196 research outputs found

    A Deep Network Model for Paraphrase Detection in Short Text Messages

    Full text link
    This paper is concerned with paraphrase detection. The ability to detect similar sentences written in natural language is crucial for several applications, such as text mining, text summarization, plagiarism detection, authorship authentication and question answering. Given two sentences, the objective is to detect whether they are semantically identical. An important insight from this work is that existing paraphrase systems perform well when applied on clean texts, but they do not necessarily deliver good performance against noisy texts. Challenges with paraphrase detection on user generated short texts, such as Twitter, include language irregularity and noise. To cope with these challenges, we propose a novel deep neural network-based approach that relies on coarse-grained sentence modeling using a convolutional neural network and a long short-term memory model, combined with a specific fine-grained word-level similarity matching model. Our experimental results show that the proposed approach outperforms existing state-of-the-art approaches on user-generated noisy social media data, such as Twitter texts, and achieves highly competitive performance on a cleaner corpus

    Improving the Classification of Multiple Disorders with Problem Decomposition

    Get PDF
    Abstract Differential diagnosis of multiple disorders is a challenging problem in clinical medicine. According to the divide-and-conquer principle, this problem can be handled more effectively through decomposing it into a number of simpler sub-problems, each solved separately. We demonstrate the advantages of this approach using abductive network classifiers on the 6-class standard dermatology dataset. Three problem decomposition scenarios are investigated, including class decomposition and two hierarchical approaches based on clinical practice and class separability properties. Two-stage classification schemes based on hierarchical decomposition boost the classification accuracy from 91% for the single-classifier monolithic approach to 99%, matching the theoretical upper limit reported in the literature for the accuracy of classifying the dataset. Such models are also simpler, achieving up to 47% reduction in the number of input variables required, thus reducing the cost and improving the convenience of performing the medical diagnostic tests required. Automatic selection of only relevant inputs by the simpler abductive network models synthesized provides greater insight into the diagnosis problem and the diagnostic value of various disease markers. The problem decomposition approach helps plan more efficient diagnostic tests and provides improved support for the decision making process. Findings are compared with established guidelines of clinical practice, results of data analysis, and outcomes of previous informatics-based studies on the dataset. Keywords: Classifiers, Abductive Networks, Neural Networks, Problem Decomposition, Divide and Conquer, Classification Accuracy, Data Reduction, Modular Networks, Medical Diagnosis, Multiple Disorders, Dermatology.

    On Computing Probabilistic Abductive Explanations

    Full text link
    The most widely studied explainable AI (XAI) approaches are unsound. This is the case with well-known model-agnostic explanation approaches, and it is also the case with approaches based on saliency maps. One solution is to consider intrinsic interpretability, which does not exhibit the drawback of unsoundness. Unfortunately, intrinsic interpretability can display unwieldy explanation redundancy. Formal explainability represents the alternative to these non-rigorous approaches, with one example being PI-explanations. Unfortunately, PI-explanations also exhibit important drawbacks, the most visible of which is arguably their size. Recently, it has been observed that the (absolute) rigor of PI-explanations can be traded off for a smaller explanation size, by computing the so-called relevant sets. Given some positive {\delta}, a set S of features is {\delta}-relevant if, when the features in S are fixed, the probability of getting the target class exceeds {\delta}. However, even for very simple classifiers, the complexity of computing relevant sets of features is prohibitive, with the decision problem being NPPP-complete for circuit-based classifiers. In contrast with earlier negative results, this paper investigates practical approaches for computing relevant sets for a number of widely used classifiers that include Decision Trees (DTs), Naive Bayes Classifiers (NBCs), and several families of classifiers obtained from propositional languages. Moreover, the paper shows that, in practice, and for these families of classifiers, relevant sets are easy to compute. Furthermore, the experiments confirm that succinct sets of relevant features can be obtained for the families of classifiers considered.Comment: arXiv admin note: text overlap with arXiv:2207.04748, arXiv:2205.0956

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Regularized model learning in EDAs for continuous and multi-objective optimization

    Get PDF
    Probabilistic modeling is the de�ning characteristic of estimation of distribution algorithms (EDAs) which determines their behavior and performance in optimization. Regularization is a well-known statistical technique used for obtaining an improved model by reducing the generalization error of estimation, especially in high-dimensional problems. `1-regularization is a type of this technique with the appealing variable selection property which results in sparse model estimations. In this thesis, we study the use of regularization techniques for model learning in EDAs. Several methods for regularized model estimation in continuous domains based on a Gaussian distribution assumption are presented, and analyzed from di�erent aspects when used for optimization in a high-dimensional setting, where the population size of EDA has a logarithmic scale with respect to the number of variables. The optimization results obtained for a number of continuous problems with an increasing number of variables show that the proposed EDA based on regularized model estimation performs a more robust optimization, and is able to achieve signi�cantly better results for larger dimensions than other Gaussian-based EDAs. We also propose a method for learning a marginally factorized Gaussian Markov random �eld model using regularization techniques and a clustering algorithm. The experimental results show notable optimization performance on continuous additively decomposable problems when using this model estimation method. Our study also covers multi-objective optimization and we propose joint probabilistic modeling of variables and objectives in EDAs based on Bayesian networks, speci�cally models inspired from multi-dimensional Bayesian network classi�ers. It is shown that with this approach to modeling, two new types of relationships are encoded in the estimated models in addition to the variable relationships captured in other EDAs: objectivevariable and objective-objective relationships. An extensive experimental study shows the e�ectiveness of this approach for multi- and many-objective optimization. With the proposed joint variable-objective modeling, in addition to the Pareto set approximation, the algorithm is also able to obtain an estimation of the multi-objective problem structure. Finally, the study of multi-objective optimization based on joint probabilistic modeling is extended to noisy domains, where the noise in objective values is represented by intervals. A new version of the Pareto dominance relation for ordering the solutions in these problems, namely �-degree Pareto dominance, is introduced and its properties are analyzed. We show that the ranking methods based on this dominance relation can result in competitive performance of EDAs with respect to the quality of the approximated Pareto sets. This dominance relation is then used together with a method for joint probabilistic modeling based on `1-regularization for multi-objective feature subset selection in classi�cation, where six di�erent measures of accuracy are considered as objectives with interval values. The individual assessment of the proposed joint probabilistic modeling and solution ranking methods on datasets with small-medium dimensionality, when using two di�erent Bayesian classi�ers, shows that comparable or better Pareto sets of feature subsets are approximated in comparison to standard methods
    corecore