6,483 research outputs found

    Key Detection Rate Modeling and Analysis for Satellite-Based Quantum Key Distribution

    Get PDF
    A satellite QKD model was developed and validated, that allows a user to determine the optimum wavelength for use in a satellite-based QKD link considering the location of ground sites, selected orbit and hardware performance. This thesis explains how the model was developed, validated and presents results from a simulated year-long study of satellite-based quantum key distribution. It was found that diffractive losses and atmospheric losses define a fundamental trade space that drives both orbit and wavelength selection. The optimal orbit is one which generates the highest detection rates while providing equal pass elevation angles and durations to multiple ground sites to maximize the frequency of rekeying. Longer wavelengths perform better for low Earth orbit satellites while shorter wavelengths are needed as orbital altitude is increased. For a 500km Sun-synchronous orbit, a 1060nm wavelength resulted in the best performance due to the large number of low elevation angle passes. On average, raw key rates of 170kbit/s per pass were calculated for a year-long orbit. This work provides the user with the capability to identify the optimal design with respect to wavelength and orbit selection as well as determine the performance of a QKD satellite-based link

    Laser Space Communications Study /LACE/ FINAL Summary Report

    Get PDF
    Program planning to determine atmospheric effects on laser space-ground cummunication syste

    Modeling the Use of an Airborne Platform for Cellular Communications Following Disruptions

    Get PDF
    In the wake of a disaster, infrastructure can be severely damaged, hampering telecommunications. An Airborne Communications Network (ACN) allows for rapid and accurate information exchange that is essential for the disaster response period. Access to information for survivors is the start of returning to self-sufficiency, regaining dignity, and maintaining hope. Real-world testing has proven that such a system can be built, leading to possible future expansion of features and functionality of an emergency communications system. Currently, there are no airborne civilian communications systems designed to meet the demands of the public following a natural disaster. A system allowing even a limited amount of communications post-disaster is a great improvement on the current situation, where telecommunications are frequently not available. It is technically feasible to use an airborne, wireless, cellular system quickly deployable to disaster areas and configured to restore some of the functions of damaged terrestrial telecommunications networks. The system requirements were presented, leading to the next stage of the planned research, where a range of possible solutions were examined. The best solution was selected based on the earlier, predefined criteria. The system was modeled, and a test ii system built. The system was tested and redesigned when necessary, to meet the requirements. The research has shown how the combination of technology, especially the recent miniaturizations and move to open source software for cellular network components can allow sophisticated cellular networks to be implemented. The ACN system proposed could enable connectivity and reduce the communications problems that were experienced following Hurricane Sandy and Katrina. Experience with both natural and man-made disasters highlights the fact that communications are useful only to the extent that they are accessible and useable by the population

    Modeling Attitude Variance in Small Unmanned Aerial Systems for Acoustic Signature Simplification Using Experimental Design in a Hardware-in-the-Loop Simulation

    Get PDF
    The role and use of unmanned aerial systems (UASs) by the Department of Defense has been on the rise over the past decade. The majority of these systems are being utilized in environments where the UAS\u27s acoustic stealth is frequently of greater importance than radio frequency or visual stealth. Additionally, missions involving these types of systems tend to involve dynamic mission planning requirements rather than preplanned routing. Therefore, an acoustic model capable of providing real-time probability of detection information is desired. However, with present-day technology and existing acoustic models, real-time calculation of the complete acoustic signature for a small UAS (SUAS) is not feasible. This research demonstrates that the acoustic signature of the Sig Rascal 110 SUAS can be reduced by greater than 99.3% when a listener point of interest is directly below the aircraft using a methodology to model SUAS attitude variance to reduce the portion of the acoustic signature of concern. This model is developed using designed experiments in a hardware-in-the-loop simulation and uses aircraft flight parameters as factors determining attitude variance

    Towards Space Solar Power - Examining Atmospheric Interactions of Power Beams with the HAARP Facility

    Full text link
    In the most common space solar power (SSP) system architectures, solar energy harvested by large satellites in geostationary orbit is transmitted to Earth via microwave radiation. Currently, only limited information about the interactions of microwave beams with energy densities of several tens to hundreds of W/m2^2 with the different layers of the atmosphere is available. Governmental bodies will likely require detailed investigations of safety and atmospheric effects of microwave power beams before issuing launch licenses for SSP satellite systems. This paper proposes to collect representative and comprehensive data of the interaction of power beams with the atmosphere by extending the infrastructure of the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. Estimates of the transmission infrastructure performance as well as measurement devices and scientific capabilities of possible upgrade scenarios will be discussed. The proposed upgrade of the HAARP facility is expected to deliver a wealth of data and information which could serve as a decision base for governmental launch licensing of SSP satellites, and which can be used in addition to deepen public acceptance of SSP as a large-scale renewable energy source. Copyright 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Comment: 7 pages, 3 figures; to be published in IEEE Xplore, in Proceedings to IEEE Aerospace 2014 Conference, Mar 1 - 8, 2014, Big Sky, MT, US

    Aerial base station placement in temporary-event scenarios

    Get PDF
    Die Anforderungen an den Netzdatenverkehr sind in den letzten Jahren dramatisch gestiegen, was ein großes Interesse an der Entwicklung neuartiger Lösungen zur Erhöhung der Netzkapazität in Mobilfunknetzen erzeugt hat. Besonderes Augenmerk wurde auf das Problem der Kapazitätsverbesserung bei temporären Veranstaltungen gelegt, bei denen das Umfeld im Wesentlichen dynamisch ist. Um der Dynamik der sich verändernden Umgebung gerecht zu werden und die Bodeninfrastruktur durch zusätzliche Kapazität zu unterstützen, wurde der Einsatz von Luftbasisstationen vorgeschlagen. Die Luftbasisstationen können in der Nähe des Nutzers platziert werden und aufgrund der im Vergleich zur Bodeninfrastruktur höheren Lage die Vorteile der Sichtlinienkommunikation nutzen. Dies reduziert den Pfadverlust und ermöglicht eine höhere Kanalkapazität. Das Optimierungsproblem der Maximierung der Netzkapazität durch die richtige Platzierung von Luftbasisstationen bildet einen Schwerpunkt der Arbeit. Es ist notwendig, das Optimierungsproblem rechtzeitig zu lösen, um auf Veränderungen in der dynamischen Funkumgebung zu reagieren. Die optimale Platzierung von Luftbasisstationen stellt jedoch ein NP-schweres Problem dar, wodurch die Lösung nicht trivial ist. Daher besteht ein Bedarf an schnellen und skalierbaren Optimierungsalgorithmen. Als Erstes wird ein neuartiger Hybrid-Algorithmus (Projected Clustering) vorgeschlagen, der mehrere Lösungen auf der Grundlage der schnellen entfernungsbasierten Kapazitätsapproximierung berechnet und sie auf dem genauen SINR-basierten Kapazitätsmodell bewertet. Dabei werden suboptimale Lösungen vermieden. Als Zweites wird ein neuartiges verteiltes, selbstorganisiertes Framework (AIDA) vorgeschlagen, welches nur lokales Wissen verwendet, den Netzwerkmehraufwand verringert und die Anforderungen an die Kommunikation zwischen Luftbasisstationen lockert. Bei der Formulierung des Platzierungsproblems konnte festgestellt werden, dass Unsicherheiten in Bezug auf die Modellierung der Luft-Bodensignalausbreitung bestehen. Da dieser Aspekt im Rahmen der Analyse eine wichtige Rolle spielt, erfolgte eine Validierung moderner Luft-Bodensignalausbreitungsmodelle, indem reale Messungen gesammelt und das genaueste Modell für die Simulationen ausgewählt wurden.As the traffic demands have grown dramatically in recent years, so has the interest in developing novel solutions that increase the network capacity in cellular networks. The problem of capacity improvement is even more complex when applied to a dynamic environment during a disaster or temporary event. The use of aerial base stations has received much attention in the last ten years as the solution to cope with the dynamics of the changing environment and to supplement the ground infrastructure with extra capacity. Due to higher elevations and possibility to place aerial base stations in close proximity to the user, path loss is significantly smaller in comparison to the ground infrastructure, which in turn enables high data capacity. We are studying the optimization problem of maximizing network capacity by proper placement of aerial base stations. To handle the changes in the dynamic radio environment, it is necessary to promptly solve the optimization problem. However, we show that the optimal placement of aerial base stations is the NP-hard problem and its solution is non-trivial, and thus, there is a need for fast and scalable optimization algorithms. This dissertation investigates how to solve the placement problem efficiently and to support the dynamics of temporary events. First, we propose a novel hybrid algorithm (Projected Clustering), which calculates multiple solutions based on the fast distance-based capacity approximation and evaluates them on the accurate SINR-based capacity model, avoiding sub-optimal solutions. Second, we propose a novel distributed, self-organized framework (AIDA), which conducts a decision-making process using only local knowledge, decreasing the network overhead and relaxing the requirements for communication between aerial base stations. During the formulation of the placement problem, we found that there is still considerable uncertainty with regard to air-to-ground propagation modeling. Since this aspect plays an important role in our analysis, we validated state-of-the-art air-to-ground propagation models by collecting real measurements and chose the most accurate model for the simulations
    corecore