e. Ta/Al/Ta, to

identify whether the effect is Ti/Al specific. Alternatively, the same Ti/Al contact structures could

be fabricated on low defect density material to verify if the dislocation density does indeed play a

role. Additionally, to support the electrical measurements, a more direct measurement approach

could also be taken. By mechanically polishing a sample, the dislocation decoration under the

contact could be directly observed with kelvin probe mapping. Using this technique, it would

even be possible to inspect the dislocation cross-section as a function of depth by polishing the

sample at an angle. This could be used to directly measure the extension of the leakage paths.

130



8.1. FUTURE WORK

Finally, the results in Chapter 6 were explained by a mechanism which modulates the

conductivity of dislocations using the charge state of point defects. This opens an avenue for the

exploration of the positive benefits of point defects and engineering of the point defect density

to reduce the reverse leakage in GaN diodes. There have been results in the literature which

demonstrate the ability to control the point defect density in metal-organic chemical vapour

deposition by tuning of the growth parameters. Generally, the goal is to reduce the point defect

density, however a new study could be devised in which the point defect density is intentionally

varied with as many other parameters kept constant to assess the impact on the reverse leakage

along dislocations. This study would be a method of testing this impurity band conduction model

of leakage. With different defect densities, the distance the Fermi level moves during the transient

would differ i.e. a low point defect density would result in the Fermi level only moving by a small

amount. Depending on the width of the impurity band, the shape and magnitude of the transient

would be expected to change with defect density. If successful, new growth regimes could be

developed to create even lower leakage devices, possibly even approaching the limits of the ideal

material despite a non-zero dislocation density.
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LIST OF ABBREVIATIONS

2DEG 2-Dimensional Electron Gas

2DHG 2-Dimensional Hole Gas

AC Alternating Current

AFM Atomic Force Microscope

BFOM Baliga Figure Of Merit

CAFM Conductive Atomic Force Microscope

CAVET Current Aperture Vertical Electron Transistor

CDF Cumulative Distribution Function

CDTR Centre for Device Thermography and Reliability

CL Cathodo-Luminescence

CMOS Complementary Metal-Oxide-Semiconductor

CMU Capacitance Measurement Unit

CPU Central Processing Unit

CTE Coefficient of Thermal Expansion

CV Capacitance-Voltage

DC Direct Current
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DOS Density Of States

DFT Density Functional Theory

FET Field Effect Transistor

FIB Focused Ion Beam

GPIB General Purpose Interface Bus

HAADF High Angle Annular Dark Field

HEMT High Electron Mobility Transistor

HFET Hetero-structure Field Effect Transistor

HV High Voltage

HVPE Hydride Vapour Phase Epitaxy

IB Impurity Band

imec Inter-university Micro-Electronics Centre

IP Intellectual Property

IV Current-Voltage

JTE Junction Termination Extension

LED Light Emitting Diode

LiDAR Light Detection And Ranging

MBE Molecular Beam Epitaxy

MOCVD Metal-Organic Chemical Vapour Deposition

MODFET MOdulation-Doped Field Effect Transistor

MOSFET Metal-Oxide-Semiconductor Field Effect Transistor

MTTF Mean Time To Failure

PID Proportional Integral Derivative

PWM Pulse Width Modulation

QSCV Quasi-Static Capacitance-Voltage
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RF Radio Frequency

SBD Schottky Barrier Diode

SEM Scanning Electron Microscopy

SIMS Secondary-Ion Mass Spectroscopy

SMU Source Measurement Unit

SRL Strain Relief Layers

STEM Scanning Transmission Electron Microscopy

TAT Trap Assisted Tunnelling

TCAD Technology Computer-Aided Design

TDDB Time Dependant Dielectric Breakdown

TEM Transmission Electron Microscopy

TLM Transfer Length Method

UID UnIntentionally Doped

UV Ultra Violet

VRH Variable Range Hopping
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ATLAS SIMULATION CODE

This appendix contains the code required to run the SILVACO ATLAS simulation presented in

chapter 4 for the structure with a carbon doped back-barrier. For simulation of the unintentionally

doped back-barrier structure, the carbon trap statements in the back-barrier can be commented

out (lines starting with # are comments). This appendix comprises three files; the run file, the

design file and the body file. The design file specifies the physical layout of the structure and

defines the finite element mesh. This is created and edited in Devedit and compiled into a

structure file (.str) before running the model. The body file calls the design structure file and

specifies the material property definitions of each material layer (Al composition of AlGaN, trap

density/levels, carrier mobilities etc.). The body file also defines which physical models to turn on

and specifies the desired simulation outputs. Finally, the run file is the most high level file and

is executed in Deckbuild to run the simulation. The run file calls the body file and defines the

design of experiment e.g. which contacts are set to which voltage at which time. These three files

described above are presented in the following sections.
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C.1 Run File (U_runfile_5Vps_C_350V.in)

go atlas simflags= "-V 5.20.2.R -P 4"

set fstub1="U"

set fstub2="15745_"

set fstub3="C_1.47e19_5.3e18_doped_ILs_v4"

set TL=293

source bodytext_U_C_v4.in

method newton autonr carriers=2 maxtraps=10 itlimit = 50

solve init

#regrid potential ratio=0.2 outf="new_grid.str" smooth=4

set time=0

solve vdrain=1

solve vsubstrate=0

save outf=$’fstub1’$’fstub2’$’fstub3’_Init_Vd=1_TL=$’TL’_rate=5.str master

log outf = $’fstub1’$’fstub2’$’fstub3’_IdVsub_Vd=1_TL=$’TL’_rate=5.log

# ramp up

solve vsubstrate=-115 ramptime=23 dt=1 tstop=23

save outf=$’fstub1’$’fstub2’$’fstub3’_Vsub=-115f_Vd=1_TL=$’TL’_rate=5.str master

solve vsubstrate=-235 ramptime=24 dt=1 tstop=47

save outf=$’fstub1’$’fstub2’$’fstub3’_Vsub=-235f_Vd=1_TL=$’TL’_rate=5.str master

solve vsubstrate=-355 ramptime=24 dt=1 tstop=71

save outf=$’fstub1’$’fstub2’$’fstub3’_Vsub=-355f_Vd=1_TL=$’TL’_rate=5.str master
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# ramp down

solve vsubstrate=-235 ramptime=24 dt=1 tstop=95

save outf=$’fstub1’$’fstub2’$’fstub3’_Vsub=-235b_Vd=1_TL=$’TL’_rate=5.str master

solve vsubstrate=-115 ramptime=24 dt=1 tstop=119

save outf=$’fstub1’$’fstub2’$’fstub3’_Vsub=-115b_Vd=1_TL=$’TL’_rate=5.str master

solve vsubstrate=0 ramptime=23 dt=1 tstop=142

save outf=$’fstub1’$’fstub2’$’fstub3’_Vsub=0b_Vd=1_TL=$’TL’_rate=5.str master

log off
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C.2 Design File (U15745_4.de)

DevEdit version=2.8.21.R # file written Thu Jun 22 2017 11:37:32 GMT+1 (BST)

work.area x1=-5.5 y1=-0.5 x2=26.65 y2=5.22

# devedit 2.8.21.R (Fri Dec 19 15:47:22 PST 2014)

# libMeshBuild 1.24.19 (Tue Dec 9 04:44:54 PST 2014)

# libSSS 2.8.11 (Tue Dec 9 04:41:32 PST 2014)

# libSVC_Misc 1.28.12 (Fri Nov 14 19:53:38 PST 2014)

# libsflm 7.8.18 (Tue Dec 2 21:07:40 PST 2014)

# libSDB 1.12.31 (Wed Dec 3 01:58:14 PST 2014)

# libGeometry 1.30.13 (Fri Nov 14 19:52:25 PST 2014)

# libCardDeck 1.32.19 (Fri Nov 14 19:52:23 PST 2014)

# libDW_Set 1.28.12 (Fri Nov 14 19:53:36 PST 2014)

# libSvcFile 1.14.16 (Wed Dec 3 18:05:53 PST 2014)

# libsstl 1.10.8 (Fri Nov 14 19:52:31 PST 2014)

# libDW_Misc 1.40.16 (Tue Dec 2 09:09:46 PST 2014)

# libQSilCore 1.2.7 (Thu Nov 13 17:55:06 PST 2014)

# libDW_Version 3.8.0 (Fri Oct 3 16:08:41 PDT 2014)

region reg=1 name=Cap mat=Si3N4 color=0xffff pattern=0x3 \

polygon="20.5,-0.015 0.5,-0.015 0.5,-0.02 20.5,-0.02"

#

constr.mesh region=1 default

region reg=2 name=Barrier mat="UD4(Al0.25GaN)" color=0xcb00ff pattern=0x6 \

polygon="20.5,0 0.5,0 0.5,-0.015 20.5,-0.015"

#

constr.mesh region=2 default

region reg=3 name=UID mat=GaN color=0xcca3a3 pattern=0xd \

polygon="-5.5,0 0.5,0 20.5,0 26.5,0 26.5,0.5 -5.5,0.5"

#

constr.mesh region=3 default

region reg=4 name=Buffer mat="UD2(Al0.08GaN)" color=0x7a3d99 pattern=0x4 \
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polygon="-5.5,1.292 -5.5,0.5 26.5,0.5 26.5,1.292"

#

constr.mesh region=4 default

region reg=5 name="Interlayer 1.0" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,1.308 26.5,1.308 26.5,1.31 -5.5,1.31"

#

constr.mesh region=5 default

region reg=6 name=Al0.08GaN:C mat="UD2(Al0.08GaN)" color=0x7a3d99 pattern=0x4 \

polygon="26.5,2.32 26.5,4.12 -5.5,4.12 -5.5,2.32" \

polygon="-5.5,2.302 -5.5,1.31 26.5,1.31 26.5,2.302"

#

constr.mesh region=6 default

region reg=7 name=substrate mat=Silicon elec.id=3 work.func=0 color=0xffcc00 pattern=0x4 \

polygon="26.5,4.22 -5.5,4.22 -5.5,4.12 26.5,4.12"

#

constr.mesh region=7 default

region reg=8 name=source mat=GaN elec.id=1 work.func=0 color=0xcca3a3 pattern=0xd \

polygon="-5.5,0 -5.5,-0.05 0.5,-0.05 0.5,-0.02 0.5,-0.015 0.5,0"

#

constr.mesh region=8 default

region reg=9 name=drain mat=GaN elec.id=2 work.func=0 color=0xcca3a3 pattern=0xd \

polygon="20.5,-0.05 26.5,-0.05 26.5,0 20.5,0 20.5,-0.015 20.5,-0.02"

#

constr.mesh region=9 default

region reg=10 name="Interlayer 2.0" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,2.318 26.5,2.318 26.5,2.32 -5.5,2.32"

#

constr.mesh region=10 default

region reg=11 name="Interlayer 1.1" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,1.306 26.5,1.306 26.5,1.308 -5.5,1.308"

#

143



APPENDIX C. ATLAS SIMULATION CODE

constr.mesh region=11 default

region reg=12 name="Interlayer 1.2" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="26.5,1.306 -5.5,1.306 -5.5,1.304 26.5,1.304"

#

constr.mesh region=12 default

region reg=13 name="Interlayer 1.3" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="26.5,1.304 -5.5,1.304 -5.5,1.302 26.5,1.302"

#

constr.mesh region=13 default

region reg=14 name="Interlayer 1.4" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,1.302 -5.5,1.3 26.5,1.3 26.5,1.302"

#

constr.mesh region=14 default

region reg=15 name="Interlayer 1.5" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,1.3 -5.5,1.298 26.5,1.298 26.5,1.3"

#

constr.mesh region=15 default

region reg=16 name="Interlayer 1.6" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="26.5,1.298 -5.5,1.298 -5.5,1.296 26.5,1.296"

#

constr.mesh region=16 default

region reg=17 name="Interlayer 1.7" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="26.5,1.296 -5.5,1.296 -5.5,1.294 26.5,1.294"

#

constr.mesh region=17 default

region reg=18 name="Interlayer 1.8" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="26.5,1.294 -5.5,1.294 -5.5,1.292 26.5,1.292"

#

constr.mesh region=18 default

region reg=19 name="Interlayer 2.1" mat=AlGaN color=0xff8286 pattern=0x4 \
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polygon="-5.5,2.316 26.5,2.316 26.5,2.318 -5.5,2.318"

#

constr.mesh region=19 default

region reg=20 name="Interlayer 2.2" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,2.314 26.5,2.314 26.5,2.316 -5.5,2.316"

#

constr.mesh region=20 default

region reg=21 name="Interlayer 2.3" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,2.312 26.5,2.312 26.5,2.314 -5.5,2.314"

#

constr.mesh region=21 default

region reg=22 name="Interlayer 2.4" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,2.31 26.5,2.31 26.5,2.312 -5.5,2.312"

#

constr.mesh region=22 default

region reg=23 name="Interlayer 2.5" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,2.308 26.5,2.308 26.5,2.31 -5.5,2.31"

#

constr.mesh region=23 default

region reg=24 name="Interlayer 2.6" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="-5.5,2.306 26.5,2.306 26.5,2.308 -5.5,2.308"

#

constr.mesh region=24 default

region reg=25 name="Interlayer 2.7" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="26.5,2.306 -5.5,2.306 -5.5,2.304 26.5,2.304"

#

constr.mesh region=25 default

region reg=26 name="Interlayer 2.8" mat=AlGaN color=0xff8286 pattern=0x4 \

polygon="26.5,2.304 -5.5,2.304 -5.5,2.302 26.5,2.302"

#

constr.mesh region=26 default
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impurity id=1 imp=Donors color=0x8c5d00 \

peak.value=1e+20 ref.value=1000000000000 comb.func=Multiply \

y1=-0.4 y2=0 rolloff.y=both conc.func.y=Gaussian conc.param.y=0.01 \

x1=-5.5 x2=0.5 rolloff.x=both conc.func.x=Gaussian conc.param.x=0.01

impurity id=2 imp=Donors color=0x8c5d00 \

peak.value=1e+20 ref.value=1000000000000 comb.func=Multiply \

y1=-0.4 y2=0 rolloff.y=both conc.func.y=Gaussian conc.param.y=0.01 \

x1=20.5 x2=26.5 rolloff.x=both conc.func.x=Gaussian conc.param.x=0.01

# Set Meshing Parameters

#

base.mesh height=0.5 width=0.5

#

bound.cond !apply max.slope=28 max.ratio=300 rnd.unit=0.001 line.straightening=1 \

align.points when=automatic

#

imp.refine min.spacing=0.1

#

constr.mesh max.angle=90 max.ratio=300 max.height=10000 \

max.width=10000 min.height=0.0001 min.width=0.0001

#

constr.mesh type=Semiconductor default

#

constr.mesh type=Insulator default

#

constr.mesh type=Metal default

#

constr.mesh type=Other default

#

constr.mesh region=1 default

#

constr.mesh region=2 default

#

constr.mesh region=3 default

#

constr.mesh region=4 default

#
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constr.mesh region=5 default

#

constr.mesh region=6 default

#

constr.mesh region=7 default

#

constr.mesh region=8 default

#

constr.mesh region=9 default

#

constr.mesh region=10 default

#

constr.mesh region=11 default

#

constr.mesh region=12 default

#

constr.mesh region=13 default

#

constr.mesh region=14 default

#

constr.mesh region=15 default

#

constr.mesh region=16 default

#

constr.mesh region=17 default

#

constr.mesh region=18 default

#

constr.mesh region=19 default

#

constr.mesh region=20 default

#

constr.mesh region=21 default

#

constr.mesh region=22 default

#

constr.mesh region=23 default

#
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constr.mesh region=24 default

#

constr.mesh region=25 default

#

constr.mesh region=26 default

Mesh Mode=MeshBuild

refine mode=y x1=-5.55 y1=0.009 x2=26.65 y2=0.02

refine mode=y x1=-5.5 y1=0.012 x2=27.31 y2=0.013

refine mode=y x1=-5.44 y1=0.01 x2=26.65 y2=0.017

refine mode=y x1=-5.61 y1=0.01 x2=26.77 y2=0.026

refine mode=y x1=-5.61 y1=0.013 x2=27.07 y2=0.017

refine mode=y x1=-5.61 y1=0.006 x2=26.71 y2=0.01

refine mode=y x1=-5.61 y1=-0.015 x2=25.04 y2=-0.011

refine mode=y x1=-5.55 y1=-0.003 x2=26.77 y2=0.002

refine mode=y x1=-5.61 y1=-0.003 x2=26.65 y2=0

refine mode=y x1=-0.26 y1=-0.0011 x2=21.37 y2=0.0004

refine mode=y x1=-5.67 y1=1.2325 x2=26.83 y2=1.2692

refine mode=y x1=-5.5 y1=1.3403 x2=27.13 y2=1.3741

refine mode=y x1=-5.55 y1=1.2052 x2=27.73 y2=1.2505

refine mode=y x1=-5.79 y1=1.3554 x2=27.19 y2=1.3713

refine mode=y x1=-5.85 y1=1.249 x2=26.83 y2=1.2656

refine mode=y x1=-5.61 y1=1.3511 x2=26.65 y2=1.3554

refine mode=y x1=-5.55 y1=1.2656 x2=26.71 y2=1.2742

refine mode=y x1=-5.91 y1=1.326 x2=27.19 y2=1.3353

refine mode=y x1=-6.03 y1=1.28 x2=26.83 y2=1.2828

refine mode=y x1=-5.79 y1=1.3202 x2=26.89 y2=1.3238

refine mode=y x1=-5.73 y1=1.2843 x2=27.25 y2=1.2871

refine mode=y x1=-5.85 y1=1.3137 x2=27.13 y2=1.3166

refine mode=y x1=-5.85 y1=1.2879 x2=26.89 y2=1.2886

refine mode=y x1=-5.91 y1=1.3123 x2=27.61 y2=1.313

refine mode=y x1=-6.03 y1=2.2727 x2=26.83 y2=2.2806

refine mode=y x1=-6.27 y1=2.3719 x2=26.12 y2=2.3762

refine mode=y x1=-6.57 y1=2.2447 x2=27.61 y2=2.2706

refine mode=y x1=-6.15 y1=2.3604 x2=25.04 y2=2.3604

refine mode=y x1=-6.09 y1=2.2749 x2=27.25 y2=2.2871

refine mode=y x1=-6.03 y1=2.3475 x2=27.31 y2=2.3733

refine mode=y x1=-6.15 y1=2.3417 x2=27.19 y2=2.3518

refine mode=y x1=26.06 y1=2.346 x2=26.6 y2=2.346
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refine mode=y x1=-5.97 y1=2.2864 x2=27.31 y2=2.29

refine mode=y x1=-5.85 y1=2.3338 x2=26.89 y2=2.3352

refine mode=y x1=-5.85 y1=2.2928 x2=26.95 y2=2.2964

refine mode=y x1=-6.03 y1=2.3273 x2=27.07 y2=2.3281

refine mode=y x1=-6.09 y1=2.2979 x2=27.25 y2=2.2993

refine mode=y x1=-6.03 y1=2.3223 x2=27.01 y2=2.3252

refine mode=both x1=-3.76 y1=0.05 x2=-0.46 y2=1.12

refine mode=both x1=21.62 y1=0.05 x2=24.56 y2=1.14

refine mode=y x1=-5.5 y1=0.43 x2=26.77 y2=0.59

refine mode=y x1=0.08 y1=0.4 x2=21.02 y2=0.6

refine mode=y x1=-5.32 y1=0.38 x2=-4.24 y2=0.57

refine mode=y x1=25.04 y1=0.6 x2=26.36 y2=0.79

refine mode=y x1=-5.32 y1=0.42 x2=-14.01 y2=0.47

refine mode=y x1=-5.44 y1=0.45 x2=26.24 y2=0.53

refine mode=y x1=-5.38 y1=0.47 x2=26.6 y2=0.52

refine mode=y x1=-5.44 y1=1.2879 x2=27.07 y2=1.313

refine mode=y x1=-5.55 y1=2.2986 x2=26.71 y2=2.323

refine mode=y x1=-5.55 y1=1.2871 x2=26.95 y2=1.3073

refine mode=y x1=-5.5 y1=2.2964 x2=26.89 y2=2.3144

base.mesh height=0.5 width=0.5

bound.cond !apply max.slope=28 max.ratio=300 rnd.unit=0.001 \

line.straightening=1 align.Points when=automatic
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C.3 Body File (bodytext_U_C_v4.in)

# IMEC 15745 IL device (C doped deep buffer) TLM

#

#----------------------------------------------------------------

# Layers

#---------------------------------------------------------------------------

# 1. SiN Cap

# 2. Al0.25GaN Barrier

# 3. UID GaN

# 4. Al0.08GaN Buffer

# 5. Interlayer 1.0

# 6. Al0.08GaN:C

# 7. Substrate

# 8. Source

# 9. Drain

# 10. Interlayer 2.0

# 11. Interlayer 1.1

# 12. Interlayer 1.2

# 13. Interlayer 1.3

# 14. Interlayer 1.4

# 15. Interlayer 1.5

# 16. Interlayer 1.6

# 17. Interlayer 1.7

# 18. Interlayer 1.8

# 19. Interlayer 2.1

# 20. Interlayer 2.2

# 21. Interlayer 2.3

# 22. Interlayer 2.4

# 23. Interlayer 2.5

# 24. Interlayer 2.6
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# 25. Interlayer 2.7

# 26. Interlayer 2.8

set Lsd=20

set Lcontact=1

set t_barrier=0.015

set t_SiNcap=0.005

set RC=500

set Spike_depth = 0.05

set density_UID_donor = 1e16

set e_UID_donor = 0.02

# Polarisation charges (Ambacher 2002 - non-linear interpolations of material properties)

set Qp_GaN = 2.12e13

set Qp_Al0.08GaN = 2.44e13

set Qp_Al0.25GaN = 3.24e13

# relaxed ILs

set Qp_AlN = 5.625e13

set Qoffset=5.0e12

# Band Gaps (from ATLAS)

set Eg_GaN = 3.42

set Eg_Al0.08GaN = 3.56

set Eg_Al0.13GaN = 3.64

set Eg_Al0.21GaN = 3.79

set Eg_Al0.25GaN = 3.87

set Eg_Al0.31GaN = 4.00

set Eg_Al0.41GaN = 4.23

set Eg_Al0.44GaN = 4.37

set Eg_Al0.54GaN = 4.55

set Eg_Al0.75GaN = 5.27

set Eg_Al0.78GaN = 5.32
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set Eg_Al0.80GaN = 5.39

set Eg_Al0.90GaN = 5.75

set Eg_AlN = 6.13

# Trap properties

set e_level_deep_acceptor=0.98

set deep_acceptor_sign=1e-15

set deep_acceptor_sigp=1e-13

set density_deep_acceptor=1.47e19

#1e19

set density_compensating_donor=.53e19

#5e17

set e_compensating_donor=0.02

set ymin_C=0.5

set ymax_C=1.3

# Note that the location of the traps is set on the TRAP statement

#-----------------------------------------------------------------

# Get structure file from DevEdit

#-----------------------------------------------------------------

mesh inf=U15745_4.str width=22

REGION MODIFY NUM=2 MATERIAL=AlGaN X.COMP=0.25

REGION MODIFY NUM=4 MATERIAL=AlGaN X.COMP=0.08

REGION MODIFY NUM=5 MATERIAL=AlGaN X.COMP=0.54

REGION MODIFY NUM=11 MATERIAL=AlGaN X.COMP=0.80

REGION MODIFY NUM=12 MATERIAL=AlGaN X.COMP=0.90

REGION MODIFY NUM=13 MATERIAL=AlGaN X.COMP=0.78

REGION MODIFY NUM=14 MATERIAL=AlGaN X.COMP=0.53

REGION MODIFY NUM=15 MATERIAL=AlGaN X.COMP=0.41

REGION MODIFY NUM=16 MATERIAL=AlGaN X.COMP=0.31

REGION MODIFY NUM=17 MATERIAL=AlGaN X.COMP=0.21
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REGION MODIFY NUM=18 MATERIAL=AlGaN X.COMP=0.13

REGION MODIFY NUM=6 MATERIAL=AlGaN X.COMP=0.08

REGION MODIFY NUM=10 MATERIAL=AlGaN X.COMP=0.54

REGION MODIFY NUM=19 MATERIAL=AlGaN X.COMP=0.80

REGION MODIFY NUM=20 MATERIAL=AlGaN X.COMP=0.90

REGION MODIFY NUM=21 MATERIAL=AlGaN X.COMP=0.78

REGION MODIFY NUM=22 MATERIAL=AlGaN X.COMP=0.53

REGION MODIFY NUM=23 MATERIAL=AlGaN X.COMP=0.41

REGION MODIFY NUM=24 MATERIAL=AlGaN X.COMP=0.31

REGION MODIFY NUM=25 MATERIAL=AlGaN X.COMP=0.21

REGION MODIFY NUM=26 MATERIAL=AlGaN X.COMP=0.13

#-----------------------------------------------------------------

# ... trap definitions

#-----------------------------------------------------------------

### Spikes ###

doping acceptor conc=1.1e20 gaussian characteristic=0.005 \

x.min=-1 x.max=-1 y.min=0 y.max=$’Spike_depth’

doping acceptor conc=1.1e20 gaussian characteristic=0.005 \

x.min= 22 x.max= 22 y.min=0 y.max=$’Spike_depth’

### C doping ###

# below interlayer

trap acceptor e.level = $Eg_Al0.08GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=6

trap donor e.level = $Eg_Al0.08GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=6

### C above interlayer

trap acceptor e.level = $Eg_Al0.08GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=4
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trap donor e.level = $Eg_Al0.08GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=4

#trap donor e.level = $Eg_Al0.08GaN-$e_UID_donor density = $’density_UID_donor’ \

# degen.fac=2 sign = 1e-13 sigp = 1e-15 region=4

## C doping in interlayer 1

trap acceptor e.level = $Eg_Al0.54GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=5

trap donor e.level = $Eg_Al0.54GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=5

trap acceptor e.level = $Eg_Al0.80GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=11

trap donor e.level = $Eg_Al0.80GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=11

trap acceptor e.level = $Eg_Al0.90GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=12

trap donor e.level = $Eg_Al0.90GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=12

trap acceptor e.level = $Eg_Al0.78GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=13

trap donor e.level = $Eg_Al0.78GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=13

trap acceptor e.level = $Eg_Al0.54GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \
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sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=14

trap donor e.level = $Eg_Al0.54GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=14

## C doping in interlayer 1 tail

trap acceptor e.level = $Eg_Al0.41GaN -$’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=15

trap donor e.level = $Eg_Al0.41GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=15

trap acceptor e.level = $Eg_Al0.31GaN -$’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=16

trap donor e.level = $Eg_Al0.31GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=16

trap acceptor e.level = $Eg_Al0.21GaN -$’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=17

trap donor e.level = $Eg_Al0.21GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=17

trap acceptor e.level = $Eg_Al0.13GaN -$’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=18

trap donor e.level = $Eg_Al0.13GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=18

## C doping in interlayer 2
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trap acceptor e.level = $Eg_Al0.54GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=10

trap donor e.level = $Eg_Al0.54GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=10

trap acceptor e.level = $Eg_Al0.80GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=19

trap donor e.level = $Eg_Al0.80GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=19

trap acceptor e.level = $Eg_Al0.90GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=20

trap donor e.level = $Eg_Al0.90GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=20

trap acceptor e.level = $Eg_Al0.78GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=21

trap donor e.level = $Eg_Al0.78GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=21

trap acceptor e.level = $Eg_Al0.54GaN -$’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=22

trap donor e.level = $Eg_Al0.54GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=22

## C doping in interlayer 2 tail

trap acceptor e.level = $Eg_Al0.41GaN - $’e_level_deep_acceptor’ \

156



C.3. BODY FILE (BODYTEXT_U_C_V4.IN)

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=23

trap donor e.level = $Eg_Al0.41GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=23

trap acceptor e.level = $Eg_Al0.31GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=24

trap donor e.level = $Eg_Al0.31GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=24

trap acceptor e.level = $Eg_Al0.21GaN -$’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=25

trap donor e.level = $Eg_Al0.21GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=25

trap acceptor e.level = $Eg_Al0.13GaN - $’e_level_deep_acceptor’ \

density = $’density_deep_acceptor’ degen.fac=2 \

sign = $’deep_acceptor_sign’ sigp = $’deep_acceptor_sigp’ region=26

trap donor e.level = $Eg_Al0.13GaN-$’e_compensating_donor’ \

density = $’density_compensating_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=26

### Unintentional donors in all regions

trap donor e.level = $Eg_Al0.08GaN-$’e_UID_donor’ density = $’density_UID_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=2

trap donor e.level = $Eg_GaN-$’e_UID_donor’ density = $’density_UID_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=3

# UID doping in contacts not needed as already highly doped

trap donor e.level = $Eg_AlN-$’e_UID_donor’ density = $’density_UID_donor’ \

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=8

trap donor e.level = $Eg_Al0.08GaN-$’e_UID_donor’ density = $’density_UID_donor’ \

157



APPENDIX C. ATLAS SIMULATION CODE

degen.fac=2 sign = 1e-13 sigp = 1e-15 region=9

#-----------------------------------------------------------------

#... Models statements

#-----------------------------------------------------------------

models name=Cap temp=$TL \

srh ^auger \

fermidirac incomplete print \

fldmob

# \

# lat.temp joule.heat

models name=Buffer temp=$TL \

srh ^auger \

fermidirac incomplete print \

fldmob

# fnholes fnord

# lat.temp joule.heat

models name=Barrier temp=$TL \

srh ^auger \

fermidirac incomplete print \

fldmob

# \

# lat.temp joule.heat

models MATERIAL=AlGaN FLDMOB FERMI SRH AUGER INCOMPLETE temp=$TL PRINT

models name=Al0.08GaN:C temp=$TL \

srh ^auger \

fermidirac incomplete print \
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fldmob

# fnholes fnord

models name=drain temp=$TL print

# \

# lat.temp joule.heat

models name=source temp=$TL print

# \

# lat.temp joule.heat

#----------------------------------------------------------------

#...Material Parameters

#----------------------------------------------------------------

#...GaN

#----------------------------------------------------------------

material material=GaN \

edb=0.02 gcb=2 gvb=2 \

tcon.const tc.const=1.6 \

eg300=$Eg_GaN egalpha=0 egbeta=0 \

align = 0.385 \

PERMITTI = 10.4

# egalpha=7.7e-4 egbeta=600

#----------------------------------------------------------------

#...Al(x)Ga(1-x)N

#----------------------------------------------------------------

material material=AlGaN \

vsatn=1e7 vsatp=1e6 \

tcon.const tc.const=0.5 \

egalpha=0 egbeta=0 \

PERMITTI = 10.7

# egalpha=7.7e-4 egbeta=600
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#-----------------------------------------------------------------

#... Contacts statements

#-----------------------------------------------------------------

contact name=substrate resistance=$’RC’

contact name=source resistance=$’RC’

contact name=drain resistance=$’RC’

# enable the thermal contact to the substrate terminal and add a thermal conductivity

# thermcontact number=1 x.min=-$’Lcontact’ x.max=$’Lsd’+$’Lcontact’ \

y.min=1.4-0.01 y.max=1.4+0.01 temp=300 alpha=16000

#----------------------------------------------------------------

#...Mobility Values:

#----------------------------------------------------------------

mobility name=Cap \

mun=1500 \

betan=2.3 \

tmun=1.5 \

vsatn=1.91e7

mobility name=UID \

mun=1500 \

betan=2.3 \

tmun=1.5 \

vsatn=1.91e7 \

mup=8 \

tmup=1.5

mobility name=Buffer \

mun=400 \

betan=2.3 \

tmun=1.5 \
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vsatn=1.91e7 \

mup=8 \

tmup=1.5

mobility name=Barrier \

mun=20 vsatn=1e7 \

mup=1 vsatp=1e7

# contact mobility

#mobility name=drain_contact \

# mun=$mu_contact mup=10

#mobility name=source_contact \

# mun=$mu_contact mup=10

#-----------------------------------------------------------------

# define fixed polarization charge

#-----------------------------------------------------------------

## AlGaN top surface charge

#interface charge=$Qoffset s.i. \

# y.min=-($t_barrier+$t_SiNcap+0.001) y.max=-($t_barrier+$t_SiNcap-0.001)

# Cap/Al0.25GaN interface

interface charge=-$Qoffset s.i. \

y.min=(-$t_barrier-0.001) y.max=(-$t_barrier+0.001)

# Barrier/UID GaN interface

interface charge = ( $Qp_Al0.25GaN - $Qp_GaN ) s.s.\

y.min=0 y.max=0

# GaN/Al0.08GaN interface

interface charge = ( $Qp_GaN - $Qp_Al0.08GaN ) s.s.\

y.min=0.5 y.max=0.5

# ########## first interlayer
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# Al0.08GaN/ interlayer 1.8

interface charge = -1.2e12 s.s.\

y.min=1.292 y.max=1.292

# interlayer 1.7/ interlayer 1.8

interface charge = -2.1e12 s.s.\

y.min=1.294 y.max=1.294

# interlayer 1.6/ interlayer 1.7

interface charge = -2.9e12 s.s.\

y.min=1.296 y.max=1.296

# interlayer 1.5/ interlayer 1.6

interface charge = -3.1e12 s.s.\

y.min=1.298 y.max=1.298

# interlayer 1.4/ interlayer 1.5

interface charge = -4.2e12 s.s.\

y.min=1.3 y.max=1.3

# interlayer 1.3/ interlayer 1.4

interface charge = -9.5e12 s.s.\

y.min=1.302 y.max=1.302

# interlayer 1.2/ interlayer 1.3

interface charge = -5.7e12 s.s.\

y.min=1.304 y.max=1.304

# interlayer 1.1/ interlayer 1.2

interface charge = 4.8e12 s.s.\

y.min=1.306 y.max=1.306

# interlayer 1.0/ interlayer 1.1

interface charge = 1.0e13 s.s.\

y.min=1.308 y.max=1.308

# interlayer 1.0/Al0.08GaN interface
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interface charge = 1.4e13 s.s.\

y.min=1.31 y.max=1.31

# ########## second interlayer

# Al0.08GaN/ interlayer 2.8

interface charge = -1.2e12 s.s.\

y.min=2.302 y.max=2.302

# interlayer 2.7/ interlayer 2.8

interface charge = -2.1e12 s.s.\

y.min=2.304 y.max=2.304

# interlayer 2.6/ interlayer 2.7

interface charge = -2.9e12 s.s.\

y.min=2.306 y.max=2.306

# interlayer 2.5/ interlayer 2.6

interface charge = -3.1e12 s.s.\

y.min=2.308 y.max=2.308

# interlayer 2.4/ interlayer 2.5

interface charge = -4.2e12 s.s.\

y.min=2.31 y.max=2.31

# interlayer 2.3/ interlayer 2.4

interface charge = -9.5e12 s.s.\

y.min=2.312 y.max=2.312

# interlayer 2.2/ interlayer 2.3

interface charge = -5.7e12 s.s.\

y.min=2.314 y.max=2.314

# interlayer 2.1/ interlayer 2.2

interface charge = 4.8e12 s.s.\

y.min=2.316 y.max=2.316

# interlayer 2.0/ interlayer 2.1
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interface charge = 1e13 s.s.\

y.min=2.318 y.max=2.318

# interlayer 2.0/Al0.08GaN interface

interface charge = 1.4e13 s.s.\

y.min=2.32 y.max=2.32

# AlN/Silicon interface

#interface charge = $Qp_AlN s.s.\

# y.min=4.12 y.max=4.12

#-----------------------------------------------------------------

#...Output options

#-----------------------------------------------------------------

output e.field j.electron j.conduc j.disp j.total ex.field \

ey.field e.mobility qss charge val.band con.band \

qfn qfp band.param traps.ft traps devdeg l.temp noise.all

#-----------------------------------------------------------------
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and S. Porowski.

Deposition of thick GaN layers by HVPE on the pressure grown GaN substrates.
Journal of Crystal Growth, 281(1):38–46, 7 2005.
doi:10.1016/j.jcrysgro.2005.03.041.

[84] R. Dwilinski, R. Doradzinski, J. Garczynski, L. P. Sierzputowski, M. Zajac, and M. Rudzin-
ski.

Homoepitaxy on bulk ammonothermal GaN.
Journal of Crystal Growth, 311(10):3058–3062, 5 2009.
doi:10.1016/j.jcrysgro.2009.01.078.

[85] M. Bockowski, M. Iwinska, M. Amilusik, M. Fijalkowski, B. Lucznik, and T. Sochacki.
Challenges and future perspectives in HVPE-GaN growth on ammonothermal GaN seeds.
Semiconductor Science and Technology, 31(9), 2016.
doi:10.1088/0268-1242/31/9/093002.

174

http://dx.doi.org/10.7567/APEX.7.021002
http://dx.doi.org/10.1109/LED.2017.2670925
http://dx.doi.org/10.1109/TED.2018.2864260
http://dx.doi.org/10.1063/1.5001914
http://dx.doi.org/10.1016/S0022-0248(02)01894-8
http://dx.doi.org/10.1016/j.jcrysgro.2005.03.041
http://dx.doi.org/10.1016/j.jcrysgro.2009.01.078
http://dx.doi.org/10.1088/0268-1242/31/9/093002


BIBLIOGRAPHY

[86] U. Wahl, L. M. Amorim, V. Augustyns, A. Costa, E. David-Bosne, T. A. L. Lima, G. Lippertz,
J. G. Correia, M. R. da Silva, M. J. Kappers, K. Temst, A. Vantomme, and L. M. C.
Pereira.

Lattice Location of Mg in GaN: A Fresh Look at Doping Limitations.
Physical Review Letters, 118(9):095501, 3 2017.
doi:10.1103/PhysRevLett.118.095501.

[87] Peter Kozodoy, Huili Xing, Steven P. DenBaars, Umesh K. Mishra, A. Saxler, R. Perrin,
S. Elhamri, and W. C. Mitchel.

Heavy doping effects in Mg-doped GaN.
Journal of Applied Physics, 87(4):1832–1835, 2000.
doi:10.1063/1.372098.

[88] P. C. Srivastava and U. P. Singh.
Hydrogen in semiconductors.
Bulletin of Materials Science, 19(1):39–50, 1996.
doi:10.1021/ie403575x.

[89] Shuji Nakamura, Naruhito Iwasa, Masayuki Senoh, and Takashi Mukai.
Hole Compensation Mechanism of P-Type GaN Films.
Japanese Journal of Applied Physics, 31(Part 1, No. 5A):1258–1266, 5 1992.
doi:10.1143/JJAP.31.1258.
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