8 research outputs found

    Using the Microsoft Kinect to assess human bimanual coordination

    Get PDF
    Optical marker-based systems are the gold-standard for capturing three-dimensional (3D) human kinematics. However, these systems have various drawbacks including time consuming marker placement, soft tissue movement artifact, and are prohibitively expensive and non-portable. The Microsoft Kinect is an inexpensive, portable, depth camera that can be used to capture 3D human movement kinematics. Numerous investigations have assessed the Kinect\u27s ability to capture postural control and gait, but to date, no study has evaluated it\u27s capabilities for measuring spatiotemporal coordination. In order to investigate human coordination and coordination stability with the Kinect, a well-studied bimanual coordination paradigm (Kelso, 1984, Kelso; Scholz, & Schöner, 1986) was adapted. ^ Nineteen participants performed ten trials of coordinated hand movements in either in-phase or anti-phase patterns of coordination to the beat of a metronome which was incrementally sped up and slowed down. Continuous relative phase (CRP) and the standard deviation of CRP were used to assess coordination and coordination stability, respectively.^ Data from the Kinect were compared to a Vicon motion capture system using a mixed-model, repeated measures analysis of variance and intraclass correlation coefficients (2,1) (ICC(2,1)).^ Kinect significantly underestimated CRP for the the anti-phase coordination pattern (p \u3c.0001) and overestimated the in-phase pattern (p\u3c.0001). However, a high ICC value (r=.097) was found between the systems. For the standard deviation of CRP, the Kinect exhibited significantly higher variability than the Vicon (p \u3c .0001) but was able to distinguish significant differences between patterns of coordination with anti-phase variability being higher than in-phase (p \u3c .0001). Additionally, the Kinect was unable to accurately capture the structure of coordination stability for the anti-phase pattern. Finally, agreement was found between systems using the ICC (r=.37).^ In conclusion, the Kinect was unable to accurately capture mean CRP. However, the high ICC between the two systems is promising and the Kinect was able to distinguish between the coordination stability of in-phase and anti-phase coordination. However, the structure of variability as movement speed increased was dissimilar to the Vicon, particularly for the anti-phase pattern. Some aspects of coordination are nicely captured by the Kinect while others are not. Detecting differences between bimanual coordination patterns and the stability of those patterns can be achieved using the Kinect. However, researchers interested in the structure of coordination stability should exercise caution since poor agreement was found between systems

    Markerless Kinematics of Pediatric Manual Wheelchair Mobility

    Get PDF
    Pediatric manual wheelchair users face substantial risk of orthopaedic injury to the upper extremities, particularly the shoulders, during transition to wheelchair use and during growth and development. Propulsion strategy can influence mobility efficiency, activity participation, and quality of life. The current forefront of wheelchair biomechanics research includes translating findings from adult to pediatric populations, improving the quality and efficiency of care under constrained clinical funding, and understanding injury mechanisms and risk factors. Typically, clinicians evaluate wheelchair mobility using marker-based motion capture and instrumentation systems that are precise and accurate but also time-consuming, inconvenient, and expensive for repeated assessments. There is a substantial need for technology that evaluates and improves wheelchair mobility outside of the laboratory to provide better outcomes for wheelchair users, enhancing clinical data. Advancement in this area gives physical therapists better tools and the supporting research necessary to improve treatment efficacy, mobility, and quality of life in pediatric wheelchair users. This dissertation reports on research studies that evaluate the effect of physiotherapeutic training on manual wheelchair mobility. In particular, these studies (1) develop and characterize a novel markerless motion capture-musculoskeletal model systems interface for kinematic assessment of manual wheelchair propulsion biomechanics, (2) conduct a longitudinal investigation of pediatric manual wheelchair users undergoing intensive community-based therapy to determine predictors of kinematic response, and (3) evaluate propulsion pattern-dependent training efficacy and musculoskeletal behavior using visual biofeedback.Results of the research studies show that taking a systems approach to the kinematic interface produces an effective and reliable system for kinematic assessment and training of manual wheelchair propulsion. The studies also show that the therapeutic outcomes and orthopaedic injury risk of pediatric manual wheelchair users are significantly related to the propulsion pattern employed. Further, these subjects can change their propulsion pattern in response to therapy even in the absence of wheelchair-based training, and have pattern-dependent differences in joint kinematics, musculotendon excursion, and training response. Further clinical research in this area is suggested, with a focus on refining physiotherapeutic training strategies for pediatric manual wheelchair users to develop safer and more effective propulsion patterns

    The applications of autonomous systems to forestry management

    Get PDF
    Thesis (M.B.A.)--Massachusetts Institute of Technology, Sloan School of Management; and, (S.M.)--Massachusetts Institute of Technology, Engineering Systems Division; in conjunction with the Leaders for Global Operations Program at MIT, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 132-137).Public and private timberland owners continually search for new, cost effective methods to monitor and nurture their timber stand investments. Common management tasks include monitoring tree growth and tree health, estimating timber value and preventing wildfire. Many of these tasks are both manual and costly due to the vast areas and remote locations involved. Forestry experts predict that multi-vehicle autonomous systems may enable new, cost effective methods for performing various forest management tasks[1]. However, it remains unclear how these technologies may be applied, or where to focus development efforts. This research attempts to address this gap in literature, linking state-of-the-art research in forestry management science, robotics and autonomous systems, and product design and development. This thesis begins by reviewing existing forestry management practices and discussing a number of challenges identified through industry interviews and research. Modem product design methods are reviewed, and used to generate ideas for a number of new concept systems. Three design concepts are presented as detailed case studies. The data sets, methods and proposed systems discussed in this thesis may be used to guide future research in forestry management science, and drive further innovation in the emerging field of commercial and civilian autonomous systems. Key words: Forestry Management, Forestry Science, Robotics and Autonomous Systems, Unmanned Aerial Vehicles (UAV), Unmanned Aerial Systems (UAS), Product Design and Development, Light Detection and Ranging (LiDAR)by Joshua Przybylko.S.M.M.B.A

    To Live in a Safer World

    Get PDF
    The eighth scientific practical student`s, postgraduate’s and teacher’s LSNC conference

    To Live in a Safer World

    Get PDF
    The eighth scientific practical student`s, postgraduate’s and teacher’s LSNC conference

    Proceedings, MSVSCC 2011

    Get PDF
    Proceedings of the 5th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2011 at VMASC in Suffolk, Virginia. 186 pp
    corecore