75 research outputs found

    Visualisations expérimentales et numériques des instabilités dans un éjecteur air -air supersonique

    Get PDF
    L'Ă©coulement qui prend place dans un Ă©jecteur supersonique met en jeu de nombreux processus complexes. Il peut ĂȘtre notamment le siĂšge d'instabilitĂ©s qui peuvent ĂȘtre dĂ©tectĂ©es et visualisĂ©es grĂące Ă  l'utilisation d'un Ă©clairage pulsĂ© lors de visualisations expĂ©rimentales de l'Ă©coulement et par des simulations CFD 3D instationnaires avec modĂ©lisation LES

    Analyse dynamique (CFD) et thermodynamique combinée dans un éjecteur supersonique en présence de gouttelettes

    Get PDF
    Abstract : This research project has as main objective to study in detail the internal flow features of single-phase supersonic ejectors for refrigeration applications, and the potential effects of injecting droplets on the performance of the device. To this end, a numerical approach is proposed which has been separated into two parts: First, a RANS modelling strategy for supersonic ejectors has been outlined combining the NIST real gas equations database [NIST, 2010] and the k − ω SST turbulence model in its low-Reynolds number formulation. The proposed approach agrees within 5% (resp. 2%) to the experimental entrainment ratio (resp. compression ratio) data of GarcĂ­a del Valle et al. [2014], properly captures the main internal flow features and has a reasonable computational cost. This RANS model has been applied in the analysis of a supersonic R134a ejector for refrigeration purposes, showing in particular that the secondary flow is entrained by momentum transfer through the mixing shear layer, that the distance between the primary nozzle exit and the shock-waves in the constant area section varies between 9 and 16 times the primary nozzle exit diameter and that the important axial character of the flow limits mixing of both inlet flows until after the shock train. Furthermore, an exergy analysis through the device shows that the mixing and the oblique shock waves are responsible for between 50% and 70% of the generated losses, the latter might be attenuated through droplet injection in the constant area section. Moreover, it has been shown that drop-in replacement of the working fluid with HFOs R1234yf and R1234ze(E) leads to mild changes in the ejector performance but reduces the HDRC system COP (resp. cooling capacity) in average by 7.1% (resp. 23.3%). Lastly, a comparison of the model predictions with the thermodynamic model of Galanis and Sorin [2016] for an air ejector, shows that as the working fluid approaches the ideal gas behaviour, the flow can be adimensionalized in terms of the secondary inlet temperature and pressure, the motive nozzle throat and the entrainment and compression ratios. In the second part, the influence of droplets has been studied from a local perspective by extending the RANS model to include a discrete phase, which affects the main flow through exchanges of momentum and thermal energy, and from a global perspective by building a thermodynamic model, which predicts the entrainment and limiting compression ratio given a fixed geometry and operating conditions. Both approaches present very good agreement in terms of p, T and M a internal profiles. Results for a supersonic ejector with R134a as baseline working fluid and droplets injected at the constant area section show that the flow structure has perceptible changes only at the highest injection fraction considered 10%, which induces boundary layer detachment, reduces the shock intensity by 8% and diminishes the superheat at the ejector outlet by 15 ◩C. Nonetheless, ejector performance metrics are severely affected as the limiting compression ratio, Elbel efficiency and exergy performance reduce respectively by 5%, 11% and 15%, due mainly to the additional entropy generated through droplet injection and mixing with the main flow.Ce projet de recherche a pour objectif principal d’étudier en dĂ©tail les caractĂ©ristiques de l’écoulement interne dans des Ă©jecteurs supersoniques monophasiques pour des applications en rĂ©frigĂ©ration, et les effets potentiels de l’injection de gouttelettes sur les performances de l’appareil. A cette fin, une approche numĂ©rique est proposĂ©e et a Ă©tĂ© sĂ©parĂ©e en deux parties. Tout d’abord, une stratĂ©gie de modĂ©lisation RANS pour les Ă©jecteurs supersoniques a Ă©tĂ© dĂ©crite en combinant la base de donnĂ©es pour les gaz rĂ©els NIST [NIST, 2010] et le modĂšle de turbulence k − ω SST dans sa formulation Ă  bas nombre de Reynolds. L’approche proposĂ©e prĂ©dit avec un accord d’environ 5% (resp. 2%) le rapport d’entraĂźnement (resp. rapport de compression) avec les donnĂ©es expĂ©rimentales de GarcĂ­a del Valle et al. [2014]. Il capte Ă©galement correctement les principales caractĂ©ristiques de l’écoulement interne et a un coĂ»t de calcul raisonnable. Ce modĂšle RANS a Ă©tĂ© appliquĂ© Ă  l’analyse d’un Ă©jecteur supersonique au R134a utilisĂ© Ă  des fins de rĂ©frigĂ©ration, montrant en particulier que le flux secondaire est entraĂźnĂ© par un transfert d’impulsion Ă  travers la couche de cisaillement, que la position de dĂ©part des ondes de choc dans la section constante se situe dans une plage de 9 Ă  16 fois le diamĂštre de sortie de la buse primaire et que l’important caractĂšre axial du flux limite le mĂ©lange des deux Ă©coulements d’entrĂ©e au-delĂ  du train d’ondes de choc. De plus, une analyse exergĂ©tique Ă  travers le dispositif montre que le mĂ©lange et les ondes de choc obliques sont responsables de 50% et 70% des pertes gĂ©nĂ©rĂ©es, ces derniĂšres pouvant ĂȘtre attĂ©nuĂ©es par injection de gouttelettes dans la section Ă  zone constante. De plus, il a Ă©tĂ© dĂ©montrĂ© que le remplacement direct du fluide de travail par les HFO R1234yf et R1234ze(E) entraĂźne de lĂ©gers changements dans la performance de l’éjecteur mais rĂ©duit en moyenne le COP du systĂšme HDRC (resp. la capacitĂ© de refroidissement) de 7.1% (resp. 23.3%). Enfin, une comparaison des prĂ©dictions du modĂšle avec le modĂšle thermodynamique de Galanis and Sorin [2016] pour un Ă©jecteur Ă  air montre que lorsque le fluide de travail se rapproche du comportement de gaz idĂ©al, l’écoulement peut ĂȘtre normalisĂ© en fonction de la tempĂ©rature et de la pression Ă  l’entrĂ©e secondaire, la gorge de la tuyĂšre principale et les rapports d’entraĂźnement et de compression. Dans la seconde partie, l’influence des gouttelettes a Ă©tĂ© Ă©tudiĂ©e d’un point de vue local en Ă©tendant le modĂšle RANS Ă  une phase discrĂšte qui affecte le flux principal par des Ă©changes de quantitĂ© de mouvement et d’énergie thermique, et d’un point de vue global en construisant un modĂšle thermodynamique qui prĂ©dit l’entraĂźnement et le rapport de compression limitant Ă©tant donnĂ© une gĂ©omĂ©trie fixe et les conditions de fonctionnement. Les deux approches prĂ©sentent un trĂšs bon accord en termes de profils internes de p, T et Ma. Les rĂ©sultats pour un Ă©jecteur supersonique au R134a comme fluide de base, avec des gouttelettes injectĂ©es Ă  mi-chemin dans la section de la zone constante, montrent que la structure d’écoulement dans cette rĂ©gion prĂ©sente des changements perceptibles seulement Ă  la fraction d’injection la plus Ă©levĂ©e, 10%, en diminuant l’intensitĂ© du choc de 8% et la surchauffe Ă  la sortie de l’éjecteur de 15 ◩C. NĂ©anmoins, la performance de l’éjecteur est sĂ©vĂšrement affectĂ©e vu que le rapport de compression, l’efficacitĂ© d’Elbel et le performance exergĂ©tique sont rĂ©duites respectivement de 5%, 11% et 15%, principalement en raison de l’entropie supplĂ©mentaire gĂ©nĂ©rĂ©e par l’injection de gouttelettes et le mĂ©lange avec le flux principal

    Ejector refrigeration: A comprehensive review

    Get PDF
    The increasing need for thermal comfort has led to a rapid increase in the use of cooling systems and, consequently, electricity demand for air-conditioning systems in buildings. Heat-driven ejector refrigeration systems appear to be a promising alternative to the traditional compressor-based refrigeration technologies for energy consumption reduction. This paper presents a comprehensive literature review on ejector refrigeration systems and working fluids. It deeply analyzes ejector technology and behavior, refrigerant properties and their influence over ejector performance and all of the ejector refrigeration technologies, with a focus on past, present and future trends. The review is structured in four parts. In the first part, ejector technology is described. In the second part, a detailed description of the refrigerant properties and their influence over ejector performance is presented. In the third part, a review focused on the main jet refrigeration cycles is proposed, and the ejector refrigeration systems are reported and categorized. Finally, an overview over all ejector technologies, the relationship among the working fluids and the ejector performance, with a focus on past, present and future trends, is presented. (C) 2015 Elsevier Ltd. All rights reserved

    Numerical Examination of Flow Field Characteristics and Fabri Choking of 2D Supersonic Ejectors

    Get PDF
    An automated computer simulation of the two-dimensional planar Cal Poly Supersonic Ejector test rig is developed. The purpose of the simulation is to identify the operating conditions which produce the saturated, Fabri choke and Fabri block aerodynamic flow patterns. The effect of primary to secondary stagnation pressure ratio on the efficiency of the ejector operation is measured using the entrainment ratio which is the secondary to primary mass flow ratio. The primary flow of the ejector is supersonic and the secondary (entrained) stream enters the ejector at various velocities at or below Mach 1. The primary and secondary streams are both composed of air. The primary plume boundary and properties are solved using the Method of Characteristics. The properties within the secondary stream are found using isentropic relations along with stagnation conditions and the shape of the primary plume. The solutions of the primary and secondary streams iterate on a pressure distribution of the secondary stream until a converged solution is attained. Viscous forces and thermo-chemical reactions are not considered. For the given geometry the saturated flow pattern is found to occur below stagnation pressure ratios of 74. The secondary flow of the ejector becomes blocked by the primary plume above pressure ratios of 230. The Fabri choke case exists between pressure ratios of 74 and 230, achieving optimal operation at the transition from saturated to Fabri choked flow, near the pressure ratio of 74. The case of optimal expansion yields an entrainment ratio of 0.17. The entrainment ratio results of the Cal Poly Supersonic Ejector simulation have an average error of 3.67% relative to experimental data. The accuracy of this inviscid simulation suggests ejector operation in this regime is governed by pressure gradient rather than viscous effects

    Advanced Numerical Simulations of Two-phase CO2 Ejectors

    Get PDF
    Over the last decade, Carbon dioxide (R744) a natural fluid has gained significant interest as a potential substitute for synthetic refrigerants commonly used in refrigeration, air-conditioning, and heat pump systems. Because of CO2 properties, such cycles generally operate in transcritical conditions. Moreover, their Coefficient Of Performance (COP) is relatively low compared to conventional cycles using synthetic refrigerants, because of higher entropy production of C02 along an isenthalpic expansion from a supercritical state to a subcritical state. Integrating a two-phase ejector, as an expansion device, is a promising technology to significantly improve the system efficiency, which would make CO2 adequate for HVAC applications. For example, in a CO2 ejector-expansion system, an ejector replaces the classical throttling valve to partly recover the throttling losses and provides a compression work reducing the compressor load. As a result, the COP and cooling capacity can be improved. However, many complex physical phenomena occur within a two-phase CO2 ejector and they are not yet fully understood, such as the turbulent mixing between the primary and the secondary flows, the flashing in the primary nozzle, shock waves-shear layer interactions, as well as phase-change processes. In this thesis, a numerical approach was developed by combining an efficient look-up table method for CO2 properties, density-based solvers, and characteristic Navier-Stokes boundary conditions (NSCBC) in order to correctly predict those complex flow features. This look-up table method allows to compute vapor, liquid, supercritical and two-phase properties of CO2 from 217K to 1000K and pressures up to 50MPa. It was coupled to three density-based solvers which allow to perform inviscid simulations, Reynolds-Averaged Navier-Stokes Simulations (RANS), and Large-Eddy Simulations (LES). Validations and verifications were performed for these three solvers. Then, Converging-diverging nozzles and ejectors were investigated by using RANS simulations. The developed solver was used to conduct an exergy tube analysis for a two-phase CO2 ejector and the sensibility of the method to the numerics was discussed. Finally, the compound-choking theory was extended for real gas flows and it was used to check the choking condition of the investigated ejector.L’objectif principal de ce travail de thĂšse est de dĂ©velopper une approche numĂ©rique complĂšte capable de simuler de maniĂšre prĂ©cise et rapide l’écoulement et les transferts exergĂ©tiques au sein d’éjecteurs transcritiques au CO2. Tout d’abord, une mĂ©thode tabulĂ©e basĂ©e sur l’équation d’état de Span-Wagner (SW) est dĂ©veloppĂ©e pour calculer les propriĂ©tĂ©s du CO2 [59] Ă  l’état de vapeur, liquide, supercritique et diphasique. Cette approche est prĂ©cise et efficace. Les Ă©carts relatifs maximaux par rapport Ă  l’équation d’état de SW sont de 0.23% et 1.2% pour la pression et la vitesse du son, respectivement et l’écart absolu maximal pour la tempĂ©rature est de 0.06 K. Dans le cas d’un tube Ă  choc 1D, cette approche s’avĂšre de 66.6 Ă  90 fois plus rapide que si on utilise l’équation d’état de SW. DeuxiĂšmement, cette mĂ©thode tabulĂ©e est couplĂ©e Ă  trois solveurs basĂ©s sur la densitĂ© : CLAWPACK pour les simulations d’écoulements inviscides, rhoCentralFoam pour des modĂ©lisations RANS (Reynolds-Average Navier-Stokes) essentiellement et AVBP pour des simulations des grandes Ă©chelles. DiffĂ©rents cas tests en 1D et 2D sont effectuĂ©s pour valider l’implĂ©mentation de la mĂ©thode dans ces trois solveurs. Ces cas incluent les problĂšmes du tube Ă  choc, de la dĂ©pressurisation et de la cavitation. TroisiĂšmement, afin de se rapprocher des Ă©jecteurs, les tuyĂšres convergentes-divergentes de Nakagawa et al. dans des conditions supercritiques et sous-critiques sont simulĂ©es Ă  l’aide des solveurs CLAWPACK et rhoCentralFoam. On constate que le modĂšle de turbulence a une influence significative sur les rĂ©sultats numĂ©riques, en particulier pour les tuyĂšres ayant un petit angle divergent. La tuyĂšre de Berana et al. est Ă©tudiĂ©e Ă©galement. Un choc Ă©pais est prĂ©dit, ce qui correspond bien aux mesures expĂ©rimentales. QuatriĂšmement, l’éjecteur de Li et al. est examinĂ© via le solveur rhoCentralFoam pour une condition on-design. L’analyse des tubes d’exergie proposĂ©e par Lamberts et al. pour un Ă©jecteur Ă  air est appliquĂ©e. La sensibilitĂ© de la mĂ©thode est discutĂ©e. La rĂ©solution des gradients a une influence significative sur les termes de destruction. Par consĂ©quent, le maillage et les schĂ©mas numĂ©riques peuvent affecter fortement l’analyse des tubes d’exergie. Enfin, la thĂ©orie de “compound-choking” est Ă©tendue Ă  l’écoulement diphasique au CO2. Elle prĂ©dit que l’écoulement est choquĂ© au dĂ©but de la section de mĂ©lange, tandis que selon la ligne sonique, l’écoulement est choquĂ© Ă  la fin de cette section. Finalement, des calculs RANS d’un Ă©jecteur complet sont comparĂ©es Ă  de nouvelles mesures faites sur le banc expĂ©rimental dĂ©veloppĂ© au Laboratoire des Technologies de l’Énergie (LTE, Shawinigan). Un bon accord est obtenu pour le profil de pression pariĂ©tale. Les tubes de transport de quantitĂ© de mouvement et d’énergie cinĂ©tique sont analysĂ©s et rĂ©vĂšlent une zone de recirculation Ă  l’entrĂ©e du flux secondaire. Cependant, la condition de fonctionnement n’est pas appropriĂ©e pour les cycles d’éjecteur Ă  expansion (rĂ©gime off-design)

    Theoretical and experimental performance of ejector refrigeration systems using retrograde refrigerants

    Get PDF
    L’amĂ©lioration des systĂ©mes de rĂ©frigĂ©ration par Ă©jecteur utilisant des fluides rĂ©trogrades a Ă©tĂ© ciblĂ©e. La nature de ces fluides a Ă©tĂ© expliquĂ©e ainsi que leurs principaux avantages et inconvĂ©nients. Un modĂšle numĂ©rique a Ă©tĂ© dĂ©veloppĂ© et validĂ© prĂ©liminairement avec des donnĂ©es expĂ©rimentales antĂ©rieures de rĂ©frigĂ©rants rĂ©guliers et rĂ©trogrades. La simulation de systĂšmes de rĂ©frigĂ©ration Ă  Ă©jecteur conventionnels et compression amĂ©liorĂ©s a Ă©tĂ© rĂ©alisĂ©e en utilisant un groupe sĂ©lectionnĂ© de rĂ©frigĂ©rants. La sĂ©rie des butĂšnes rĂ©trogrades a montrĂ© une performance supĂ©rieure parmi d’autres, en considĂ©rant deux cas d’étude : une application de climatisation et une de patinoire intĂ©rieure, pour lesquelles le rĂ©frigĂ©rant 1butĂšne a Ă©tĂ© sĂ©lectionnĂ©. L’évaluation Ă©conomique d’un systĂšme d’éjection Ă  compression amĂ©liorĂ© a rĂ©vĂ©lĂ© qu’il peut couvrir son investissement pendant le premier tiers de sa durĂ©e de vie, ce qui nĂ©cessite un coĂ»t annuel d’électricitĂ© de 57% de moins par rapport au cycle de compression conventionnel. Une expĂ©rience en rafale a Ă©tĂ© planifiĂ©e et mise en place en raison de sa flexibilitĂ©, sa simplicitĂ© et son expĂ©rimentation rapide, pour tester la performance de l’éjecteur conçu. L’éjecteur a Ă©tĂ© prĂ©alablement testĂ© avec de l’air, puis du 1butĂšne rĂ©frigĂ©rant. Les rĂ©sultats ont montrĂ© que le double Ă©tranglement et le comportement d’éjecteur bien connu sous diverses conditions opĂ©ratoires ont Ă©tĂ© pleinement atteints. Le dĂ©placement du tuyau convergent divergent primaire positivement vers la section constante augmente Ă  la fois les taux d’entraĂźnement et de compression jusqu’à une position optimale de + 4,5 cm, aprĂšs quoi le rapport d’entraĂźnement diminue. La validitĂ© des rĂ©sultats expĂ©rimentaux, acquis sur la base du principe de rafale, a Ă©tĂ© confirmĂ©e quand l’ordre de grandeur des termes instationnaires dans les Ă©quations gouvernant l’écoulement a Ă©tĂ© de 10^5 Ă  10^7 fois moins que les autres termes de gradient, montrant que l’hypothĂšse de l’état quasi-stationnaire est acceptable. Les valeurs estimĂ©es du COP du cycle d’éjecteur de base et du COP mĂ©canique variaient de 0.1 Ă  0.15 et de 9.2 Ă  13.7, respectivement, lorsque la tempĂ©rature d’évaporation variait entre -14.5oC et -6.1oC. L’évaluation numĂ©rique des rĂ©sultats expĂ©rimentaux a indiquĂ© que chaque Ă©jecteur peut avoir sa corrĂ©lation particuliĂšre de l’efficacitĂ© de mĂ©lange en fonction des conditions opĂ©rationnelles et ses caractĂ©ristiques gĂ©omĂ©triques. L’efficacitĂ© de mĂ©lange augmente lorsque le rapport de la pression d’écoulement primaire Ă  secondaire augmente, et diminue avec l’augmentation du rapport de la section d’éjecteur. La modĂ©lisation instationnaire a Ă©tĂ© comparĂ©e aux rĂ©sultats expĂ©rimentaux de rafale montrant un bon accord. Les valeurs du dĂ©bit massique secondaire pourraient ^etre calculĂ©es avec une erreur absolue infĂšrieure Ă  15%.Enhancement of ejector refrigeration systems using retrograde fluids was targeted. The nature of these fluids was explained, including their main advantages and disadvantages. A numerical model was developed and validated preliminarily with previous experimental data of regular and retrograde working fluids. Simulation of conventional and compression enhanced ejector refrigeration systems was performed using a selected group of refrigerants. The retrograde butene series showed superior performance among others, considering two case studies: air conditioning and indoor ice rink applications, where 1butene refrigerant was nominated. Economic evaluation of compression-enhanced ejector systems revealed that it can recover its investment during the first one third of its lifetime requiring 57% less annual cost of electricity compared to the basic vapour compression candidate. A blowdown experiment has been planned and set up owing to its flexibility, simplicity and fast experimentation, to test the performance of the designed ejector. The ejector was preliminary tested with air then 1butene refrigerant. Results showed that double choking and well-known ejector behaviour under various operating conditions have been fully achieved. Displacing the primary nozzle positively towards the constant area section increased both of the entrainment and compression ratios till an optimum position of +4.5 cm, after which the entrainment ratio diminished. Validity of the acquired experimental results, based on the blowdown principle, was confirmed when the order of magnitude of the unsteady terms in the flow governing equations turned to be 10^5 to 10^7 times less than other gradient terms. This proves that the quasi-steady state assumption is acceptable. The estimated basic ejector cycle COP and mechanical COP values ranged from 0.1 to 0.15, and from 9.2 to 13.7, respectively, when the evaporation temperature varied between -14.5oC and -6.1oC. Numerical assessment of the experimental results indicated that each ejector can have its particular correlation of the mixing efficiency as a function of the operating conditions and its characteristic geometrical features. The mixing efficiency increases as the ratio of the primary to secondary flow pressure increases, and decreases with the increase in the ejector area ratio. Transient modeling has been compared with the blowdown experimental results showing a good agreement. Values of the secondary mass flow rate could be calculated with an absolute error no more than 15%

    Characterization of Nonequilibrium Condensation of Supercritical Carbon Dioxide in a de Laval Nozzle

    Get PDF
    Carbon capture and storage could significantly reduce carbon dioxide (CO₂) emissions. One of the major limitations of this technology is the energy penalty for the compression of CO₂ to supercritical conditions. To reduce the power requirements, supercritical carbon dioxide compressors must operate near saturation where phase change effects are important. Nonequilibrium condensation can occur at the leading edge of the compressor, causing performance and stability issues. The characterization of the fluid at these conditions is vital to enable advanced compressor designs at enhanced efficiency levels but the analysis is challenging due to the lack of data on metastable fluid properties. In this paper, we assess the behavior and nucleation characteristics of high-pressure subcooled CO₂ during the expansion in a de Laval nozzle. The assessment is conducted with numerical calculations and corroborated by experimental measurements. The Wilson line is determined via optical measurements in the range of 41-82 bar. The state of the metastable fluid is characterized through pressure and density measurements, with the latter obtained in a first-of-its-kind laser interferometry setup. The inlet conditions of the nozzle are moved close to the critical point to allow for reduced margins to condensation. The analysis suggests that direct extrapolation using the Span and Wagner equation of state (S-W EOS) model yields results within 2% of the experimental data. The results are applied to define inlet conditions for a supercritical carbon dioxide compressor. Full-scale compressor experiments demonstrate that the reduced inlet temperature can decrease the shaft power input by 16%

    An understanding of ejector flow phenomena for waste heat driven cooling

    Get PDF
    In an attempt to reduce the dependence on fossil fuels, a variety of research initiatives has focused on increasing the efficiency of conventional energy systems. One such approach is to use waste heat recovery to reclaim energy that is typically lost in the form of dissipative heat. An example of such reclamation is the use of waste heat recovery systems that take low-temperature heat and deliver cooling in space-conditioning applications. In this work, an ejector-based chiller driven by waste heat will be studied from the system to component to sub-component levels, with a specific focus on the ejector. The ejector is a passive device used to compress refrigerants in waste heat driven heat pumps without the use of high grade electricity or wear-prone complex moving parts. With such ejectors, the electrical input for the overall system can be reduced or eliminated entirely under certain conditions, and package sizes can be significantly reduced, allowing for a cooling system that can operate in off-grid, mobile, or remote applications. The performance of this system, measured typically as a coefficient of performance, is primarily dependent on the performance of the ejector pump. This work uses analytical and numerical modeling techniques combined with flow visualization to determine the exact mechanisms of ejector operation, and makes suggestions for ejector performance improvement. Specifically, forcing the presence of two-phase flow has been suggested as a potential tool for performance enhancement. This study determines the effect of two-phase flow on momentum transfer characteristics inside the ejector while operating with refrigerants R134a and R245fa. It is found that reducing the superheat at motive nozzle inlet results in a 12-13% increase in COP with a 14-16 K decrease in driving waste heat temperature. The mechanisms of this improvement are found to be a combination of two effects: the choice of operating fluid (wet vs. dry) and the effect of two-phase flow on the effectiveness of momentum transfer. It is recommended that ejector-based chillers be operated such that the motive nozzle inlet is near saturation, and environmentally friendly dry fluids such as R245fa be used to improve performance. This work provides critical methods for ejector modeling and validation through visualization, as well as guidance on measures to improve ejector design with commensurate beneficial effects on cooling system COP.Ph.D
    • 

    corecore