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Abstract
After 20 years since their birth, equation-oriented and
object-oriented modelling techniques and tools are now
mature, as far as solving simulation problems is concerned.
Conversely, there is still much to be done in order to pro-
vide more direct support for the design of advanced, model-
based control systems, starting from object-oriented plant
models. Following a brief review of the current state of
the art in this field, the paper presents some proposals for
future developments: open model exchange formats, auto-
matic model-order reduction techniques, automatic deriva-
tion of simplified transfer functions, automatic derivation
of LFT models, automatic generation of inverse models for
robotic systems, and support for nonlinear model predictive
control.

Keywords Control system design, symbolic manipula-
tion, model order reduction, CACSD.

1. Introduction
Control system engineering requires to master the dynam-
ics of plants which are in general complex, interacting,
multi-physics and multi-disciplinary. This explains why
object-oriented modelling (OOM) and a-causal, equation-
based, object-oriented languages (EOOL) always had a
very strong connection with control system design. It is
by no means accidental that much pioneering work in the
OOM field was carried out within systems and control
departments and research groups: consider, for example,
the Omola language and the associated OmSim simula-
tion environment, developed at the Department of Auto-
matic Control of Lund Technical University [29, 30, 4], or
the MOSES environment developed at the Dipartimento di
Elettronica of Politecnico di Milano [26, 9]. During the ’90,
OOM was considered a very promising tool for Computer
Aided Control System Design (CACSD), and there was a
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lot of activity in this field, which eventually culminated in
the development of the Modelica Language [32].

At the beginning of that decade, papers appeared on the
subject in the IEEE’s Control Systems Magazine [31, 10],
which discussed the potential of OOM for control sys-
tem design. Reading those papers in retrospect shows that
some of the promises where actually met or even exceeded:
OOM is now a mature field, both from a theoretical side
and from the point of view of available simulation tools.
On the other hand, much work still has to be done on
two fronts. The first one, which has a more “political”
nature, is spreading the OOM culture among in the con-
trol engineering community, which is still largely domi-
nated by block-oriented modelling, and by the (mis)use of
Matlab/Simulink for physical systems modelling; this chal-
lenge is of paramount importance, but it out of the scope
of this paper. The second one, instead, is to develop tools
which allow to use EOOL models and tools not only for
simulation, but also for the design of advanced control sys-
tems. The availability of such tools is crucial in order to
narrow the gap between the large body of highly sophis-
ticated control theory developed during the last 20 years,
and the application of this theory to real-life cases, beyond
textbook-sized examples. This is the topic of the present
paper.

Given the background and the past experience of the
authors, the discussion might be biased towards the Mod-
elica language and related tools. However, strictly object-
oriented features such as inheritance, encapsulation and hi-
erarchical composition do not play any significant role in
the analysis and proposals made within this paper, which
essentially focuses on transformations of flattened models.
On the contrary, the discussion is relevant for any equation-
based modelling language, provided that it is a-causal and it
allows symbolic manipulation of the equations by the com-
piler.

The paper is structured as follows: Section 2 gives a
high-level view of the modelling activities required for con-
trol system design, while the following Section 3 discusses
how currently available tools can help the control engineer
in his/her task, with particular reference to Modelica tools.
Sections 4 and 5, which are the core of the paper, pro-
pose several research and development directions to sub-
stantially increase the level of support to the control en-
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gineer, willing to apply advanced control theory to real-life
problems. Section 6 concludes the paper with final remarks.

2. The role of mathematical models in
control system design

The design of control systems always requires some knowl-
edge about the dynamic behaviour of the plant under con-
trol. When the plant design is mature and well-known,
and the control system design is based on Proportional-
Integral-Derivative (PID) controllers, the latter is often
based on past experience and possibly on some empirical
measurements. In this case, which covers the vast majority
of installed industrial controllers, no (explicit) dynamical
modelling is needed.

On the other hand, in an increasing number of cases, the
performance of the control system is becoming a key com-
petitive factor for the success of innovative, high-tech sys-
tems. To name a few examples, consider high-performance
mechatronic systems (such as robots), vehicles enhanced
by active integrated stability, suspension, and braking con-
trol, aerospace system, advanced energy conversion sys-
tems. All these cases possess at least one of the following
features, which call for some kind of mathematical mod-
elling for the design of the control system:

• closed-loop performance critically depends on the dy-
namic behaviour, which is not well-known in advance;

• the system is complex, made of many closely interact-
ing subsystems, so that the behaviour of the whole sys-
tem is more than just the sum of its parts;

• advanced control systems are required to obtain com-
petitive performance, and these in turn depend on ex-
plicit mathematical models for their design;

• the system is very expensive and/or safety critical, re-
quiring extensive validation of good control perfor-
mance by simulation.

In most of these cases, two different classes of mathemati-
cal models are derived: compact models for control design
and detailed models for system simulation.

2.1 Compact models for control design
Models belonging to this class are directly used for con-
troller design, and are usually formulated in state-space
form:

ẋ(t) = f(x(t), u(t), p, t)
y(t) = g(x(t), u(t), p, t) (1)

where x is the vector of state variables, u is the vector of
system inputs (control variables and disturbances), y is the
vector of system outputs, p is the vector of parameters, and
t is the continuous time. A special case is that of linear,
time-invariant models (LTI), which can be described as:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) (2)

or, equivalently, as a transfer function:

G(s) = C(sI −A)−1B +D. (3)

In many cases, the dynamics of systems in the form (1) is
approximated by (2) via linearization around some equilib-
rium point. There is also a vast body of advanced control
techniques which are based on discrete-time models:

x(k + 1) = f(x(k), u(k), p, k)
y(k) = g(x(k), u(k), p, k) (4)

where the integer time step k usually corresponds to the
sampling time Ts of a digital control system. Many tech-
niques are available to transform (1) into (4).

These models must capture the fundamental dynamics
which is relevant for control system performance, while
remaining as simple as possible: most advanced control
design techniques start to become intractable for systems
of order greater than about ten. If the models are simple
enough, it is also sometimes possible to express the de-
pendence of key dynamic features (such as, e.g., the natu-
ral frequency and damping coefficient of an oscillating dy-
namics) from plant design data. This can be very important
to assess the impact of physical system design decisions
on controller performance. For example, if the natural fre-
quency of the first mode of oscillation limits the controller
bandwidth, and it is found that this frequency mainly de-
pends on the stiffness of a certain mechanical component,
then it might be reasonable to change the mechanical de-
sign of that component in order to improve the overall per-
formance.

In order to derive such simple models, it is usually
necessary to introduce many, sometimes drastic, simplify-
ing assumptions: all those phenomena that only marginally
affect the equilibrium values and/or the control-relevant
dynamics of the system are neglected. This activity re-
quires highly skilled and experienced modellers, with a
good knowledge of control design techniques, as well as
of domain-specific strategies for model simplification.

2.2 Detailed models for system simulation
At the other end of the modelling spectrum, detailed sim-
ulation models can be found. Although it is always neces-
sary to make reasonable modelling assumptions (a model
is always a focused and limited description of the physi-
cal world), simulation models can include a lot more detail
and second-order effects, since modern CPUs and simula-
tion environments can easily handle complex systems with
(tens of) thousands of variables. It is well-known that OOM
methodologies and EOOLs provide very good support for
the development of such models, thanks to equation-based
modelling, a-causal physical ports, aggregation and inher-
itance. If the OOM model does not contain discrete vari-
ables and events, then it is basically equivalent to the set of
DAEs:

F (x(t), ẋ(t), u(t), y(t), p, t) = 0 (5)

Many EOOLs and tools also allow to describe hybrid sys-
tems, with discrete variables, conditional equations or ex-
pressions, and events. For example, see [7, 8] and refer-
ences therein for hybrid system descriptions based on hy-
brid automata, or the Modelica language specification [41],
in particular Appendix C. Although hybrid system control
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is an interesting and emerging field, for the sake of concise-
ness this paper will focus on purely continuous-time phys-
ical models, with application to the design of continuous-
time or sampled-time control systems.

These larger, more detailed models play a double role,
with respect to those described in the previous sub-section.
On one hand they allow to check how good (or crude) the
compact models is, compared to a more detailed descrip-
tion, thus helping to develop good compact models. On
the other hand, they allow to check the closed-loop perfor-
mance of the controlled system, once a controller design is
available. It is in fact well-known that validating the closed-
loop performance using the same simplified model that was
used for control system design is not a sound practice; con-
versely, validation performed with a more detailed model is
usually deemed a good indicator of the control system per-
formance, whenever experimental validation is not possible
for some reason.

3. Overview of current CACSD practice
with EOOLs

As of today, the practising control engineer already gets
much support from EOOL-based tools for his/her control
system design activities.

3.1 Support to control system synthesis
A typical starting point for the design of the control system
is the analysis of the linearized dynamics of the plant,
around one (or more) steady-state operating conditions.
If the EOOL tool only supports simulation, then one can
run open-loop simulations of the plant model, subject to
step or to, e.g., pseudo-random binary sequence inputs,
and then reconstruct the dynamics by system identification
procedures.

A more direct approach, supported by many tools, is to
directly compute the A,B,C,D matrices of the linearized
system around specified equilibrium points, using symbolic
and/or numerical techniques. The result is usually a high-
order linear system, which can then be reduced to a low-
order system by standard techniques for linear model order
reduction, such as, e.g., balanced truncation.

A non-trivial issue with both approaches is the compu-
tation of the equilibrium point (what is sometimes called
DC analysis in the field of electrical circuit simulation). In
a typical setting, the desired steady-state values of the out-
puts ȳ are known, and the tool must solve the steady-state
initialization problem for the system (5):

F (x̄, 0, ū, ȳ, p, 0) = 0 (6)

in order to find out the corresponding equilibrium values
of the inputs ū and of the states x̄. This problem can be
numerically challenging, because it often requires solving
large systems of coupled nonlinear equations by iterative
methods, which might fail if the iteration variables are not
properly initialized. Currently available OOM tools (and,
in particular, Modelica tools) are still far from providing
general robust solutions to this problem. A sub-optimal
approach to find equilibrium points is to initialize system

(5) by giving tentative initial values to the state variables
(which makes the initialization problem easier to solve)
and then to simulate it until it reaches a steady state. If the
system is asymptotically stable and the inputs ū are known,
this is relatively straightforward; otherwise, it is necessary
to add suitable feedback controllers to drive the outputs to
the desired values ȳ and/or to stabilize the system. In both
cases, the simulation of this initialization transient might
fail for numerical reasons before reaching the steady state,
due to a bad choice of the initial states.

3.2 Closed-loop performance assessment by
simulation

Regardless of the actual design methodology, once the con-
troller has been set up, an OOM tool can be used to run
closed-loop simulations, including both the plant and the
controller model. Many OOM tools provide model export
facilities, which allow to connect an OO plant model with
only causal external connectors (actuator inputs and sensor
outputs) to a causal controller model in a causal simulation
environment. From a mathematical point of view, this cor-
responds to reformulating (5) in state space form (1), by
means of analytical and/or numerical transformations.

3.3 Development of simplified models
The object-oriented approach, and in particular replaceable
components, allows to define and manage families of mod-
els of the same plant with different levels of complexity,
by providing more or less detailed implementations of the
same abstract interfaces. For example, consider a heat ex-
changer model: the abstract interface has four fluid connec-
tors, two for the hot fluid inlet and outlet, and two for the
cold fluid inlet and outlet. The corresponding implementa-
tion might range from a very simple static model based on
log-mean temperatures, with a few algebraic equations, up
to a very detailed finite volume model using nonlinear fluid
properties and empirical correlations for heat transfer, and
with dozens of state variables and a few hundred algebraic
equations.

This feature of OOM allows to develop simulation mod-
els with different degrees of detail (and CPU load) through-
out the entire life of an engineering project, from prelimi-
nary design down to commissioning and personnel train-
ing, within a coherent framework. However, this activity is
based on manual work by the modeller, who needs to de-
velop the different implementations explicitly. Moreover, it
is often not easy to obtain compact models such as (1), be-
cause this requires to apply simplifications that may not fit
well the abstract component boundaries.

3.4 Generation of real-time simulation code
An important step in the development of embedded control
systems is Hardware-In-the-Loop simulation (HIL), where
the real control hardware is tested by connecting it to a real-
time simulator, instead of the real plant. Many currently
available EOOL-based tools support automatic generation
of efficient real time code starting from fairly large simu-
lation models in the form (5). A common strategy for this
purpose is to apply inline integration [12, 11] to (5), i.e. to
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substitute the derivatives with their approximation formu-
lae (e.g. Euler’s formula), and then solve the system using
all available numerical and symbolic techniques.

In order to provide real-time code which is fast enough,
it is usually important to reduce the model complexity with
respect to off-line simulation models - this can be done by
following the approach sketched in Section 3.3.

3.5 Optimization
Some EOOL and tools support some kind of optimization,
which might be useful for control system design. For ex-
ample, the gPROMS language [6] has allowed to declare
mixed-integer nonlinear optimization problems for a long
time. More recently, extensions to the Modelica language
were proposed to formulate optimization problems [2].

3.6 Future perspectives
It is the authors’ view that EOOL-based tools should sup-
port advanced control system design problems in a much
more direct way, by making extensive use of control-
oriented symbolic manipulation techniques. Ideally, it
would be good if the control engineer could develop a de-
tailed simulation model by using object oriented tools and
re-usable model libraries, then automatically obtain sim-
plified, compact models which are already formulated as
required by the specific control technique. The availability
of such tools might promote the application of advanced,
model-based techniques that are currently limited by the
model development process.

Being aware that this is a very long-term goal, which
might even require some kind of artificial intelligence,
some first steps in this direction are discussed in the fol-
lowing sections, with particular reference to the Modelica
language and Modelica compliant tools.

4. Basic enabling technologies
The advanced, control-oriented features of future EOOL
tools need some basic enabling technologies and method-
ologies to build upon. These are briefly discussed in this
section.

4.1 Open standards for model and data exchange
Advanced applications of OOM to control system design
will most likely require to use different specialized tools
in a coordinated fashion, rather than relying on one-fits-
all comprehensive software tools. In fact, during the last
decades, the number and the quality of simulation, design
and analysis tools has increased enormously: there is plenty
of open and closed source software for the simulation of
physical systems, control synthesis, data analysis, test, val-
idation, personnel training via a graphical user interface,
etc. Some of these tools are developed for specific pur-
poses, while other are more general in scope (e.g., sym-
bolic manipulation tools, differential equation solvers, data
analysis packages). Unfortunately, all this software devel-
opment activity did not follow any standardisation process,
leading to a great diversity in the representation of the in-
formation. The definition of standard interfaces will be use-
ful for the information exchange between different applica-

tions; as a consequence, by providing a representation for
all the stages of the model manipulation (starting from the
translation, going to the flattening, to the model order re-
duction and so forth) it will be possible to make all the ap-
plications interact at different levels, thus combining posi-
tive effects from different applications and obtaining better
results.

Exchange formats for model equations and for simula-
tion data should probably be based on the XML language,
for several reasons:

• the tree structure of XML documents easily allows to
represent complex data structures, including symbolic
representations of equations;

• XML documents can be read with standard text-editors
and browsers, thus avoiding all the problem usually
raised by obscure, ad-hoc binary formats;

• there exists a large base of software (open source and
commercial) for the handling of XML files;

• by re-using this existing software, it is quite straight-
forward to translate an XML document representing a
mathematical model into any other equation-based lan-
guage, and vice-versa;

• binary XML formats can be used to reduce the verbosity
of XML documents and the cost of parsing them;

• there exist some languages (e.g. DTD and XSD) to
formally specify the structure of the information the
XML file must contain.

Such standard interfaces for flattened Modelica models
and their corresponding simulation data are currently being
investigated at Politecnico di Milano using the OpenMod-
elica compiler [16, 1] as a host EOOL environment, and
symbolic manipulation tools such as Mathematica, Maple
or Maxima as target environments. If the model is purely
continuous-time, i. e., it is equivalent to the DAE (5), then
MathML [42] on one side, and ModelicaXML [35] on the
other side might constitute good starting points. If hybrid
models are considered, one may consider all the languages
developed for the description of hybrid automata in re-
cent years [8], even though the class of hybrid systems
which can be described in Modelica with when statements
is larger than just hybrid automata.

4.2 Model Order Reduction
Another key enabling technology is represented by mixed
numerical-symbolic Model Order Reduction (MOR) tech-
niques. These have already been successfully applied to the
analysis of electrical circuit models, which are based on
DAE models such as (5), see [40, 17], and are currently
available in commercial tools such as Analog Insydes [13].
The MOR strategies are based on the clever application of
three fundamental steps:

• specify an allowed error bound, e.g. in terms of per-
centage error of certain steady-state output values cor-
responding to given constant inputs, or in terms of max-
imum deviation of some outputs from a reference tra-
jectory obtained with given input signals, or in terms
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of maximum error of small-signal frequency responses
around a certain operating point and within a given fre-
quency interval;

• derive a ranking of all terms in all equations, expressing
how much each term has a significant effect on the
required modelling accuracy;

• remove all terms in ascending order, until the specified
error bound is reached.

Other MOR techniques exist to reduce large linear sys-
tems, based on concepts such as modal analysis and pro-
jection methods; see [38] for a comprehensive overview.

The application of such MOR tools and techniques, pos-
sibly with extended functionality and algorithms, looks
very promising not only for the simplification of electrical
circuit models, but also for the order reduction of generic,
nonlinear DAE models, obtained from the flattening of
generic EOOL models. This kind of techniques should al-
low to automatically obtain approximated compact models
such as (1), starting from much more detailed simulation
models, by formulating specific approximation bounds in
control-relevant terms (e.g., percentage errors of steady-
state output values, norm-bounded additive or multiplica-
tive errors of weighted transfer functions, or `∞-norm er-
rors of output transients in response to specified input sig-
nals). Given the ever-increasing computation power that
can be expected by Moore’s law, the future of these tech-
niques for CACSD applications definitely appears bright.

4.3 Reliable steady-state initialization and static
model inversion

A reliable support to the control engineer’s activity requires
to improve the techniques to solve the steady-state equa-
tions (6), which are usually the starting point for any kind
of analysis, including MOR. As pointed out earlier, solv-
ing (6) requires iterative methods which might fail if not
properly initialized. Troubleshooting can be very frustrat-
ing and time-consuming, and calls for experts of both sim-
ulation methods and domain-specific models. This is not
acceptable in the envisioned framework, which is based on
automatic manipulation by EOOL tools.

One option, which is currently being investigated at Po-
litecnico, is to introduce extensions to the Modelica lan-
guage to support homotopy methods, in a way similar to
the approach followed by the SPICE circuit simulation pro-
gram. The basic idea is that each model has two versions:
the “easy” one, for which it is easier to find a steady-
state solutions, and the “true” version, which is the model
to be actually used for simulation. The two models share
the same variables, but use different equations. The system
model obtained by the aggregation of the “easy” models is
represented by

Fe(x, ẋ, y, u, p, t) = 0, (7)

while the aggregation of the “true” models leads to

Ft(x, ẋ, y, u, p, t) = 0, (8)

The idea is now to first solve the initialization problem
for (7), which should not give rise to significant numerical

problems. The solution to this simplified problem consti-
tutes the first guess for a new problem:

(1−α)Fe(x̄, 0, ū, ȳ, p, 0) +αFt(x̄, 0, ū, ȳ, p, 0) = 0, (9)

which will be solved by varying α from 0 to 1 in small
steps, eventually finding the steady-state solution of system
(8). In general, this approach should help to reduce (and
hopefully eliminate) the need to manually set initial guess
values for iteration variables of initialization problems.

5. New functionalities for control system
design

5.1 Simplified symbolic transfer functions
In many interesting cases, the performance of the control
system is limited by the dynamic behaviour of the con-
trolled plant. For example, poorly damped oscillations can
limit the bandwidth of motion control systems, as well as
non-minimum phase behaviour. The control engineer can
gain a lot of useful insight from approximated transfer
functions, where the dependence of the critical dynamic
features from a few physical parameters is clearly visible.
For instance, the natural frequency of a pair of complex
poles in a mechanical system might depend mainly on the
stiffness and on the mass of a certain physical component,
or, the time constant of a right-half-plan zero in a fluid sys-
tem might depend on the fluid velocity in a certain point.

This is a first case where automatic MOR techniques
could prove extremely useful. Ideally, the user should spec-
ify the steady-state operating point, the relevant inputs and
outputs, and some frequency-weighted error bounds, and
get low-order approximated transfer functions of the lin-
earized system, with approximated but explicit dependence
of the transfer function features (gains, poles and zeros)
from the physical model parameters. A suitable combina-
tion of EOOL tools (equipped with model import/export
interfaces) with existing MOR tools like Analog Insydes
[13] could provide very interesting results in this direction
without too much effort.

5.2 Automatic derivation of LFT models
Once a model has been reduced to a low-order state-space
form by the combined application of symbolic MOR tech-
niques and clever model simplifications as explained in
Section 3.3, it might be useful to automatically bring them
in the form required for advanced control system design,
using symbolic manipulation tools. Modern control theory
provides methods and tools in order to deal with design
problems in which stability and performance have to be
guaranteed also in the presence of model uncertainty, both
for regulation around a specified operating point and for
gain scheduled control system design.

Most of the existing control design literature assumes
that the plant model is given in the form of a Linear Frac-
tional Transformation (LFT) (see, e.g., [46, 27]), a mod-
elling paradigm which is currently an active research topic
in the control engineering and system identification com-
munities. In the robust control framework LFT models con-
sist of a feedback interconnection between a nominal LTI
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plant and a (usually norm-bounded) operator which rep-
resents model uncertainties, e. g., poorly known or time-
varying parameters, nonlinearities, etc. A generic such LFT
interconnection is depicted in Figure 1, where the nominal
plant is denoted with P and the uncertainty block is de-
noted with ∆. Note that this representation is extremely
general, and by no means limited to uncertain LTI systems;
in fact, it is possible to describe any nonlinear DAE system
by putting all the nonlinear functions in the ∆ block and
by providing an LTI model with direct feedthrough terms
to describe the algebraic equations.

LFT models can be used for the design of robust and
gain scheduling controllers, but they can also serve as a
basis for structured model identification techniques, where
the uncertain parameters that appear in the feedback blocks
are estimated based on input/output data sequences.

The process of extracting uncertain parameters from the
design model of the system to be controlled is a highly
complex one. Symbolic techniques play a very important
role in this process: the main use for such techniques is
to find, via suitable pre-processing steps, equivalent rep-
resentations of rationally dependent parametric matrices,
which automatically lead to lower-order LFT representa-
tions. Tools already exist to perform this task [27].

The LFT modelling problem in its simplest form is as-
sociated with the problem of designing a controller for op-
eration near a nominal operating point for the system. The
problem is then formulated on a local linearised represen-
tation of the plant to be controlled and is familiarly termed
“pulling out the ∆s”, i.e., it consists of manually or sym-
bolically manipulating the linearised equations in order to
separate the nominal part of the plant from the uncertain
one, arranging them in a suitable feedback interconnection.
This reformulation of the plant model lies at the vary basis
of modern robust control theory and is currently supported
by a number of different symbolic manipulation tools. A
recent overview of the state-of-the-art in this research area
can be found in [18]. As an example, consider a time-
invariant, nonlinear state-space system in the form

ẋ(t) = f(x(t), u(t), p)
y(t) = g(x(t), u(t), p), (10)

where p denotes a vector of uncertain parameters, and as-
sume that the equilibrium condition x̄, ū, ȳ, which solves
the steady-state equations

0 = f(x̄, ū, p)
ȳ = g(x̄, ū, p) (11)

P

∆

u
u
u
u

u y

Figure 1. Block diagram of the typical LFT interconnec-
tion adopted in the robust control framework.

is available. Defining now the deviation variables

δx(t) = x(t)− x̄ (12)
δu(t) = u(t)− ū (13)
δy(t) = y(t)− ȳ, (14)

it is possible to approximate the dynamics of (10) with a
the following linear, parameter-dependent system

˙δx(t) = A(p)δx+B(p)δu
δy(t) = C(p)δx+D(p)δu

, (15)

where the four matricesA,B,C,D are the Jacobians of the
two functions f and g:

A(p) =
∂f

∂x
, B(p) = ∂f

∂u

C(p) =
∂g

∂x
, D(p) = ∂g

∂u .

Under suitable assumptions (such as that the state space
matrices are polynomial or rational functions of the ele-
ments of p, see, e.g., [46]) it is possible to transform the
system description (15) into an LFT representation (see,
again, Figure 1). As mentioned previously, converting (15)
into an LFT with a ∆ block of minimum dimension is a
non-trivial symbolic manipulation problem.

An even more challenging formulation of the LFT mod-
elling problem is the one of simultaneously representing in
LFT form all the linearisations of interest for control pur-
poses of the given nonlinear plant. Indeed, in many control
engineering applications a single control system must be
designed to guarantee the satisfactory closed-loop opera-
tion of a given plant in many different operating conditions
in the presence of parametric and possibly non parametric
uncertainty. The gain scheduling approach to the problem,
which has been part of the engineering practice for decades,
can be roughly summarised as follows: find one or more
scheduling variables α which can completely parametrise
the operating space of interest (e.g., the flight envelope in
the case of aircraft control) for the system to be controlled;
define a parametric family of linearised models for the plant
associated with the set of operating points of interest; fi-
nally, design a parametric controller which can both en-
sure the desired control objectives in each operating point
and an acceptable behaviour during (slow) transients be-
tween one operating condition and the other. Many design
techniques are now available for this problem (see, e.g.,
[5, 22, 37]), which can be reliably solved, provided that
a suitable model in parameter-dependent form has been de-
rived for the system to be controlled. The goal here would
be to arrive at a representation of the dynamics of the non-
linear system in the form depicted in Figure 2, which is
usually denoted as an LPV-LFT system, where the LPV
acronym stands for Linear Parameter-Varying. The model
structure now includes two feedback interconnections: the
block ∆(p) takes into account the presence of the uncertain
parameter vector p, while the block Θ(α) models the effect
of the varying operating point, parametrised by the vector
of time-varying parameters α.
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The state-of-the-art of modelling for gain scheduling
can be briefly summarised by defining two classes of mod-
elling approaches: analytical methods based on the avail-
ability of (relatively) reliable nonlinear equations for the
dynamics of the plant, from which suitable control-oriented
representations can be derived (see, e.g., [28] and the ref-
erences therein); experimental methods based entirely on
identification, i.e., aiming at deriving LPV models for the
plant directly from input/output data (see, among many
others, [21, 45, 23]). The methods belonging to the first
class aim at developing LPV models for the plant to be
controlled by resorting to, broadly speaking, suitable ex-
tensions of the familiar notion of linearisation, developed
in order to take into account off-equilibrium operation of
the system. As far as experimental methods are concerned,
most LPV identification techniques are based on the as-
sumption that the identification procedure can rely on one
global identification experiment in which both the control
input and the scheduling variables are (persistently) excited
in a simultaneous way. This assumption may not be a rea-
sonable one in many applications, in which it would be
desirable to try and derive a parameter-dependent model
on the basis of local experiments only, i.e., experiments in
which the scheduling variable is held constant and only the
control input is excited. Such a viewpoint has been consid-
ered in [43, 34, 23], where numerical procedures for the
construction of parametric models for gain scheduling on
the basis of local experiments and for the interpolation of
local controllers have been proposed.

To our best knowledge the only documented attempt at
deriving control-oriented LFT models automatically from
a nonlinear simulator is presented in [44], where the fo-
cus was on the automatic generation of LFT models for
aerospace applications. Much remains to be done. An
EOOL-based CACSD tool dealing with the generation of
control-oriented LFT models should allow to specify some
error bounds for the system approximation (with respect to
steady-state, transient, and frequency response), the choice
of input, output and scheduling variables, and the choice of
parameters to include in the LFT representation. Based on
that, it should be able to automatically compute the struc-
ture of the interconnections defined in Figures 1 and 2 for
the robust and gain-scheduling control design problems,
respectively, the state-space matrices of the nominal part P
of the model (either as analytical expressions, if possible,
or at least as algorithms for their computation) and analyt-

P

Θ(α)

∆(p)

u
u
u
u

u y

Figure 2. Block diagram of the typical LFT interconnec-
tion adopted in the robust LPV control framework.

ical or algorithmic representations of the feedback blocks
Θ(α) and ∆(p). Finally, it is apparent from the short liter-
ature review presented above that currently only physical
and black-box modelling methods are available, while no
general purpose CACSD tools capable of combining first
principles models and experimental data in a single control-
oriented model seem to exist. The convergence of the two
modelling approaches both in terms of methods and tools
would be a very desirable outcome of the research in this
field.

5.3 Automatic computation of inverse models for
robotic systems

The design of controllers for non-redundant robotic ma-
nipulators with N degrees of freedom usually starts from
the equations of motion obtained from the Euler-Lagrange
equations [39]:

B(q)q̈ +H(q, q̇)q̇ + g(q) = τ (16)
yp = K(q) (17)

yv =
∂K

∂q
q̇, (18)

where q is the N -element vector of Lagrangian coordi-
nates, which usually correspond to the rotation angles of
the actuator motors, q̇ is the vector of the corresponding
generalized velocities, yp describes the position and ori-
entation vector of the end effector, yv contains the corre-
sponding generalized velocities, τ is the vector of general-
ized applied forces corresponding to each degree of free-
dom (usually the torques applied by rotating actuators),
B(q) is the inertia matrix,H(q, q̇) is the matrix correspond-
ing to the centripetal, Coriolis, and viscous friction forces,
while the vector g(q) accounts for the effects of the gravi-
tational field; all vectors have dimension N .

The classical approach to write (16) requires to compute
the so-called direct kinematics (DK), i.e. how the values of
q and q̇ translate into the position and motion of the robot’s
end effector, then to compute the Lagrange function, i.e. the
difference between kinetic and potential energy, and apply
the Euler-Lagrange equations. This can be done manually,
or using one of the specialized tools available for this task.
Equations (16)-(18) can then be used as a basis for both
controller design and system simulation.

Within an OOM approach, it is possible to save much
time by developing an object-oriented model using an
EOOL, e.g. using the Modelica MultiBody library [33].
Due to the kinematic constraints imposed by the joints, the
original flattened model corresponds to an index-3 DAE,

F (x, ẋ, y, u) = 0, (19)

which is mathematically equivalent to the Lagrange model
(16)-(18).

Currently available Modelica tools tackle the prob-
lem by applying specialized algorithms, which exploit the
knowledge of the topology of the kinematic chain, as well
as standard techniques such as BLT partitioning, tearing,
dummy derivatives and symbolic solution of equations
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Figure 3. Block diagram of computed torque control

[33]. From a conceptual point of view, a change of state
variables x allows to transform (19) into an index-1 system

F1(x, ẋ, y, u) = 0, (20)

where

x =
[
xp

xv

]
=

[
q
q̇

]
, y =

[
yp

yv

]
, u = τ. (21)

Eventually, efficient procedures are produced to solve (20)
for ẋ and y given x and u, thus actually bringing the system
into state-space form:

ẋ = f(x, u)
y = g(x, u). (22)

This formulation can be used to solve simulation problems,
by linking it to any ODE/DAE solver. However, there are
several other interesting things that could be done with
(20), from a control engineer’s perspective.

Robot trajectories are originally defined in terms of
end effector coordinates as functions of time y0

p(t). In or-
der to obtain the corresponding reference trajectories in
Lagrangian coordinates for the low-level robot joint con-
trollers, (17)-(18) must be solved for q, q̇, thus computing
the so-called inverse kinematics (IK):

q0 = K−1(y0
p) (23)

q̇0 =
(
∂K

∂q

)−1

y0
v ; (24)

note that the Jacobian of K(q) is also needed to solve
(23), since analytical inverses cannot usually be obtained.
Furthermore, two interesting approaches to model-based
robot control are based on suitable manipulations of eq.
(16): the pre-computed torque approach and the inverse
dynamics approach [39].

The pre-computed torque approach is a feed-forward
compensation scheme, where the theoretical torque re-
quired to follow the reference trajectory is directly fed to
the torque actuators (see Fig. 3) in order to obtain a good
dynamic response to the set point y0

p. The CT block per-
forms this task by solving (16) for τ , given the reference
trajectory and its derivatives:

τ = B(q0)q̈0 +H(q0, q̇0)q̇0 + g(q0). (25)

A feedback controller (FC) is also included to deal with
uncertainties and disturbances.

The inverse dynamics approach is a feedback compen-
sation scheme, that uses the model in order to transform

IK

u
u
u
u

DI Rv
q
q.

yp τFC
q0

Figure 4. Block diagram of inverse dynamics control

the non-linear control problem into a linear, time-invariant
one. Define a virtual input variable v, which satisfies the
following equation

τ = B(q)v +H(q, q̇)q̇ + g(q). (26)

Since the inertia matrix B is structurally non-singular, it is
always possible to solve (26) for v:

v = B−1(q) (τ −H(q, q̇)q̇ − g(q)) . (27)

Plugging v in the robot dynamics equation (16), one ob-
tains:

q̈ = v. (28)

The block diagram interpretation of these equations is
shown in Fig 4: thanks to the dynamic inversion (DI) block,
the dynamic relationship between the virtual input v and
the Lagrangian positions and velocities q and q̇ (repre-
sented by the dotted block) is now described by a simple
integrator and a double integrator, respectively. It is then
easy to tune a fixed-parameter, linear feedback controller
(FC) in order to obtain the desired closed-loop dynamics.

Starting from the index-1 DAE robot model (20), it is
straightforward to derive the equations and then the explicit
algorithms to compute the DK, IK, CT, and DI, by using the
same techniques employed to bring (20) into state-space
form. The DK (17)-(18) is obtained by solving (20) for yp

(and possibly yv) given q (and possibly q̇), while the IK is
obtained by solving (20) for q (and possibly q̇) given yp

(and possibly yv); the subset of required equations is found
by suitable analysis of the incidence matrix. The CT (25) is
obtained by solving (20) for τ given q, q̇, and q̈. Finally,
the DI (26) is obtained by solving (20) augmented with
(26) for τ given v, q, and q̇. EOOL tools should then be
able to automatically generate the code corresponding to
the DK, IK, CT, and DI blocks in two forms: as algorithms
to compute the outputs given the inputs (e.g., C code for
direct inclusion in the robot controller), as well as equation-
based Modelica blocks, which could be used for closed-
loop simulation within a Modelica environment.

As a final remark, note that the method of inverse dy-
namics is a special case of the much more general theory
of feedback linearization [20], whose goal is to obtain a LTI
dynamics made by pure integrators from generic nonlinear
systems, by applying suitable feedback actions as shown
in Figure 4. It could also be interesting to investigate the
coupling between EOOL tools and symbolic manipulation
tools for the design of such controllers.
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5.4 Fast and compact models for Model Predictive
Control

The Model Predictive Control (MPC) approach [25, 36] is
based on a few key ideas, that turn the control problem into
an optimization problem. The control variable is a discrete-
time variable, that changes periodically every Ts seconds:

u(t) = u(k), kTs ≤ t < (k + 1)Ts. (29)

At each time step k, an optimization problem is solved,
whose unknowns are the next values of the control variable
u(k + i) over a finite horizon 1 ≤ i ≤ N . The first sample
u(k + 1) is then applied to the actuators at the next time
step, the rest of the values are discarded, and the process
is repeated over and over, thus implementing a receding
horizon strategy.

There are different ways to formulate the MPC prob-
lem, depending on the specific technique used to solve the
problem. Generally speaking, the figure of merit to be min-
imized is a quadratic function, which suitably weights the
future deviations of the controlled variables from the set
point and the intensity of the control action, as well as any
other problem-specific performance index that has to be
minimized, e.g. the financial cost of running the process.
The constraints of the optimization problem are the dy-
namic relationship between the input and output variables,
typically in the form (4), and possibly other constraints,
such as upper and lower bounds of the state, control and
output variables and of their rate of change.

The main advantage of MPC is its intrinsic ability to
deal with highly interacting multivariable systems (many
control inputs and controlled outputs), while keeping into
account operating constraints such as actuator saturations
or hard bounds on controlled variables, and at the same
time meeting some problem-specific optimality criterion.
The main drawback is the high computational load, since
a (possibly non-linear and non-convex) constrained opti-
mization problem must be solved at each sampling time;
this makes MPC suitable for systems with slow dynamics,
e. g. chemical plants, where there is plenty of time to carry
out the required computations in real time. This limitation
is likely to become less and less stringent in the future,
thanks to Moore’s law.

The second issue is the requirement that a suitable plant
model is available, as the control system performance criti-
cally depends on the model quality. Models for linear MPC
can be obtained either by linearization of analytical models,
or by system identification from experimental and/or simu-
lation data, e. g. step responses; both cases are already sup-
ported by current EOOL tools. Nonlinear MPC (NMPC)
algorithms are preferably based upon analytical models in
state-space form (1), which are derived from physical first-
principles models. The conversion to discrete-time form (4)
is often performed internally by the NMPC algorithm it-
self, by standard ODE integration routines. This means that
the interface between the EOOL tool and the NMPC tool
is similar to the one used for simulation problems, i.e. the
state-space form (1), possibly augmented by the Jacobians
of the right-hand-sides of (1).

The main requirement for NMPC-oriented models is
that they must have the least possible number of state and
algebraic variables, in order to keep the complexity of the
optimization problem within acceptable limits, and that
they have good smoothness properties, in order to avoid
convergence problems of the iterative optimization algo-
rithms. The development of those models can be very time
consuming, and require highly skilled manpower; it is ap-
parent how better tool support could be extremely useful in
order to reduce the development effort and cost.

The potential of OOM for MPC was first noted by Ma-
ciejowski at the end of the ’90 [24]. There are several re-
ported case studies [14, 15, 3, 19], where the model used in
the NMPC algorithm was derived from a Modelica model
of the physical plant, using the tool Dymola to produce
the code corresponding to the state-space form (1), i.e., the
dsmodel.c code that is usually linked to ODE/DAE solvers.
In order to derive suitably simplified models, the features
of Modelica discussed in Section 3.3 have been extensively
exploited. In general, this approach has proven much more
satisfactory than writing the C-code of the model from
scratch; however, it still requires a substantial investment
of time and effort for each new application.

The application of the automatic MOR techniques de-
scribed in section 4, possibly still combined with some
manual intervention in terms of replaceable models, looks
very promising in order to bring detailed simulation mod-
els into a form which is suitable for NMPC with a much
more limited effort by the developer.

Furthermore, [19] correctly points out that, although
the interface to NMPC algorithms is very similar to the
interface to ODE/DAE solvers, the former requires some
more flexibility. For example, advanced NMPC schemes
can provide on-line estimation of uncertain parameters
through the use of extended or unscented Kalman filters.
This means that some model parameters are no longer con-
stant throughout a transient, so that the C-code obtained
for simulation purposes must be manually adapted. A bet-
ter option would be to implement a code export interface
which makes it possible to turn selected parameters ap-
pearing in (5) (which are going to be estimated on-line)
into inputs, before transforming the system in state-space
form (1).

6. Conclusions
After a brief review of the different uses of models in con-
trol system design, the current state of the art of EOOL-
based tools for CACSD has been reviewed: apparently, cur-
rently available tools mainly focus on simulation tasks.
Several further directions for research and development
in EOOL tools where then discussed, which go beyond
the mere simulation problem. Results in these directions
could substantially improve the level of support to the con-
trol engineer willing to apply advanced, model-based con-
trol techniques to real-life problems, starting from object-
oriented models of the plant.
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