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Identifying Position-Dependent Mechanical
Systems: A Modal Approach Applied

to a Flexible Wafer Stage
Robbert Voorhoeve , Robin de Rozario , Wouter Aangenent, and Tom Oomen , Senior Member, IEEE

Abstract— Increasingly stringent performance requirements
for motion control necessitate the use of increasingly detailed
models of the system behavior. Motion systems inherently move,
therefore, spatiotemporal models of the flexible dynamics that
are essential. In this article, a two-step approach for the iden-
tification of the spatiotemporal behavior of mechanical systems
is developed and applied to a lightweight prototype industrial
wafer stage. The proposed approach exploits a modal modeling
framework and combines recently developed powerful linear-
time-invariant (LTI) identification tools with a spline-based mode-
shape interpolation approach to estimate the spatial system
behavior. The experimental results for the wafer-stage applica-
tion confirm the suitability of the proposed approach for the
identification of complex position-dependent mechanical systems
and its potential for motion control performance improvements.

Index Terms— Precision mechatronics, system identification.

I. INTRODUCTION

INCREASINGLY stringent performance requirements for
precision motion systems lead to a situation where the

flexible dynamics of moving machine components need to
be actively modeled and controlled. Typical examples include
the wafer stages in lithographic wafer scanners [1], [2].
Traditionally, these stages can be accurately approximated
as a rigid body in the frequency range relevant for control
[3], [4], thereby enabling static decoupling of the rigid-body
dynamics and subsequent decentralized control design [5].
Furthermore, when this rigid-body approximation is used, the
spatial system behavior directly follows from the stage geom-
etry. Due to the increased accuracy and speed requirements,
the flexible dynamics in future systems can no longer be
neglected and need to be explicitly addressed. Approaches to
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Fig. 1. Schematic flexible wafer-stage system.

address the resulting complex spatiotemporal system behavior
include overactuation and oversensing [6], spatial vibration
control [7], multivariable robust control [1], and inferential
control of unmeasured performance variables [8]. Invariably,
these approaches are characterized by an increased reliance
on model-based control design procedures, necessitating the
development of control-relevant, efficient, and numerically
reliable identification algorithms capable of dealing with the
complex spatiotemporal system behavior [2], [9], [10].

The flexible dynamics of these systems in conjunction
with the fact that these motion systems move lead to
position-dependent system behavior [4], [11]. In this article,
mechanical systems consisting of a single flexible moving
body are considered and deformations are assumed to be small.
As an example, consider the schematic flexible wafer-stage
system in Fig. 1. Here, the flexible wafer stage moves in rela-
tion to the sensors that are connected to the fixed world. As a
result of this relative motion, the sensors measure the position
at different points on the flexible structure, and therefore, the
spatial behavior of this flexible system is observed differently
depending on the relative location of the sensors. However,
due to the fact that there is only a single moving body and
because deformations are small, the structural dynamics of the
flexible body do not change as the system moves. Still, as a
result of the position dependence in the measurement system,
the system dynamics as observed by the sensors are no longer
linear-time-invariant (LTI), necessitating a deviation from the
standard LTI control design techniques used in the context of
high-precision motion systems.

Even though standard linear control design approaches
are no longer sufficient to control the position-dependent
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dynamics, the particular properties of the considered class of
systems can be exploited to utilize control approaches that
remain relatively close to the LTI control theory. Approaches
in the literature that utilize additional system information
to retain some aspects of LTI control theory include the
gain-scheduling control approach [12]–[14] and the linear
parameter-varying (LPV) control framework [15]–[18], which
formalizes the gain-scheduling method by ensuring stability
and performance through a rigorous model-based mathemat-
ical approach. While the class of systems considered in this
article can be readily treated within the LPV control frame-
work, this article proposes an approach that explicitly utilizes
the additional assumptions of a single moving body to simplify
the problem.

A key challenge for systematic LPV control is the avail-
ability of accurate LPV models. The need for accurate LPV
models spurred the development of LPV system identification
with a strong focus on black-box parametric models [19]–[22].
This resulted in a well-developed theoretical framework that
categorizes the identification techniques in local [23], [24]
and global approaches (see [25], [26]). Depending on the
application, both approaches have been reported to effectively
support the identification of practically relevant systems [27],
albeit that the identification of systems with high dynamic
order remains challenging [21], [28]. Due to the high model
complexity associated with general LPV modeling, the success
of black-box LPV approaches is limited for the identification
of mechanical systems with a large number of resonant modes
[29], [30], showing a need to reduce the modeling complexity
by using additional prior system knowledge.

Although many important developments have progressed
LPV identification for control, the continuously increasing
complexity of motion systems necessitates a practical iden-
tification approach of reduced complexity that is systematic,
accurate, and user friendly. A key step in this article is to
utilize the knowledge that the system consists of a single
moving body with small deformations to derive a parsimonious
model set, significantly reducing the modeling complexity
compared with a full LPV approach. Furthermore, recently
developed efficient and reliable LTI identification tools are
employed to obtain accurate and coherent local models, which
are particularly suited to a subsequent interpolation step to
obtain the desired position-dependent model. The aim of this
article is to develop an effective and practical approach for the
identification of position-dependent mechanical systems.

The main contributions of this article are the following.

1) A two-step modal identification framework for
position-dependent mechanical systems is given in the
following.

a) a flexible framework of parameterizations and
algorithms aimed at obtaining accurate modal LTI
models of complex mechanical systems;

b) an approach for the interpolation of identified mode
shapes to obtain position-dependent models for
control of flexible mechanical systems.

2) Application and validation of the developed approach on
a state-of-the-art industrial wafer-stage setup.

Fig. 2. Experimental wafer-stage setup.

These contributions are inextricably linked as the pro-
posed two-step position-dependent identification framework is
explicitly developed with the goal of being able to handle
the complexity of such a state-of-the-art industrial system.
The novelty of this article, therefore, lies in the formulation
and validation of the full position-dependent identification
framework, which, while making use of previous results,
including but not limited to previous results mentioned, e.g.,
in [10] and [31], has not been previously published.

The identification methods used in this article have parallels
with the field of experimental modal analysis. Research in
this field has seen significant developments in the past decade
[32]–[34], in part due to recent consolidation efforts of the
approaches used in a modal analysis and system identification
[35]–[37]. Contrary to the modal analysis, the modeling goal in
this article is to obtain position-dependent models for control.
This is reflected by the emphasis on accurate mode-shape
interpolation and the possibility to incorporate control-relevant
identification criteria as in, e.g., [2].

The outline of this article is as follows. In Section II, the
experimental setup is introduced and the control challenges as
well as the position-dependent modeling problem for this setup
are formulated. In Section III, the proposed two-step position-
dependent identification approach is explained. In Section IV,
the LTI identification approach and the obtained results for the
prototype wafer-stage system are presented. In Section V, the
approach and results for the mode-shape interpolation are pre-
sented. In Section VI, a discussion is presented on the applica-
bility of the proposed approach for control. In Section VII, the
conclusions of this article are formulated as well as an outlook
on ongoing research.

II. EXPERIMENTAL SETUP AND PROBLEM FORMULATION

In this section, the experimental wafer-stage setup and
related control challenges are outlined. In Section II-C, the
position-dependent modeling problem is formulated, as is
considered in this article.

A. Experimental Setup

The experimental setup considered in this article is the
overactuated testrig (OAT), as shown in Fig. 2. The system
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Fig. 3. Actuator and sensor configuration of the considered experimental
setup. The locations of actuators used for control and identification are marked
with red crosses ( ) actuators used only for identification as blue crosses ( ),
sensors used for identification and control as red circles ( ), and sensors used
only for identification as green circles ( ).

is considered here as an analog to the flexible wafer-stage,
as shown in Fig. 1. The system is controlled in six motion
degrees of freedom and is magnetically levitated, having no
mechanical connection to the fixed world. Furthermore, the
experimental system is equipped with additional actuators and
sensors to facilitate the spatiotemporal identification of the
flexible dynamics. While these additional actuators and sensors
are available on the experimental setup, they are not available
in the considered wafer-stage system as shown in Fig. 1 for
which the experimental system is an analog. Therefore, these
additional actuators and sensors are only used for identification
and are considered to be unavailable for the control of the
system. In this article, only the out-of-plane motions are
considered, i.e., the motions perpendicular to the surface of
the wafer stage, both for visualization purposes and due to
the availability of multiple spatially distributed sensors in this
direction.

The out-of-plane sensors and actuators used for the exper-
iments in this article are shown in Fig. 3. Seven actuators,
shown by crosses in Fig. 3, four of which, shown in red,
are used for closed-loop control and the remaining three,
shown in blue, are used to apply additional spatially distrib-
uted excitation for identification. Sixteen sensors are available
for identification, as shown in Fig. 3 by circles. Similarly,
a distinction is made between the sensors used for closed-loop
control, shown in red, and those only used for the spatially
distributed identification, which are shown in green.

B. Control Challenges

Consider the schematic wafer-stage setup shown in Fig. 1.
For this setup, two key control challenges are recognized,
which are related to the position-dependent system behav-
ior. First, as previously outlined, the relative motion of
the wafer stage with respect to the sensors leads to an
input–output behavior that is no longer LTI, necessitating a
position-dependent modeling and control perspective. Second,
the point of interest, i.e., the point on the wafer that is
being exposed in the photolithographic process, also changes

Fig. 4. LPV standard plant framework.

as the wafer stage moves. This involves the control of an
unmeasured performance variable since the point of interest
is not directly measured. This results in a position-dependent
inferential control problem (see [8], [31], [38] for control
design approaches for such problems).

The LPV standard plant framework, as shown in Fig. 4,
can be used to describe both these control problems. Here,
uc and yc are the output and input signals available for
control, wp is the generalized disturbance signal, and z p

is the generalized performance signal, which in this case
involves the positioning error of the point of interest. This
control problem, with the LPV standard plant P(ρ) in a
generalized feedback interconnection with an LPV controller
K (ρ), has been studied extensively in, e.g., [15]–[17] and, for
appropriately bounded sets of scheduling variable trajectories,
i.e., ρ(t) ∈ D , efficient algorithms exist for various robust and
optimal control problems defined in this framework.

The main difficulty for the practical application of these
methods concerns the availability of an accurate LPV system
model G(ρ), which is the part of the standard plant P(ρ)
pertaining to the physical system that is to be controlled. This
is a difficult problem that is evidenced by the fact that accurate
modeling of LTI precision systems is already considered to
be a challenging problem (see [9], [10]). Accurate modeling
for LPV systems is generally significantly more challenging
since the incorporation of a scheduling parameter dependence
typically leads to a highly increased model complexity [21].
Due to the additional constraints on the considered class of
systems, consisting of one flexible moving body and assuming
small deformations, the complexity of the problem can be
significantly reduced. This problem of obtaining accurate
position-dependent models for such mechanical systems, such
as the wafer-stage example considered here, is addressed in
the remainder of this article.

C. Position-Dependent Modeling Problem

In the considered wafer-stage example, the scheduling vari-
ables ρ relate to the position of the wafer stage. Due to the fact
that there is only a single moving body, the structural dynamics
of the flexible body are invariant to the position of the wafer
stage with respect to the sensors. Furthermore, deformations
are considered to be small in the sense that the structure does
not deform in such a way that it influences the dynamics of the
systems. As a result, the A matrix of the state-space description
for this class of systems does not depend on the scheduling
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variable ρ (see [39], [40]). Furthermore, for the considered
system, the positions of the actuators are fixed relative to
the wafer table and, therefore, the input matrix B is also
not position-dependent. Therefore, the scheduling variables
have no influence on the system states, and as a result,
there is no memory in the system pertaining to the past
trajectory of the scheduling variables. The system is, therefore,
only dependent on the current, instantaneous, value of the
scheduling parameters. In a state space, the considered system
model is described as

G(ρ) :
⎧⎨
⎩

ẋ(t) = Ax(t)+ Bu(t) (1)

y(t) = Cy(ρ(t))x(t)+ Dy(ρ(t))u(t) (2)

z(t) = Cz(ρ(t))x(t)+ Dz(ρ(t))u(t). (3)

In the wafer-stage example, both the system outputs y(t)
and the performance variables z(t), i.e., the point of interest
position, can be considered as specific local instances of the
out-of-plane deflection of the surface of the wafer stage. In this
interpretation, the relevant output for this system is this out-of-
plane deflection, which is denoted here as z(�, t), where � is
the in-plane coordinate of the point for which the deflection is
considered. The modeling problem is then to identify from
experimental data of the system, a model for the system
behavior of the form

G(�) :
{

ẋ(t) = Ax(t)+ Bu(t) (4)

z(�, t) = C(�)x(t)+D(�)u(t). (5)

The model in the form (1)–(3) is recovered from this descrip-
tion by including the static geometric relations between the
position of the wafer stage ρ and the coordinates �, at which
the sensors view the wafer stage as well as the coordinate
of the point of interest. This is a simple affine relation
dependent on the definitions of the origins for two coordinate
systems and the sensor locations, i.e., for a certain sensor y1,
Cy1(ρ(t)) = C(�y1(ρ(t)) with �y1(ρ(t)) = �y1,0 + ρ(t). The
modeling problem considered in the remainder of this article
is, therefore, to model the system of the form (4) and (5).

III. POSITION-DEPENDENT MODELING APPROACH

In this section, the proposed position-dependent modeling
approach is described. First, the modal modeling frame-
work for mechanical systems is outlined. Next, the proposed
two-step identification approach is developed.

A. Modal Models of Mechanical Systems

The quantity of interest is the out-of-plane deflection,
z(�, t) :D × T �→ R, of the surface of a flexible body, which
is modeled here as a continuum. The domain D ∈ R2 of the
coordinate � is the surface of the considered structure, e.g., the
(x, y) surface of the wafer stage. To model the spatiotemporal
evolution of z(�, t), a basis-function expansion is used for
time–space separation (see [41]), that is

z(�, t) =
nq∑

i=1

wi (�)qi(t). (6)

For nq →∞, this expansion converges as long as {wi(�)}∞i=1
is a convergent set of functions for the class of continuous

functions on the spatial domain D [41]. A widely used method
that is applicable for any geometrically complex domain D is
the finite-element method (FEM). This approach uses many
localized basis functions to accurately approximate the spatial
system behavior [41].

The temporal system behavior for this basis function
approach is determined by the dynamics of the generalized
coordinates, q(t) = [q1(t) . . . qnq (t)]T. Under the assumption
of small rotations and strains, and assuming that the material
is linear elastic obeying Hooke’s law, the equations of motion
that govern the temporal input–output behavior of a mechan-
ical system are given by the set of coupled second-order
ordinary differential equations [39, Sec. 2.2]

Mq̈(t)+Dq̇(t)+Kq(t) = Qu(t) (7)

where M ∈ R
nq×nq is the mass matrix, D ∈ R

nq×nq is the
damping matrix, K ∈ Rnq×nq is the stiffness matrix, and Q ∈
Rnq×nu is the input distribution matrix.

The set of coupled equations of motion (7) can be decoupled
for the undamped case by transforming to a modal descrip-
tion, which is obtained by solving the generalized eigenvalue
problem [K − ω2

i M
]
φi = 0, i = 1, . . . , nq . (8)

The eigenvalues, ω2
i , are the squared undamped resonance

frequencies of the modes, and the eigenvectors, φi , are the
associated mode shapes as parameterized in the basis W (�) =
[w1(�) . . . wnq (�)]. By applying the substitution q = �η,
where � = [φ1 . . . φnq ], and multiplying (7) with �−1M−1,
it yields

Gm(�) :
{

I η̈(t)+ Dm η̇(t)+�2η(t) = Ru(t) (9)

z(�, t) = L(�)η(t) (10)

where Dm = �−1M−1D�, �2 = diag([ω2
1 . . . ω

2
nq
]), L(�) =

W (�)�, and R = �−1M−1 Q.
In the context of identification for control, low-order models

are desired, which are accurate in a limited frequency band
of interest [2]. This means that only a limited number of
modes, nm < nq , are required to model the relevant temporal
system behavior [39]. Modeling the spatial system behavior
using a generic set of basis functions L(�) = W (�)� typically
requires a large number of basis functions, leading to a high
modeling complexity. In this article, a two-step identification
approach is proposed to directly identify the mode shapes, i.e.,
the columns of L(�) from the measured data.

B. Two-Step Identification Approach

To identify the spatiotemporal system behavior, the mea-
surement data are first obtained in experiments with fixed
sensor locations �i . As a result of the fixed sensor locations,
the input–output system behavior is LTI, similar to the local
approach in LPV identification. Experiments are performed
with various fixed sensor locations covering the domain D.
An LTI system model is then identified from the obtained
experimental data where the model is parameterized in the
modal form, i.e., (9) and (10), with nm modes. Instead of
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the position-dependent output equation (10), the measured,
spatially sampled, outputs zs(t) are modeled as

zs(t) =
⎡
⎢⎣

z(�1, t)
...

z
(
�n� , t

)
⎤
⎥⎦ = Lsη(t), Ls ≈

⎡
⎢⎣
L(�1)
...

L(
�n�

)
⎤
⎥⎦ (11)

where the parameters in Ls ∈ Rn�×nm are considered as
spatially sampled estimates of the mode shapes L(�).

This first step requires the LTI identification of a complex
mechanical system with a high model order and many inputs
and outputs. The identification of such complex mechanical
systems requires the use of efficient and numerically reliable
identification approaches, as have been developed and inves-
tigated in, e.g., [9] and [10].

In the second step, the spatial mode shapes L(�) are
estimated from the identified parameters in Ls . In this step,
interpolation techniques are used to reconstruct continuous
mode shapes based on these spatially sampled estimates. Since
this step involves the interpolation of spatial functions in � and
not of systems that dynamically depended on a scheduling
variable ρ, the interpolation pitfalls as shown in [42] are
avoided. In Section V, a promising robust and physically
motivated interpolation approach is proposed, but several other
interpolation techniques, which might be more suitable for
other applications, can be used in this second step of the
proposed two-step approach.

In summary, the proposed two-step approach aims to:

1) identify the modal mechanical LTI model given by (9)
and (11), i.e., estimate the parameters in Ls , �

2, Dm,
and R and

2) estimate the mode shapes L(�) based on the spatially
sampled mode shapes Ls .

IV. LTI IDENTIFICATION OF SPATIALLY SAMPLED

SYSTEMS

In this section, the first step of the proposed identification
approach is outlined, which is the LTI identification of the
spatially sampled system Gs .

A. Methods

The LTI identification approach considered here involves
a number of key aspects. First, a nonparametric identification
approach is considered, aimed at obtaining accurate frequency
response function (FRF) estimates of the spatially sampled
system Gs . Second, the modal parameterization as used in
this article is defined. Third, a black-box matrix fraction
description (MFD) parameterization is employed, which is
parameterized such that it closely matches the modal para-
meterization. Fourth, the identification algorithms used to esti-
mate the system models from the measured data are explained.

1) Nonparametric Identification: The nonparametric FRF
for the wafer-stage system is estimated using the robust
multisine approach, as explained in, e.g., [43, Sec. 3.7]. The
rigid-body motions of the system need to be controlled for
stable operation; therefore, all experiments are performed in
a closed-loop configuration. The closed-loop identification

Fig. 5. Closed-loop identification scheme.

scheme is shown in Fig. 5. A distinction is made between
the inputs that are used in the control loop uc(t) and those
that are not used in the control loop unc(t). The control inputs
uc(t) also include the in-plane actuator signals that are used to
stabilize the in-plane rigid-body modes. The excitation signals
used for system identification are the noncontrol inputs unc(t)
and the additive perturbation signals ruc (t), as shown in Fig. 5.
The applied excitation signals are all random-phase multisines
with a flat amplitude spectrum, which are successively applied
to the single inputs in separate experiments.

With a total of 16 out-of-plane sensors, 8 control inputs,
including 4 in the in-plane direction, and 3 noncontrol inputs,
the identification problem involves first identifying a 24× 11
closed-loop FRF given by

P̃CL (�k) =
[

P̃zs←ruc
(�k) P̃zs←unc(�k)

P̃uc←ruc
(�k) P̃uc←unc(�k)

]
(12)

where the notation P̃y←x(�k) is used to denote the identified
empirical transfer function estimate (ETFE) from the input
signal x to output signal y at frequency point �k . To obtain
the FRF of the open-loop system G from this closed-loop FRF,
the following relation is used:

G̃(�k) =
[
P̃zs←ruc

P̃zs←unc

][ P̃uc←ruc
P̃uc←unc

P̃unc←ruc
P̃unc←unc

]−1

(13)

where the arguments �k have been omitted on the right-hand
side of this expression for brevity. In (13), P̃unc←ruc

= 0 and
P̃unc←unc = I (see [2, Appendix A] for additional detail on this
closed-loop identification approach). By removing the in-plane
input directions, the 16 × 7 FRF of the system Gs , as given
by (9) and (11), is obtained.

In this article, the delays from the hold circuit in the
digital measurement environment are first carefully determined
using a combination of readily available automatic methods
and visual inspection of the data while manually tweak-
ing the delay value. Subsequently, the FRF measurements
are compensated for these delays such that the obtained
delay-compensated FRF can be modeled in continuous time,
i.e., by G̃s(sk), with sk = jωk, and the remaining identification
procedure can be performed in the s-domain. For additional
details on such a pseudo-continuous-time modeling approach
(see [44], [43, Sec. 8.5]). Note that when the model is to be
used in a control context, the importance of determining the
correct delay significantly increases and one might consider
changing to a fully discrete-time z-domain approach, which is
generally better suited to deal with such unknown delays.

2) Modal Parametrization: As outlined in Section III, the
modal model for the spatially sampled system Gs is given
by (9) and (11), with parameters contained in the matri-
ces Ls, �

2, Dm, and R. The matrices Ls and R are fully
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parameterized, while �2 = diag(ω̄2) with parameters ω̄2 =
[ω2

1 . . . ω2
nm
]T. The damping matrix Dm is either fully

parameterized, which constitutes a general viscous damping
model, or, when using the modal damping model, this is equal
to Dm,mod = diag(ζ̄ ) with ζ̄ = [ζ1 . . . ζnm ]T.

Using the modal damping model, the set of differen-
tial equations (9) describing the systems temporal behavior
becomes fully decoupled, meaning that the system can be
considered as a superposition of independently evolving modes
[39]. This representation is extensively used in modal analysis
and design as it simplifies the physical interpretation of the
modal parameters and the incurred modeling errors by assum-
ing that modal damping is generally small for lightly damped
systems (see [39, Section 2.4]). For the wafer-stage example,
the modal damping assumption is used to facilitate a parsi-
monious parameterization. Note that the modeling framework
used in this article enables general linear damping models.

The complexity of this parameterization is determined by
the number of modes that are modeled, nm . While a limited
number of modes usually dominate the behavior in a given
frequency range of interest, for some applications, the com-
bined low-frequency compliance effect of unmodeled higher
order modes also needs to be considered. In such a case, it is
relevant to model an additional compliance term, e.g., as direct
feedthrough such as D(�) in (5), to describe the quasi-static
deformation resulting from each input signal u(t) (see [38]).
In this article, such a feedthrough term is not modeled; this can
be straightforwardly incorporated in the proposed modeling
framework when required for a given application.

The modal parameterization used in this article is defined
by (9) and (11) with the modal parameters given by

θm = vec
([LT

s R ω̄2 ζ̄
])
. (14)

3) MFD Parameterization: For certain identification algo-
rithms, it is necessary that the model parameterization can
be written as a polynomial MFD. In this article, a left
MFD (LMFD) parameterization is used, which is given by

Ĝ(s, θ) = D̂(s, θ)−1 N̂ (s, θ) (15)

where N̂ (s, θ) ∈ Rp×q[s] and D̂(s, θ) ∈ Rp×p[s] are real
polynomial matrices in the Laplace variable s. Furthermore,
these polynomial matrices are linearly parameterized with
respect to the parameter vector θ ∈ Rnθ using a set of basis
functions such that

vec
([

D̂(s, θ) N̂ (s, θ)
]) = nθ∑

j=1

ψ j (s)θ j = �(s)θ. (16)

This general linear parameterization allows the use of
data-dependent orthogonal vector polynomials as basis func-
tions, ψ j ∈ R

p(q+p)×1[s] (see [9]), which is a key aspect for
the identification of increasingly complex system where the
numerical conditioning becomes an important limiting factor
for the performance of the identification algorithms.

Furthermore, this general parameterization enables the use
of more structured LMFD parameterizations, which enable the
parameterization of system with arbitrary McMillan degree
nx instead of only being able to parameterize systems where

the degree nx is a multiple of the number of outputs p,
as is the case when using the fully parameterized unstructured
LMFD as in, e.g., [32] and [33]. Here, a generic (pseudo)-
observable-canonical LMFD parameterization with a quasi-
constant degree structure is used (see [34], [45], [46]). This
parameterization is both identifiable, in the sense that it
is not overparameterized, and generic, meaning that it can
approximate all proper LTI systems of the given order up to
arbitrary precision (see [45]).

This LMFD parameterization is often used for black-box
identification of LTI systems, whereas in this article, the goal
is to identify spatiotemporal mechanical systems by utilizing
the modal form, i.e., (9) and (11). Therefore, in this article,
a number of additional constraints are incorporated in the
LMFD parameterization such that it more closely resembles
the mechanical system model. Here, the following properties
are enforced:

1) an even McMillan degree, by taking nx = 2 nm ;
2) a relative degree r ≥ 2, by constraining the column

degrees of the numerator polynomial matrix N(s, θ) to
be 2 lower than the corresponding column degrees of
the denominator polynomial matrix D(s, θ);

3) a prescribed number of rigid-body modes nrb such that
n0 = 2 nrb poles are located at s = 0, by factoring out
the rigid-body dynamics, see [10] for details.

4) Identification Algorithms: The identification problem
considered here is to find the parameter vector θ that min-
imizes the identification cost, which is, in this article, is a
weighted least-squares cost function, that is

θ̂ = arg min
θ

V (θ) =
m∑

k=1

ε(sk, θ)
Hε(sk, θ) (17)

where

ε(sk, θ) = W (k) vec(G̃(sk)− Ĝ(sk, θ)) (18)

with weighting matrix W (k) ∈ C
pq×pq . This general cost

function V (θ) includes other commonly used identification
criteria [10], such as the sample maximum likelihood cri-
terion [43], control relevant identification criteria [2], and
the input–output and element-wise weighted criterion used
in [47].

Minimization of the cost function (17) is a nonlin-
ear least-squares optimization problem. Suitable algorithms
to solve this problem are the Sanathanan–Koerner (SK)
algorithm and the Gauss–Newton algorithm or closely
related methods such as the Levenberg–Marquart (LM) algo-
rithm. These algorithms are defined as follows, where the
SK algorithm is only defined for MFD parameterizations,
i.e., using (15) and (16).

Algorithm 1 (SK [48]): Let θ 〈0〉 be given. In iteration
i = 0, 1, . . ., solve the linear least-squares problem

θ 〈i+1〉 = arg min
θ

m∑
k=1

‖WSK
(
sk, θ

〈i〉)�(sk)θ‖2
2 (19)

with

Wsk
(
k, θ 〈i〉

) = W (k)
([

G̃T(sk) −Iq

]⊗ D̂
(
sk, θ

〈i〉)−1
)
. (20)
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Algorithm 2 (Gauss–Newton [49]): Given an initial esti-
mate θ 〈0〉, compute for i = 0, 1, . . .

θ 〈i+1〉 = θ 〈i〉 + arg min
�θ

m∑
k=1

∥∥J
(
sk, θ

〈i〉)�θ + ε
(
sk, θ

〈i〉)∥∥2

2 (21)

with

J (sk, θ
〈i〉) = ∂ε(sk, θ)

∂θT

∣∣∣∣
θ 〈i〉
=−W (k)

∂ vec(Ĝ(sk, θ))

∂θT

∣∣∣∣
θ 〈i〉
. (22)

The Gauss–Newton algorithm and related algorithms, such
as the LM algorithm, generally provide fast monotonic con-
vergence to a minimum of the cost function V (θ). However,
these algorithms often converge to local minima that are far
from optimal, and therefore, their performance is strongly
dependent on the quality of the initial estimate of θ 〈0〉. The
SK algorithm, on the other hand, does not generally converge
monotonically, and, if convergent, its stationary points are
generally not optima of the cost function [50]. However, the
SK algorithm often yields adequate, albeit suboptimal, results
irrespective of the quality of the initial estimate. Therefore,
the SK algorithm is often used to provide initial estimates that
are subsequently refined using a gradient-based optimization
algorithm, such as the Gauss–Newton algorithm (see [10]).

5) Identification Approach: To identify the modal system
model defined by (9) and (11) and parameterized by (14) from
the identified FRF G̃s(sk), the following steps are followed.

1) Define weighting filters W (k) as in (18).
2) Perform iSK iterations of the SK algorithm using the

mechanical LMFD model with constraints as defined in
Section IV-A3.

3) Perform iGN iterations of the GN or LM algorithm for
the LMFD model using the parameters θSK,min corre-
sponding to the lowest cost function value during SK
iterations as an initial estimate.

4) Transform the identified LMFD model to an initial esti-
mate for the modal model as defined by parameters (14).

5) Perform a maximum of iGN,mod iterations of the GN or
LM algorithm to converge to an optimum of the cost
function as in (17) for the identified modal model.

When considering generally damped modal models, the
fourth step of this identification approach can be performed
using an exact transformation, i.e., relating two realizations
of the same system. Details of this exact transformation are
beyond the scope of this article and will be reported elsewhere.
Due to the modal damping assumption used in this article for
the modal model, and since this modal damping assumption is
not enforced in the MFD parameterization, the transformation
in step 4 of this identification approach is approximate. This
approximate transformation is performed by calculating the
nx =2nm pole locations by solving det[D(s, θ)] = 0, separat-
ing the poles into pole pairs such that (s + p1,i)(s + p2,i) =
s2 + ζi s + ω2

i , with ζi , ωi ∈ R for i = 1, . . . , nm , and
estimating a model of the form

Ĝm,trans =
nm∑
i=1

Ri

s2 + ζi s + ω2
i

(23)

with Ri ∈ Rp×q . In this estimation, the denominator parame-
ters are fixed to the values obtained from the pole pairs of
the LMFD model. This model is fit based on the FRF data
using the same cost function as the other identification steps,
i.e, using (17). The parameters in L and R are then obtained
from the singular value decomposition of the residue matrices
Ri = Ui Si V H

i such that

[Ls]i = [Ui ]1[Si ]1
1, [R]i =

[
V H

i

]
1, i = 1, . . . , nm (24)

where [X]i and [X] j denote, respectively, the i th and column
and the j th row of matrix X . This transformation performs
well for the considered system, as shown by the results
in Section IV-B. For more general approaches to transform
black-box models to a gray-box models, see [51].

B. Results

For the identification of the wafer-stage system, the
weighting function in (18) is chosen as weighting with the
element-wise inverse of the identified FRF G̃(sk), that is

Winv(k) = diag(vec(|�(sk)|)) (25)

[�(sk)]ij =
1

[G̃(sk)]ij
. (26)

This choice reflects the goal of minimizing the relative error
between the model Ĝ(sk, θ) and the FRF G̃(sk). For more
advanced weighting choices that consider the control objective,
see [2]. To emphasize the accurate estimation of the first
few lower frequency resonances, the weighting function is
truncated, that is

W (k) = min(Winv(k), wmax) (27)

where wmax is chosen such that clipping of the weight gen-
erally occurs only in the high-frequency range, after the first
few resonances.

Steps 2–5 of the identification approach as proposed in
Section IV-A5 are at first only performed for a 3 × 7 part
of the full 16×7 identified FRF. This is done both to improve
computational efficiency and to simplify the implementation
of rigid-body mode constraints (see [10]). After the successful
identification of the modal parameters for the 3 × 7 system,
the model for the remaining 13 outputs is determined by
estimating the sampled mode-shape parameters in Ls for these
outputs, while all other parameters remain fixed. This is again
done by minimizing the cost function (17) for these additional
output, which in this case is simply a linear least-squares
problem.

In Fig. 6, the evolution of the cost function, V (θ) in (17),
is shown during steps 2–5 of the identification approach
given in Section IV-A5. As can be seen from Fig. 6, the
SK algorithm in step 2 is not monotonically convergent,
but it yields an appropriate initial estimate for subsequent
refinement using the LM algorithm. The LM algorithms used
in step 3 does show monotonic convergence and yields an
LMFD estimate with a cost function value approximately one
order of magnitude below that of the initial estimate provided
by the SK approach. In the next step, the LMFD model is
transformed to the modally damped model defined by the
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Fig. 6. Evolution of the cost function during various steps of the LTI
identification approach.

parameters (14), which leads to a slight increase in the cost
function value. In the final step, the cost function is again
minimized using the monotonically convergent LM algorithm
with the modal parameterization, which in this case only yields
a small decrease in the cost function value, showing that the
initial modal estimate is already of high quality.

The small increase in the cost function value when trans-
forming the LMFD modal to the modal model is expected,
as this step reduces the model complexity by enforcing modal
damping and through the elimination of computational modes
identified in the LMFD model. This is done by visually
comparing the identified pole locations with the resonances of
the identified FRFs, similar to the use of stabilization diagrams
in an experimental modal analysis (see [32], [33]). The model
order of the identified LMFD model is nx =2nm = 46, while
the model order of the modal model is nx = 24. This shows
that the transformation yields a significant decrease in model
complexity with a modest increase in the cost function value.

Fig. 7 shows the FRF and identified modal model for the
3×7 part of the system on which the identification procedure
is performed, and Fig. 8 shows a more detailed view, including
the phase of a single element of the FRF and identified modal
model. Figs. 7 and 8 show a good agreement between the
model and the FRF in the low-frequency region as well as
for the dominant resonances in the frequency region up to
about 1 kHz. In the frequency region beyond 1 kHz, there
are an additional few accurately identified modes but also a
number of unmodeled resonances. The identification of these
high-frequency modes is not the main focus in this article
since the spatial behavior for such high-frequency modes is
also typical of a higher spatial frequency, meaning that a higher
spatial resolution, than what is available, is required to identify
the associated mode shapes.

V. MODE-SHAPE INTERPOLATION

In this section, the interpolation of the spatially sam-
pled mode shapes, as given by the columns of Ls , is con-
sidered. This interpolation step is performed to obtain a
position-dependent model that is continuous in the spatial
variable �.

A. Methods

A popular method for the interpolation of various types of
data at arbitrary spatially distributed points is the smoothed
thin-plate-spline interpolation approach. The use of thin-plate
splines is physically motivated by the fact that the spline
functions are derived as the functions that minimize the
bending energy of a thin sheet of elastic material. Therefore,
this approach is particularly well suited for the considered
application of interpolating the structural mode shapes of
motion systems that are thin in one dimension relative to the
other dimensions, such as the wafer-stage example.

The smoothed thin-plate-spline interpolating function Ws

for a single mode shape is derived as follows. Given a set
of n� points {(x̄ j , ȳ j , z̄ j ) ∈ R3} and a user-defined smoothing
parameter λ ∈ [0,∞), find an interpolating function Ws ∈W1

2
such that

min
Ws∈W1

2

n�∑
j=1

|Ws
(
x̄ j , ȳ j

)− z̄ j |2 + λU (28)

with

U =
∫ ∞
−∞

∫ ∞
−∞

�2Ws(x, y) dx dy. (29)

Here, the function space W1
2 is the space of continuously dif-

ferentiable functions with square-integrable second derivatives
such that U , which is generally interpreted as a measure of
the bending energy of the functions, exists for all functions in
the space.

The functions Ws that minimize (28) are given by

Ws(x, y, ϑ) = ϑ0 + xϑx + yϑy +
n�∑
j=1

ϑ j G j (x, y) (30)

G j (x, y) = r2
j ln

(
r j

)
, r j =

√(
x̄ j − x

)2 + (
ȳ j − y

)2
(31)

(see [52]). The number of parameters in (30) is n�+ 3, where
the three additional parameters are related to the monomials
up to the first degree which represent the set of functions in
W1

2 for which U = 0, i.e., the kernel of U . To constrain
this underdetermined set of equations, the following three
additional constraints are added, which make sure that the
function space parameterized using Green’s functions G j (x, y)
is orthogonal to the space of first-order polynomial:

n�∑
j=1

ϑ j = 0,
n�∑
j=1

ϑ j x̄ j = 0,
n�∑
j=1

ϑ j ȳ j = 0. (32)

The solution to (28) using (30) and (32) is given by

z̄k =Ws(x̄k, ȳk, ϑ) + λϑk (33)

(see [52]). In an explicit matrix form, this yields

ϑ = X−1
[
z̄1 . . . z̄n� 01×3

]T
, (34)
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Fig. 7. Bode diagrams of the identified FRFs (blue dotted line) and fit modal model (red solid line) for a 3× 7 part of the full 16× 7 identified system.

Fig. 8. Detailed Bode diagram including phase of the identified FRF (blue
dotted line) and fit modal model (red solid line) for the (1, 2) element of the
identified system as shown in Fig. 7.

with ϑ = [
ϑ0 ϑx ϑy ϑ1 . . . ϑn�

]T
, and where

X =
[

X0 XG + λI
03×3 XT

0

]
, X0 =

⎡
⎢⎣

1 x̄1 ȳ1
...

1 x̄n� ȳn�

⎤
⎥⎦ (35)

XG =
⎡
⎢⎣

G1(x̄1, ȳ1) . . . Gn� (x̄1, ȳ1)
...

...
G1

(
x̄n� , ȳn�

)
. . . Gn�

(
x̄n� , ȳn�

)
⎤
⎥⎦. (36)

For the interpolation of the spatially sampled mode shapes
as identified in Ls , the points (x̄ j , ȳ j) are equal to � j , i.e.,
the (x, y) positions of the sensors, and the values for z̄ j are
given by the identified parameters in the columns of Ls . This
interpolation is carried out independently for each mode shape,
i.e., for each column of Ls , where for each mode shape,
different smoothing parameters λ are used. These smoothing
parameters provide a tradeoff between robustness to estimation
errors in Ls and interpolation accuracy at the data points � j .
In this article, the values of the smoothing parameters are
determined using a leave-one-out-cross-validation (LOOCV)
approach, i.e., the value of λ is used, which minimizes the
LOOCV error. For details on this cross-validation approach,
see [53].

B. Results

In Fig. 9, four of the identified flexible mode shapes are
shown. In total, 12 mode shapes are identified, including the
three out-of-plane rigid-body modes. Up to the ninth mode,
as shown in Fig. 9(d), the identified mode shapes agree well
with theoretical mode shapes for a thin plate or the mode
shapes as obtained by means of a FEM analysis of the system,
a detailed comparison is omitted for brevity. For the higher
order modes, the spatial resolution of the sensors is insufficient
to accurately reconstruct the smooth mode shapes.

The results in Fig. 9 show the viability of the proposed
approach to obtain accurate position-dependent models of
flexible mechanical systems. In Section VI, the potential
of the proposed approach is discussed in enabling various
position-dependent control approaches.
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Fig. 9. Top views and 3-D surface plots of the identified mode shapes with red dots indicating the points of the identified spatially sampled mode shapes.
(a) Fourth mode (torsion). (b) Fifth mode (saddle). (c) Sixth mode (umbrella). (d) Ninth mode.

VI. OUTLOOK FOR POSITION-DEPENDENT MOTION

CONTROL APPLICATIONS

In this section, several control approaches are explored,
which are enabled by the availability of accurate
position-dependent models. For flexible motion systems,
both feedback and feedforward control problems become
more complex as the point that should track the reference is
often not directly measured, such as the point of interest of
the wafer-stage example in Fig. 1. Furthermore, the location
of this point of interest can change over time, increasing the
complexity of the control problem.

Approaches to enhance the control performance for such
flexible motion systems can generally be classified as either

1) global approaches, aimed at preventing or mitigating the
flexible deformations in the entire system, such that the
deformation related errors are small; or

2) local approaches, aimed at controlling the position of
the point of interest of the deformed system.

By utilizing the identified position-dependent model of the
wafer-stage system, Ĝm(�), such global and local control
approaches can be described in the LPV standard plant frame-
work, as shown in Fig. 4 and can be solved using a range of
approaches. In this section, several global and local approaches
are considered for both feedback control and feedforward
control.

A. Global Spatio-Temporal Feedforward Control

For the wafer-stage example, the problem of global feedfor-
ward control aims to minimize the error between the reference
signal rz(t) and the out-of-plane deflection of the surface
of the wafer stage z(�, t) over the entire spatial domain D.
More precisely, the global approach is aimed at minimizing
the following weighted spatial norm of the error e(�, t) =
rz(t)− z(�, t) :

‖e‖2(DWS )
=

√∫ ∞
−∞

∫
D

eT(�, t)WS(�)e(�, t) d� dt . (37)

This problem can be effectively formulated and solved as an
H∞ optimal control problem (see [31] for details).

In Figs. 10 and 11, the simulation results are shown for the
wafer-stage example system. Here, Fig. 10 shows the reference
profile for rz as well as the (x, y) coordinates of the point
of interest �z(t), and Fig. 11 shows the local errors at the
point of interest, i.e., ez(t) = rz(t)− z(�z(t), t), for a classical
feedforward controller, which minimizes the error at the sensor
locations, and the global feedforward approach. These results
show that the global approach yields a significantly improved
inferential performance as opposed to the classical approach.
These results and the practical potential of this global feedfor-
ward approach for future motion systems are enabled by the
modeling procedure developed in this article.
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Fig. 10. Reference profile rz and the (x, y)-coordinates of the point of
interest � over time.

Fig. 11. Inferential error ez at point of interest over time, showing
significantly improved performance for the global feedforward controller
relative to the classical feedforward controller.

B. Local Inferential Feedback and Feedforward Control

The general problem of local inferential control aims to
directly optimize the performance at the location where
the performance is required, such as the point of inter-
est in the wafer-stage example (see Fig. 1). For feedback
and feedforward, these approaches can be described in the
LPV standard plant framework when an accurately identified
position-dependent model is available. Local inferential feed-
forward control typically involves the inversion of the system
dynamics from the inputs to the time- or parameter-varying
performance variables which, apart from explicit inversion,
can be realized by solving an optimal control problem or
using iterative learning control (see [18], [54]). Inferential
feedback control generally requires the use of two-degree-of-
freedom controller structures as opposed to the single-degree-
of-freedom controller structure used in traditional feedback
control (see [8], [38]), and this can be directly incorporated in
the standard-plant approach.

Inferential feedback control is especially relevant when
significant disturbance forces are present in the system. In [38],
it is shown that a disturbance observer can be effectively
utilized to estimate the inferential performance variable in
the presence of significant disturbance forces that are non-
collocated with the actuator forces. In [38], it is also shown
that in such a case, it is essential to include disturbance
models in the standard-plant description to obtain the accurate
results. In [38], an observer-based inferential control approach
is proposed, which is especially suited to minimize the influ-
ence of disturbance-induced compliant deformations, i.e., the
quasi-static deformations induced by a locally applied force,
often modeled using an additional feedthrough term (see [35]).

Fig. 12. Position-dependent observer-based feedback control scheme.

Combined with a moving disturbance source and point-of-
interest location, the position dependence of this compliant
effect necessitates a position-dependent control approach to
obtain the desired performance. This position-dependent con-
troller can be effectively and intuitively realized by combining
an observer containing a position-dependent system model
with an LTI controller that is robust to the remaining position
dependence, as shown in Fig. 12.

VII. CONCLUSION AND OUTLOOK

A. Conclusion

This article provides a general procedure for the identifi-
cation of position-dependent precision mechatronic systems
that consist of a single flexible moving body and with small
deformations. This is an essential step for the control of future
high-precision motion systems. A key step in the proposed
approach is to utilize prior mechanical systems knowledge
as embedded in the modal modeling framework to obtain a
parsimonious model set.

In Section IV, a flexible framework of parameterizations and
identification algorithms is proposed that is especially suited
for the identification of modal models of mechanical systems.
For the considered state-of-the-art industrial wafer-stage sys-
tem, with a total of 7 considered inputs and 16 outputs, the
proposed identification approach yields a very accurate modal
system model with 12 identified modes. The spline-based
interpolation approach proposed in Section V provides a robust
and effective method to reconstruct the spatial mode shapes
and is successfully applied to reconstruct nine of the identified
mode shapes.

Potential applications of the proposed position-dependent
modeling approach for control are numerous, including, e.g.,
the use in global spatiotemporal feedforward control and
observer-based inferential feedback control.

B. Outlook

In this article, systems are considered, which can be written
as (4) and (5). Although this description is less general
than (1)–(3), it is envisaged that the proposed framework
of identifying modal models of mechanical systems and
subsequently interpolating the spatial system behavior can
be extended to be more broadly applicable. In particular,
extending the proposed framework to consider the modeling
of interacting mechanical subsystems provides the ability to
model a variety of relevant mechanical systems. Examples
of such interacting mechanical subsystems include the much

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 01,2021 at 08:07:11 UTC from IEEE Xplore.  Restrictions apply. 



VOORHOEVE et al.: IDENTIFYING POSITION-DEPENDENT MECHANICAL SYSTEMS: MODAL APPROACH APPLIED TO A FLEXIBLE WAFER STAGE 205

used H-bridge systems as considered in, e.g., [29] and [30].
By separately considering the spatiotemporal behavior of the
subsystems, such as the beam and carriage in an H-bridge
system, and modeling the full system behavior as a general
interconnection of these component models, a more general
class of systems can indeed be described, including systems
with position-dependent state matrices. Validating the practical
applicability and performance of this approach, as well as the
control approaches discussed in Section VI, is a subject of
ongoing research.
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