535 research outputs found

    State-of-the-art in Power Line Communications: from the Applications to the Medium

    Get PDF
    In recent decades, power line communication has attracted considerable attention from the research community and industry, as well as from regulatory and standardization bodies. In this article we provide an overview of both narrowband and broadband systems, covering potential applications, regulatory and standardization efforts and recent research advancements in channel characterization, physical layer performance, medium access and higher layer specifications and evaluations. We also identify areas of current and further study that will enable the continued success of power line communication technology.Comment: 19 pages, 12 figures. Accepted for publication, IEEE Journal on Selected Areas in Communications. Special Issue on Power Line Communications and its Integration with the Networking Ecosystem. 201

    Broadband Power Line Communication in Railway Traction Lines: A Survey

    Get PDF
    Power line communication (PLC) is a technology that exploits existing electrical transmission and distribution networks as guiding structures for electromagnetic signal propagation. This facilitates low-rate data transmission for signaling and control operations. As the demand in terms of data rate has greatly increased in the last years, the attention paid to broadband PLC (BPLC) has also greatly increased. This concept also extended to railways as broadband traction power line communication (BTPLC), aiming to offer railway operators an alternative data network in areas where other technologies are lacking. However, BTPLC implementation faces challenges due to varying operating scenarios like urban, rural, and galleries. Hence, ensuring coverage and service continuity demands the suitable characterization of the communication channel. In this regard, the scientific literature, which is an indicator of the body of knowledge related to BTPLC systems, is definitely poor if compared to that addressed to BPLC systems installed on the electrical transmission and distribution network. The relative papers dealing with BTPLC systems and focusing on the characterization of the communication channel show some theoretical approaches and, rarely, measurements guidelines and experimental results. In addition, to the best of the author's knowledge, there are no surveys that comprehensively address these aspects. To compensate for this lack of information, a survey of the state of the art concerning BTPLC systems and the measurement methods that assist their installation, assessment, and maintenance is presented. The primary goal is to provide the interested readers with a thorough understanding of the matter and identify the current research gaps, in order to drive future research towards the most significant issues

    Impact Assessment of the Power Line Channel Characteristics in Real Topology

    Get PDF
    This paper investigates the effect of different parameters of power line topology on PLC system. Information about real radial power distribution network is used to define a PLC channel model in NS-3 simulator. The overhead LV distribution network was modelled in the extended bandwidth. Results of real measurements are linked with simulation results in order to see which parameters influence the communication significantly

    Field Trials for the Empirical Characterization of the Low Voltage Grid Access Impedance From 35 kHz to 500 kHz

    Get PDF
    The access impedance of low-voltage (LV) power networks is a major factor related to the performance of the narrow-band power line communications (NB-PLCs) and, in a wider sense, to electromagnetic compatibility (EMC) performance. Up to date, there is still a lack of knowledge about the frequency-dependent access impedance for frequencies above 9 kHz and up to 500 kHz, which is the band where the NB-PLC operates. The access impedance affects the transmission of the NB-PLC signal, and it determines the propagation of the non-intentional emissions that may disturb other electrical devices, including malfunctioning or reduced lifetime of equipment. This paper presents the results of field measurements of the LV access impedance up to 500 kHz in different scenarios, with measurement locations close to end users and near transformers. The results provide useful information to analyze the characteristics of the LV access impedance, including variation with frequency, ranges of values for different frequency bands, and analysis of specific phenomena. Moreover, the results reveal a diverse frequency-dependent behavior of the access impedance in different scenarios, depending on the grid topology, the number of end users (that is, number and type of connected loads), and the type of transformation center. Overall, the results of this paper offer a better understanding of the transmission of NB-PLC signals and EMC-related phenomena.The authors would like to thank Iberdrola for the availability and the collaboration of authorized staff for carrying out the field trials

    Measurement and Characterization of the Stationary Noise in Narrowband Power Line Communication

    Full text link
    Understanding the interference scenario in power lines network is a key step to characterize the power line communication (PLC) system. This paper focuses on the characterization and modelling of the stationary noise in Narrowband PLC. Measurement and analysis of noise is carried out in the Tunisian outdoor Low Voltage (LV) power line network in the frequency band below 500 kHz. Based on existing models and measurements results, a parametric model of noise is proposed; the model parameters are statistically studied.Comment: 11th International Conference on Networks & Communications (NeTCoM 2019

    Modeling Of Power Line Communication Channel For Automatic Meter Reading System With LDPC Codes

    Get PDF
    In this era of modernization, one of the promising emerging technologies is Power Line Communication (PLC) system. In previous research fields, modeling of PLC channel, mostly for indoor applications has been studied. However, the need to study that for outdoor applications, such as the Automatic Meter Reading (AMR) systems is also vital. Moreover, standardization bodies have considered the use of LDPC codes restricted for indoor systems. Thus, in this paper, not only we model the PLC channel based on AMR applications, but also, we apply LDPC coding scheme to the system. To accomplish the objectives, firstly, we model the PLC-AMR channel, which includes multipath phenomenon. Additionally, PLC noise, usually occurring in the channel, is modeled. The modulation technique applied is BPSK and the performance of the system with varying load impedances is compared. The coded system consists of irregular LDPC codes, with two different constructions of the Parity-Check matrix, namely that by Radford Neal and reduced size of DVBS2. The performances of respective systems are then compared. Using LDPC by Radford Neal, the performances are analyzed with varied code rates

    Microcontroller (8051-core) instruction susceptibility to intentional electromagnetic interference (IEMI)

    Get PDF
    Intentional Electromagnetic Interference (IEMI) is a rising threat to the electronic systems that are used and depended upon in everyday life of civil society. To address this threat, it is important to develop an understanding of what IEMI is and how it can be used to disrupt sophisticated electronic systems. By understanding IEMI and its disruptive effects, predictive models and protection standard can be developed for various types of electronic systems to address the threat. The focus of this thesis is to detail the experimental results involved when investigating the susceptibility of a single microcontroller instruction. A microcontroller represents a system on a chip and provides an ideal starting point for developing a predictive model for the upset effects that can be caused by an IEMI attack on a digital system. The microcontroller device used in the experiment is the ATMEL AT89LP2052, which is an 8051-core based microcontroller device that processes instructions in parallel. The experiment involves targeting specific moments within an instruction cycle, based on the parallel processing of the LP2052, to determine whether or not different actions within the cycle have different susceptibility levels to IEMI

    Electromagnetic compatibility of power line communication systems

    Get PDF
    The power system has been used for communication purposes for many decades, although it was mainly the power utility companies that used low bit rates for control and monitoring purposes. In the last ten years, however, the deregulation of the power and telecommunication markets has spurred the idea of using and commercializing the power networks for a range of new communication applications and services. The idea has been developed and implemented into both, narrowband and broadband systems, which are defined in terms of the operation frequency band. Depending on the frequency band, the systems over powerlines can be: Narrow-band. They use frequencies ranging from 3-148.5 kHz in Europe, with the upper frequency extending up to 500 kHz in the United States and Japan. In Europe, this frequency range is standardized by CENELEC Standard EN 50065. Broadband. The used frequency range is 1-30MHz; 1-15MHz for outdoor systems and 15-30MHz for indoor systems. In this frequency range, the standardization situation is still unclear and there exist no regulations. The developed applications and systems use different parts of the power network: medium voltage (MV) and low voltage (LV) cabling for outdoor applications and building cabling for indoor applications. These cables are designed and optimized for power transmission at frequencies of 50/60Hz and represent a hostile medium for transmissions at higher frequencies. This thesis concentrates on electromagnetic compatibility (EMC) aspects and some optimization issues of the broadband systems, currently known as Powerline Communications (PLC) or Broadband Power Line (BPL). The work presented here was preformed in the framework of the European project OPERA (http://www.ist-opera.org/). A short description of the project is given in Chapter 1. The second chapter presents the basis, introduction, description and state of the art of the topics of interest for this thesis. That chapter is divided into three parts. Each of these parts starts with a short introduction to the topic to be addressed. The introductions are intended for those not familiar with the topic at hand and they can be skipped by those already knowledgeable of it. The first part of Chapter 2 gives an overview and introduction to telecommunication issues relevant to the thesis, as well as the general technical specifications of the OPERA system. The second part deals with the transmission medium which, for the case of PLC, is the power system. The fundamentals and the different components of the PLC system are given there and the state of the art regarding the transmission channel is presented. The third part deals with the EMC and standardization issues related to the technology. The main contributions of the thesis are presented in chapters 3 to 7. The PLC technology distinguishes itself from other technologies in that it uses already existing, ubiquitous wiring, so that no new infrastructure is needed. On the other hand, using a channel designed originally for other purposes means that it is not optimized for the frequencies and applications of interest for broadband transmission. If PLC is to compete with other technologies, these problems have to be well understood and solved, so that the system can be optimized by taking into account the parameters and constrains of the already existing medium. Although the PLC system is being improved continuously, there are still concerns about emissions, immunity and standardization. These issues are important since PLC operates in an environment already populated by other services at the same frequencies, so that fair co-existence is needed. Moreover, the PLC modem has a combined mains and telecom port and, as a consequence, the standards for conducted emissions from those two types of ports are not directly applicable. In addition, the symmetry of the cables used is low and, therefore, emissions are higher than, for example, emissions from twisted pair cables used in xDSL. A good understanding of emissions and immunity in PLC systems is therefore of great importance for the optimization of the system and for EMC standardization to be based on objective technical criteria. Even if the basic phenomena are essentially the same as for any other wire transmission system, the complexity and variability of the topologies of existing structures is so large that simple, straightforward solutions are often not applicable. Emissions from the cabling are primarily due to the common mode signals. Part of the energy in this mode is injected by the imperfectly balanced output stages of the PLC modems themselves. In addition, the common mode appears at punctual imbalanced discontinuities and distributed asymmetry along the PLC signal path in the power cables. Chapter 3 presents the work performed to improve our understanding of the sources of the common-mode current and the parameters that influence its behavior, including related measurements and simulations. For the purpose of this study, a model house was built at the EPFL's test site. Different cablings were used to study the influence of different parameters on the behavior of the common-mode current since it is the main source for both types of emissions, conducted and radiated ones. The influence of different parameters such as the cable terminations, the symmetry of the termination, the height of the conductors above the ground, the presence of power outlets, switches, empty and occupied sockets and the topology, are analyzed. The data are also used to test two methods used to simulate the differential-to-common-mode conversion and the conducted emissions, namely the transmission line model and the full wave approach provided by the Method of Moments through the Numerical Electromagnetic Code (NEC). In Chapter 4, problems related to PLC immunity testing are treated. We show that the conversion of the differential mode to the common mode is coupled with the reverse conversion by reciprocity. Due to the low symmetry of PLC cabling, part of the injected common mode test signal is converted into a differential mode signal that interferes with the wanted signal at the input of the modem being tested. Depending on the actual symmetry of the Coupling-Decoupling Network (CDN), not specified in the standards, the immunity test may yield erroneous results due to the effect of this differential mode component. Working under the assumption that the CDN is built to exhibit a symmetry similar to that of PLC networks as inferred from its longitudinal conversion loss, we estimate the differential mode disturbance level that the modems should withstand from a narrowband interferer. The bit error rate induced by the presence of the disturbing differential mode current from the CDN is also estimated, for a total physical channel transmission rate of 200 Mbps, to be of the order of 1×10-5 to 5×10-5. Since these rates can be handled by error correcting coding and MAC ARQ procedures, it is concluded that the modems are not likely to suffer any severe performance degradation due to immunity testing if the CDN exhibits a symmetry similar to that of PLC networks. Simulating the complete PLC network or any significant part of it using numerical techniques such as the method of moments proves to be of limited practical use due to the fact that PLC networks extend over many wavelengths. The transmission line approximation, on the other hand, although more efficient and sufficiently accurate for differential mode calculations, is not directly applicable to simulate the EMC behavior since it neglects the antenna-mode currents that are significant contributors to the radiated emissions. Chapter 5 presents a novel approach to evaluate the antenna-mode currents using a modified transmission line theory, thus making this numerically efficient technique applicable to the estimation of emissions in PLC. An integral equation describing the antenna-mode currents along a two-wire transmission line is derived. It is further shown that, when the line cross-sectional dimensions are electrically small, the integral equation reduces to a pair of transmission line-like equations with equivalent line parameters (per-unit-length inductance and capacitance). The derived equations make it possible to compute the antenna mode currents using a traditional transmission line code with appropriate parameters. The derived equations are tested versus numerical results obtained using NEC and reasonably good agreement is found. Another important EMC issue related to PLC is the mitigation of emissions. Chapter 6 describes a technique that has been proposed to achieve a reduction of emissions associated with indoor PLC networks through the introduction of a 180° out-of-phase replica of the PLC signal into the unused neutral-ground circuit. A modification to this technique is proposed based on the selection of the appropriate amplitude and phase of the auxiliary signal, allowing a higher degree of field attenuation. A way of implementing this technique is proposed and studied, namely the integration of a required antenna into the PLC modems themselves. The measured fields very close to the modem allow the determination of the magnitude and phase of the compensation voltage. The proposed implementation should be used only to handle customer complaints, when emissions should be lowered at locations where PLC signals might cause unwanted interference or when additional capacity is required and it can be obtained through the gained signal to noise margin. Although, in principle, due to nonalignment of the wanted and the compensation field directions, minimizing one component of the field may result in an increase of the other components, we show that the application of the technique results in an overall average reduction of 10-20 dB of all the field components in the region of interest. In the same Chapter 6, we address the more general issue of the application of mitigation techniques' gained emissions margin to increase the overall throughput of PLC systems. We show that an increase in the signal power (made possible by the inclusion of mitigation techniques) leads to a considerable increase in the PLC channel capacity. Using a number of simplifications, we show that the capacity of the channel can indeed be increased by up to 66 Mbps for mitigation efficiencies of only 10 dB. We also present the results of laboratory measurements aimed at studying, under controlled conditions, different characteristics of notching in OPERA PLC modems, such as total and effective notch width, notch depth, maximum notch depth, etc. These measurements show that it is possible to obtain attenuations of up to about 45 dB for notches in all frequency bands, 10MHz, 20MHz and 30MHz. What differs for these three bands is the minimum number of carriers that need to be notched to obtain that maximum attenuation. This is an important point, since, to implement notches that have the required depth and width, one must know how many subcarriers to suppress and how deep these need to be reduced. High density PLC deployment requires the increase of overall system data rate. To achieve the higher data rates, frequency reuse in these systems is needed. In Chapter 7, we present the idea for using so-called blocking filters as a possible solution for a frequency reuse. Experimental data obtained on a real distribution network show that the use of blocking filters can, in certain cases, ensure high enough RF separation of the LV feeders belonging to the same substation. In some cases, even with the possibility to design and integrate effective blocking filters, the system needs to provide additional synchronization mechanisms for frequency reuse

    Coupling for Power Line Communications: A Survey

    Get PDF
    The advent of power line communication (PLC) for smart grids, vehicular communications, internet of things and data network access has recently gained ample interest in industry and academia. Due to the characteristics of electric power grids and regulatory constraints, the effectiveness of coupling between the power line and PLC transceivers has become a very important issue. Coupling devices used to inject or extract data communication signals into or from power lines are very important components of a PLC system. There is, however, an obvious gap in the literature for a detailed review of existing PLC couplers. In this paper, we present a comprehensive review of couplers, which are required for narrowband and broadband PLC transceivers. Prevailing issues that protract the design of couplers and consequently subtended the inventions of different types of couplers are clearly described. We also provide a useful classification of PLC couplers based on the type of physical couplings, voltage levels, frequency bandwidth, propagation modes and a number of connections. This survey will guide researchers, as well as designers alike, into a quicker resourcing when studying coupling in narrowband and broadband PLC systems
    • …
    corecore