4,973 research outputs found

    Spatial Model Predictive Control for Smooth and Accurate Steering of an Autonomous Truck

    Full text link

    2021 Vehicle Dynamics seminar

    Get PDF
    The seminar is held annually. The full title of this year\u27s seminar was "2021 Vehicle Dynamics seminar -- for Future Mobility ...and not only Lateral"

    Impacts of Connected and Automated Vehicles on Energy and Traffic Flow: Optimal Control Design and Verification Through Field Testing

    Get PDF
    This dissertation assesses eco-driving effectiveness in several key traffic scenarios that include passenger vehicle transportation in highway driving and urban driving that also includes interactions with traffic signals, as well as heavy-duty line-haul truck transportation in highway driving with significant road grade. These studies are accomplished through both traffic microsimulation that propagates individual vehicle interactions to synthesize large-scale traffic patterns that emerge from the eco-driving strategies, and through experimentation in which real prototyped connected and automated vehicles (CAVs) are utilized to directly measure energy benefits from the designed eco-driving control strategies. In particular, vehicle-in-the-loop is leveraged for the CAVs driven on a physical test track to interact with surrounding traffic that is virtually realized through said microsimulation software in real time. In doing so, model predictive control is designed and implemented to create performative eco-driving policies and to select vehicle lane, as well as enforce safety constraints while autonomously driving a real vehicle. Ultimately, eco-driving policies are both simulated and experimentally vetted in a variety of typical driving scenarios to show up to a 50% boost in fuel economy when switching to CAV drivers without compromising traffic flow. The first part of this dissertation specifically assesses energy efficiency of connected and automated passenger vehicles that exploit intention-sharing sourced from both neighboring vehicles in a highway scene and from traffic lights in an urban scene. Linear model predictive control is implemented for CAV motion planning, whereby chance constraints are introduced to balance between traffic compactness and safety, and integer decision variables are introduced for lane selection and collision avoidance in multi-lane environments. Validation results are shown from both large-scale microsimulation and through experimentation of real prototyped CAVs. The second part of this dissertation then assesses energy efficiency of automated line-haul trucks when tasked to aerodynamically platoon. Nonlinear model predictive control is implemented for motion planning, and simulation and experimentation are conducted for platooning verification under highway conditions with traffic. Then, interaction-aware and intention-sharing cooperative control is further introduced to eliminate experimentally measured platoon disengagements that occur on real highways when using only status-sharing control. Finally, the performance of automated drivers versus human drivers are compared in a point-to-point scenario to verify fundamental eco-driving impacts -- experimentally showing eco-driving to boost energy economy by 11% on average even in simple driving scenarios

    Making a few talk for the many – Modeling driver behavior using synthetic populations generated from experimental data

    Get PDF
    Understanding driver behavior is the basis for the development of many advanced driver assistance systems, and experimental studies are indispensable tools for constructing appropriate driver models. However, the high cost associated with testing is a serious obstacle in collecting large amounts of experimental data. This paper presents a methodology that can improve the reliability of results from experimental studies with a limited number of participants by creating a virtual population. Specifically, a methodology based on Bayesian inference has been developed, that generates synthetic cases that adhere to various real-world constraints and represent possible variations of the observed experimental data. The application of the framework is illustrated using data collected during a test-track experiment where truck drivers performed a right turn maneuver, with and without a cyclist crossing the intersection. The results show that, based on the speed profiles of the dataset and physical constraints, the methodology can produce synthetic speed profiles during braking that mimic the original curves but extend to other realistic braking patterns that were not directly observed. The models obtained from the proposed methodology have applications for the design of active safety systems and automated driving demonstrating thereby that the developed framework has great promise for the automotive industry

    Autonomous driving of trucks in off-road environment

    Full text link
    Off-road driving operations can be a challenging environment for human conductors as they are subject to accidents, repetitive and tedious tasks, strong vibrations, which may affect their health in the long term. Therefore, they can benefit from a successful implementation of autonomous vehicle technology, improving safety, reducing labor costs and fuel consumption, and increasing operational efficiency. The main contribution of this paper is the experimental validation of a path tracking control strategy, composed of longitudinal and lateral controllers, on an off-road scenario with a fully-loaded heavy-duty truck. The longitudinal control strategy relies on a Non-Linear Model Predictive Controller (NMPC), which considers the path geometry and simplified vehicle dynamics to compute a smooth and comfortable input velocity, without violating the imposed constraints. The lateral controller is based on a Robust Linear Quadratic Regulator (RLQR), which considers a vehicle model subject to parametric uncertainties to minimize its lateral displacement and heading error, as well as ensure stability. Experiments were carried out using a fully-loaded vehicle on unpaved roads in an open-pit mine. The truck followed the reference path within the imposed constraints, showing robustness and driving smoothness.Comment: Paper accepted at Journal of Control, Automation and Electrical System

    Development of Machine Learning based approach to predict fuel consumption and maintenance cost of Heavy-Duty Vehicles using diesel and alternative fuels

    Get PDF
    One of the major contributors of human-made greenhouse gases (GHG) namely carbon dioxide (CO2), methane (CH4), and nitrous oxide (NOX) in the transportation sector and heavy-duty vehicles (HDV) contributing to about 27% of the overall fraction. In addition to the rapid increase in global temperature, airborne pollutants from diesel vehicles also present a risk to human health. Even a small improvement that could potentially drive energy savings to the century-old mature diesel technology could yield a significant impact on minimizing greenhouse gas emissions. With the increasing focus on reducing emissions and operating costs, there is a need for efficient and effective methods to predict fuel consumption, maintenance costs, and total cost of ownership for heavy-duty vehicles. Every improvement so achieved in this direction is a direct contributor to driving the reduction in the total cost of ownership for a fleet owner, thereby bringing economic prosperity and reducing oil imports for the economy. Motivated by these crucial goals, the present research considers integrating data-driven techniques using machine learning algorithms on the historical data collected from medium- and heavy-duty vehicles. The primary motivation for this research is to address the challenges faced by the medium- and heavy-duty transportation industry in reducing emissions and operating costs. The development of a machine learning-based approach can provide a more accurate and reliable prediction of fuel consumption and maintenance costs for medium- and heavy-duty vehicles. This, in turn, can help fleet owners and operators to make informed decisions related to fuel type, route planning, and vehicle maintenance, leading to reduced emissions and lower operating costs. Artificial Intelligence (AI) in the automotive industry has witnessed massive growth in the last few years. Heavy-duty transportation research and commercial fleets are adopting machine learning (ML) techniques for applications such as autonomous driving, fuel economy/emissions, predictive maintenance, etc. However, to perform well, modern AI methods require a large amount of high-quality, diverse, and well-balanced data, something which is still not widely available in the automotive industry, especially in the division of medium- and heavy-duty trucks. The research methodology involves the collection of data at the West Virginia University (WVU) Center for Alternative Fuels, Engines, and Emissions (CAFEE) lab in collaboration with fleet management companies operating medium- and heavy-duty vehicles on diesel and alternative fuels, including compressed natural gas, liquefied propane gas, hydrogen fuel cells, and electric vehicles. The data collected is used to develop machine learning models that can accurately predict fuel consumption and maintenance costs based on various parameters such as vehicle weight, speed, route, fuel type, and engine type. The expected outcomes of this research include 1) the development of a neural network model 3 that can accurately predict the fuel consumed by a vehicle per trip given the parameters such as vehicle speed, engine speed, and engine load, and 2) the development of machine learning models for estimating the average cost-per-mile based on the historical maintenance data of goods movement trucks, delivery trucks, school buses, transit buses, refuse trucks, and vocational trucks using fuels such as diesel, natural gas, and propane. Due to large variations in maintenance data for vehicles performing various activities and using different fuel types, the regular machine learning or ensemble models do not generalize well. Hence, a mixed-effect random forest (MERF) is developed to capture the fixed and random effects that occur due to varying duty-cycle of vocational heavy-duty trucks that perform different tasks. The developed model helps in predicting the average maintenance cost given the vocation, fuel type, and region of operation, making it easy for fleet companies to make procurement decisions based on their requirement and total cost of ownership. Both the models can provide insights into the impact of various parameters and route planning on the total cost of ownership affected by the fuel cost and the maintenance and repairs cost. In conclusion, the development of a machine learning-based approach can provide a reliable and efficient solution to predict fuel consumption and maintenance costs impacting the total cost of ownership for heavy-duty vehicles. This, in turn, can help the transportation industry reduce emissions and operating costs, contributing to a more sustainable and efficient transportation system. These models can be optimized with more training data and deployed in a real-time environment such as cloud service or an onboard vehicle system as per the requirement of companies

    Comparative analysis of MPC controllers applied to Autonomous Driving

    Get PDF
    Este trabajo presenta el diseño de un sistema de evasión de obstáculos, aplicable en situaciones de emergencia. La solución propone un MPC multivariable para controlar la posición, orientación y velocidad del vehículo autónomo. El controlador considera las limitaciones físicas del vehículo, así como la morfología de la vía para conseguir minimizar los posibles daños que puedan afectar al sistema y en consecuencia a la pérdida de control del vehículo. Las restricciones principales están basadas en las fuerzas laterales que afectan a los neumáticos, obtenidas de la implementación de los modelos cinemático y dinámico de la planta. Inicialmente, el controlador hace que el sistema siga una trayectoria predefinida. No obstante, tomará las acciones de evasión necesarias cuando detecte obstáculos, para conseguir realizar trayectorias libres de colisiones. Los resultados obtenidos tras la validación del sistema se presentan con el simulador para conducción autónoma CARLA.This work presents the design of an obstacle avoidance system, employable in emergency situations. The solution proposes a multivariable Model Predictive Controller (MPC) to control the position, orientation and velocity of an autonomous vehicle. The controller considers the vehicle0s physical limitations, as well as the road morphology, to minimize any possible damage to the system and the loss of control of the vehicle. Its main constraints are based on the lateral tire forces, obtained from the implementation of a kinematic and dynamic plant model. The controller, initially following a predefined trajectory, will take the needed evasive actions in order to perform a collision-free trajectory, in case of an obstacle detection. The results obtained from the system validation are presented with CARLA open-source simulator for autonomous driving.Grado en Ingeniería en Electrónica y Automática Industria
    corecore