343 research outputs found

    Robust nonlinear control of vectored thrust aircraft

    Get PDF
    An interdisciplinary program in robust control for nonlinear systems with applications to a variety of engineering problems is outlined. Major emphasis will be placed on flight control, with both experimental and analytical studies. This program builds on recent new results in control theory for stability, stabilization, robust stability, robust performance, synthesis, and model reduction in a unified framework using Linear Fractional Transformations (LFT's), Linear Matrix Inequalities (LMI's), and the structured singular value micron. Most of these new advances have been accomplished by the Caltech controls group independently or in collaboration with researchers in other institutions. These recent results offer a new and remarkably unified framework for all aspects of robust control, but what is particularly important for this program is that they also have important implications for system identification and control of nonlinear systems. This combines well with Caltech's expertise in nonlinear control theory, both in geometric methods and methods for systems with constraints and saturations

    Feedforward Control for Parameter-Varying Systems

    Get PDF

    Identifying Position-Dependent Mechanical Systems: A Modal Approach Applied to a Flexible Wafer Stage

    Get PDF
    Increasingly stringent performance requirements for motion control necessitate the use of increasingly detailed models of the system behavior. Motion systems inherently move, therefore, spatio-temporal models of the flexible dynamics are essential. In this paper, a two-step approach for the identification of the spatio-temporal behavior of mechanical systems is developed and applied to a lightweight prototype industrial wafer stage. The proposed approach exploits a modal modeling framework and combines recently developed powerful linear time invariant (LTI) identification tools with a spline-based mode-shape interpolation approach to estimate the spatial system behavior. The experimental results for the wafer stage application confirm the suitability of the proposed approach for the identification of complex position-dependent mechanical systems, and its potential for motion control performance improvements

    The Whirling Blade and the Steaming Cauldron

    Get PDF
    Ths dissertation applies recent theoretical developments in control to two practical examples. The first example is control of the primary circuit of a pressurized water nuclear reactor. This is an interesting example because the plant is complex and its dynamics vary greatly over the operating range of interest. The second example is a thrust-vectored ducted fan engine, a nonlinear flight control experiment at Caltech. The main part of this dissertation is the application of linear parameter-dependent control techniques to the examples. The synthesis technique is based on the solution of linear matrix inequalities (LMIs) and produces a controller whch acheves specified performance against the worst-case time variation of measurable parameters entering the plant in a linear fractional manner. Thus the plant can have widely varying dynamics over the operating range, a quality possessed by both examples. The controllers designed with these methods perform extremely well and are compared to H∞, gain-scheduled, and nonlinear controllers. Additionally, an in-depth examination of the model of the ducted fan is performed, including system identification. From this work, we proceed to apply various techniques to examine what they can tell us in the context of a practical example. The primary technique is LMI-based model validation. The contribution ths dissertation makes is to show that parameter-dependent control techniques can be applied with great effectiveness to practical applications. Moreover, the trade-off between modelling and controller performance is examined in some detail. Finally, we demonstrate the applicability of recent model validation techruques in practice, and discuss stabilizability issues

    Robustness Analysis and Reliable Flight Regime Estimation of an Integrated Resilent Control System for a Transport Aircraft

    Get PDF
    Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. As a part of the validation process, this paper describes an analysis method for determining a reliable flight regime in the flight envelope within which an integrated resilent control system can achieve the desired performance of tracking command signals and detecting additive faults in the presence of parameter uncertainty and unmodeled dynamics. To calculate a reliable flight regime, a structured singular value analysis method is applied to analyze the closed-loop system over the entire flight envelope. To use the structured singular value analysis method, a linear fractional transform (LFT) model of a transport aircraft longitudinal dynamics is developed over the flight envelope by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The developed LFT model can capture original nonlinear dynamics over the flight envelope with the ! block which contains key varying parameters: angle of attack and velocity, and real parameter uncertainty: aerodynamic coefficient uncertainty and moment of inertia uncertainty. Using the developed LFT model and a formal robustness analysis method, a reliable flight regime is calculated for a transport aircraft closed-loop system

    A Kernel-Based Identification Approach to LPV Feedforward: With Application to Motion Systems

    Full text link
    The increasing demands for motion control result in a situation where Linear Parameter-Varying (LPV) dynamics have to be taken into account. Inverse-model feedforward control for LPV motion systems is challenging, since the inverse of an LPV system is often dynamically dependent on the scheduling sequence. The aim of this paper is to develop an identification approach that directly identifies dynamically scheduled feedforward controllers for LPV motion systems from data. In this paper, the feedforward controller is parameterized in basis functions, similar to, e.g., mass-acceleration feedforward, and is identified by a kernel-based approach such that the parameter dependency for LPV motion systems is addressed. The resulting feedforward includes dynamic dependence and is learned accurately. The developed framework is validated on an example

    Comparison of Linear and Nonlinear MPC on Operator-In-the-Loop Overhead Cranes

    Get PDF
    Model Predictive Control has been proved to enhance the control performance of overhead cranes. However, in Operator-In-the-Loop (OIL) overhead cranes the trajectory of the payload strongly depends on the runtime decisions of the user and can not be predicted beforehand. Simple assumptions on the future references evolution have therefore to be made. In this paper we investigate the applicability of linear and nonlinear MPC strategies to the case of OIL overhead cranes, based on different assumptions on the future evolution of the length of the hoisting cable

    Beyond Simulation: Computer Aided Control System Design Using Equation-Based Object Oriented Modelling for the Next Decade

    Get PDF
    After 20 years since their birth, equation-oriented and object-oriented modelling techniques and tools are now mature, as far as solving simulation problems is concerned. Conversely, there is still much to be done in order to provide more direct support for the design of advanced, model-based control systems, starting from object-oriented plant models. Following a brief review of the current state of the art in this field, the paper presents some proposals for future developments: open model exchange formats, automatic model-order reduction techniques, automatic derivation of simplified transfer functions, automatic derivation of LFT models, automatic generation of inverse models for robotic systems, and support for nonlinear model predictive control
    • …
    corecore