22 research outputs found

    Design og styring av smarte robotsystemer for applikasjoner innen biovitenskap: biologisk prøvetaking og jordbærhøsting

    Get PDF
    This thesis aims to contribute knowledge to support fully automation in life-science applications, which includes design, development, control and integration of robotic systems for sample preparation and strawberry harvesting, and is divided into two parts. Part I shows the development of robotic systems for the preparation of fungal samples for Fourier transform infrared (FTIR) spectroscopy. The first step in this part developed a fully automated robot for homogenization of fungal samples using ultrasonication. The platform was constructed with a modified inexpensive 3D printer, equipped with a camera to distinguish sample wells and blank wells. Machine vision was also used to quantify the fungi homogenization process using model fitting, suggesting that homogeneity level to ultrasonication time can be well fitted with exponential decay equations. Moreover, a feedback control strategy was proposed that used the standard deviation of local homogeneity values to determine the ultrasonication termination time. The second step extended the first step to develop a fully automated robot for the whole process preparation of fungal samples for FTIR spectroscopy by adding a newly designed centrifuge and liquid-handling module for sample washing, concentration and spotting. The new system used machine vision with deep learning to identify the labware settings, which frees the users from inputting the labware information manually. Part II of the thesis deals with robotic strawberry harvesting. This part can be further divided into three stages. i) The first stage designed a novel cable-driven gripper with sensing capabilities, which has high tolerance to positional errors and can reduce picking time with a storage container. The gripper uses fingers to form a closed space that can open to capture a fruit and close to push the stem to the cutting area. Equipped with internal sensors, the gripper is able to control a robotic arm to correct for positional errors introduced by the vision system, improving the robustness. The gripper and a detection method based on color thresholding were integrated into a complete system for strawberry harvesting. ii) The second stage introduced the improvements and updates to the first stage where the main focus was to address the challenges in unstructured environment by introducing a light-adaptive color thresholding method for vision and a novel obstacle-separation algorithm for manipulation. At this stage, the new fully integrated strawberry-harvesting system with dual-manipulator was capable of picking strawberries continuously in polytunnels. The main scientific contribution of this stage is the novel obstacle-separation path-planning algorithm, which is fundamentally different from traditional path planning where obstacles are typically avoided. The algorithm uses the gripper to push aside surrounding obstacles from an entrance, thus clearing the way for it to swallow the target strawberry. Improvements were also made to the gripper, the arm, and the control. iii) The third stage improved the obstacle-separation method by introducing a zig-zag push for both horizontal and upward directions and a novel dragging operation to separate upper obstacles from the target. The zig-zag push can help the gripper capture a target since the generated shaking motion can break the static contact force between the target and obstacles. The dragging operation is able to address the issue of mis-capturing obstacles located above the target, in which the gripper drags the target to a place with fewer obstacles and then pushes back to move the obstacles aside for further detachment. The separation paths are determined by the number and distribution of obstacles based on the downsampled point cloud in the region of interest.Denne avhandlingen tar sikte på å bidra med kunnskap om automatisering og robotisering av applikasjoner innen livsvitenskap. Avhandlingen er todelt, og tar for seg design, utvikling, styring og integrering av robotsystemer for prøvetaking og jordbærhøsting. Del I omhandler utvikling av robotsystemer til bruk under forberedelse av sopprøver for Fourier-transform infrarød (FTIR) spektroskopi. I første stadium av denne delen ble det utviklet en helautomatisert robot for homogenisering av sopprøver ved bruk av ultralyd-sonikering. Plattformen ble konstruert ved å modifisere en billig 3D-printer og utstyre den med et kamera for å kunne skille prøvebrønner fra kontrollbrønner. Maskinsyn ble også tatt i bruk for å estimere soppens homogeniseringsprosess ved hjelp av matematisk modellering, noe som viste at homogenitetsnivået faller eksponensielt med tiden. Videre ble det foreslått en strategi for regulering i lukker sløyfe som brukte standardavviket for lokale homogenitetsverdier til å bestemme avslutningstidspunkt for sonikeringen. I neste stadium ble den første plattformen videreutviklet til en helautomatisert robot for hele prosessen som forbereder prøver av sopprøver for FTIR-spektroskopi. Dette ble gjort ved å legge til en nyutviklet sentrifuge- og væskehåndteringsmodul for vasking, konsentrering og spotting av prøver. Det nye systemet brukte maskinsyn med dyp læring for å identifisere innstillingene for laboratorieutstyr, noe som gjør at brukerne slipper å registrere innstillingene manuelt.Norwegian University of Life SciencespublishedVersio

    ABC: Adaptive, Biomimetic, Configurable Robots for Smart Farms - From Cereal Phenotyping to Soft Fruit Harvesting

    Get PDF
    Currently, numerous factors, such as demographics, migration patterns, and economics, are leading to the critical labour shortage in low-skilled and physically demanding parts of agriculture. Thus, robotics can be developed for the agricultural sector to address these shortages. This study aims to develop an adaptive, biomimetic, and configurable modular robotics architecture that can be applied to multiple tasks (e.g., phenotyping, cutting, and picking), various crop varieties (e.g., wheat, strawberry, and tomato) and growing conditions. These robotic solutions cover the entire perception–action–decision-making loop targeting the phenotyping of cereals and harvesting fruits in a natural environment. The primary contributions of this thesis are as follows. a) A high-throughput method for imaging field-grown wheat in three dimensions, along with an accompanying unsupervised measuring method for obtaining individual wheat spike data are presented. The unsupervised method analyses the 3D point cloud of each trial plot, containing hundreds of wheat spikes, and calculates the average size of the wheat spike and total spike volume per plot. Experimental results reveal that the proposed algorithm can effectively identify spikes from wheat crops and individual spikes. b) Unlike cereal, soft fruit is typically harvested by manual selection and picking. To enable robotic harvesting, the initial perception system uses conditional generative adversarial networks to identify ripe fruits using synthetic data. To determine whether the strawberry is surrounded by obstacles, a cluster complexity-based perception system is further developed to classify the harvesting complexity of ripe strawberries. c) Once the harvest-ready fruit is localised using point cloud data generated by a stereo camera, the platform’s action system can coordinate the arm to reach/cut the stem using the passive motion paradigm framework, as inspired by studies on neural control of movement in the brain. Results from field trials for strawberry detection, reaching/cutting the stem of the fruit with a mean error of less than 3 mm, and extension to analysing complex canopy structures/bimanual coordination (searching/picking) are presented. Although this thesis focuses on strawberry harvesting, ongoing research is heading toward adapting the architecture to other crops. The agricultural food industry remains a labour-intensive sector with a low margin, and cost- and time-efficiency business model. The concepts presented herein can serve as a reference for future agricultural robots that are adaptive, biomimetic, and configurable

    Agricultural Structures and Mechanization

    Get PDF
    In our globalized world, the need to produce quality and safe food has increased exponentially in recent decades to meet the growing demands of the world population. This expectation is being met by acting at multiple levels, but mainly through the introduction of new technologies in the agricultural and agri-food sectors. In this context, agricultural, livestock, agro-industrial buildings, and agrarian infrastructure are being built on the basis of a sophisticated design that integrates environmental, landscape, and occupational safety, new construction materials, new facilities, and mechanization with state-of-the-art automatic systems, using calculation models and computer programs. It is necessary to promote research and dissemination of results in the field of mechanization and agricultural structures, specifically with regard to farm building and rural landscape, land and water use and environment, power and machinery, information systems and precision farming, processing and post-harvest technology and logistics, energy and non-food production technology, systems engineering and management, and fruit and vegetable cultivation systems. This Special Issue focuses on the role that mechanization and agricultural structures play in the production of high-quality food and continuously over time. For this reason, it publishes highly interdisciplinary quality studies from disparate research fields including agriculture, engineering design, calculation and modeling, landscaping, environmentalism, and even ergonomics and occupational risk prevention

    Recent Innovations in Post-harvest Preservation and Protection of Agricultural Products

    Get PDF
    The global food supply chain relies on engineered systems, operational practices, and logistics to preserve, protect, process, and deliver agricultural crops along complex supply lines from farmers in low-, middle-, and high-income countries to markets around the world. Food and nutrition security is compromised by post-harvest losses (and food waste) that have been estimated to be as high as 20% in durable and 40% in perishable crops. Preserving crops using technologies and practices such as timely harvesting, evaporative cooling, cold and frozen storage, drying, and dehydrating, and protecting crops using technologies and practices such as damage-less handling, controlled and modified atmosphere storage, non-chemical heat and gas treatment, plant-derived protective films for individual fruits and vegetables, and improved packaging containers are critical to preserving nutrients, improving livelihoods, and realizing an efficient food system. This Special Issue aims to cover recent progress and innovations in science, technology, engineering, operational practices, and logistics related to post-harvest preservation and protection of durable and perishable agricultural crops. It seeks contributions that improve effectiveness, efficiency, reliability and sustainability in post-harvest handling of crops from field to end use that preserve product quality and result in foods and feeds which are nutritious and safe for human and animal consumption

    Agricultural Land-Use Change and Local Context: The Shenandoah-Cumberland Valley Apple-Growing District in the Eastern United States

    Get PDF
    Across the United States, the rural-urban fringe continues to be a place of dynamic land-use change. One area that has experienced a change in its agricultural base is the Shenandoah-Cumberland Valley Fruit District of Pennsylvania, Maryland, West Virginia, and Virginia. Since 1982, apple acreage in the Fruit District has declined by nearly 50 percent. Using a mail survey and personal interviews, this dissertation investigates the factors behind the Fruit District’s 25-year decline in apple acreage, the reasons why this decline has not been spatially uniform across the Fruit District, and the ways that growers have adapted to ensure the future economic viability of their orchard operations. Growers have stopped producing apples because of a myriad of reasons operating on different scales ranging from the macro and regional to the individual farm-level. Results indicate that factors such as an extended time period of low apple prices, competition from foreign and other U.S. apple-growing districts, and the lack of having a known successor for their farm upon retirement all play prominent roles in a grower’s decision to exit apple production. Grower decisions have also been impacted by locally-derived growth and development and the continued outward spread of the Washington D.C.-Baltimore metropolitan area. Negatively influencing reinvestment decisions, evidence of the presence of an impermanence syndrome was detected in some areas of the Fruit District. Many growers have responded to the economic challenges by making orchard management decisions to increase per acre tree densities and by shifting a higher percentage of their apple crop from the processing market to the fresh wholesale and direct-to-consumer markets

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    African Handbook of Climate Change Adaptation

    Get PDF
    This open access book discusses current thinking and presents the main issues and challenges associated with climate change in Africa. It introduces evidences from studies and projects which show how climate change adaptation is being - and may continue to be successfully implemented in African countries. Thanks to its scope and wide range of themes surrounding climate change, the ambition is that this book will be a lead publication on the topic, which may be regularly updated and hence capture further works. Climate change is a major global challenge. However, some geographical regions are more severly affected than others. One of these regions is the African continent. Due to a combination of unfavourable socio-economic and meteorological conditions, African countries are particularly vulnerable to climate change and its impacts. The recently released IPCC special report "Global Warming of 1.5º C" outlines the fact that keeping global warming by the level of 1.5º C is possible, but also suggested that an increase by 2º C could lead to crises with crops (agriculture fed by rain could drop by 50% in some African countries by 2020) and livestock production, could damage water supplies and pose an additonal threat to coastal areas. The 5th Assessment Report produced by IPCC predicts that wheat may disappear from Africa by 2080, and that maize— a staple—will fall significantly in southern Africa. Also, arid and semi-arid lands are likely to increase by up to 8%, with severe ramifications for livelihoods, poverty eradication and meeting the SDGs. Pursuing appropriate adaptation strategies is thus vital, in order to address the current and future challenges posed by a changing climate. It is against this background that the "African Handbook of Climate Change Adaptation" is being published. It contains papers prepared by scholars, representatives from social movements, practitioners and members of governmental agencies, undertaking research and/or executing climate change projects in Africa, and working with communities across the African continent. Encompassing over 100 contribtions from across Africa, it is the most comprehensive publication on climate change adaptation in Africa ever produced

    2015, UMaine News Press Releases

    Get PDF
    This is a catalog of press releases put out by the University of Maine Division of Marketing and Communications between January 2, 2015 and December 31, 2015

    2018, UMaine News Press Releases

    Get PDF
    This is a catalog of press releases put out by the University of Maine Division of Marketing and Communications between March 2, 2018 and December 31, 2018
    corecore