12,368 research outputs found

    Multi-physics phenomena influencing the performance of the car horn

    Get PDF
    Usually cars are equipped with disk horns. In these devices electromagnetic energy is converted into mechanical energy of two nuclei that vibrate and impact each other \u2013 the impacts excite the disk that radiates sound. This paper aims at understanding the results of acoustic tests carried out on horns with different excitation voltages and different mounting brackets. Since many non-linear phenomena are inherent in the vibrations of the nuclei, a detailed model of the electromechanical system is developed. Results show the dependence of operating frequency on the input voltage and the role played by the various mechanical and electrical parameters on the dynamics of the horn. Particular nonlinear effects, like sub-harmonic excitation, are presented and discussed. A general agreement between experimental results and numerical simulations is found

    Fabrication and characterization of free-standing thick-film piezoelectric cantilevers for energy harvesting

    No full text
    Research into energy harvesting from ambient vibration sources has attracted great interest over the last few years, largely as a result of advances in the areas of wireless technology and low power electronics. One of the mechanisms for converting mechanical vibration to electrical energy is the use of piezoelectric materials, typically operating as a cantilever in a bending mode, which generate a voltage across the electrodes when they are stressed. Typically, the piezoelectric materials are deposited on a non-electro-active substrate and are physically clamped at one end to a rigid base. The presence of the substrate does not contribute directly to the electrical output, but merely serves as a mechanical supporting platform, which can pose difficulties for integration with other microelectronic devices. The aim of this paper is to describe a novel thick-film free-standing cantilever structure that does not use a supporting platform and has the advantage of minimising the movement constraints on the piezoelectric material, thereby maximising the electrical output power. Two configurations of composite cantilever structure were investigated; unimorph and multimorph. A unimorph consists of a pair of silver/palladium (Ag/Pd) electrodes sandwiching a laminar layer of lead zirconate titanate (PZT). A multimorph is an extended version of the unimorph with two pairs of Ag/Pd electrodes and three laminar sections of PZT

    Design of wideband vibration-based electromagnetic generator by means of dual-resonator

    Get PDF
    This paper describes the design of a wideband electromagnetic energy harvester that utilizes a novel dual-resonator method to improve the operational frequency range of the vibration-based generator. The device consists of two separate resonator systems (coil and magnet), which each comply with their respective resonance frequencies. This is because both resonators are designed in such a way that both magnet and coil components will oscillate at an additive phase angle, and hence create greater relative motion between the two dominating resonance frequencies, which realizes the wideband generator. Each resonator system consists of a distinctive cantilever beam, one attached with four magnets and steel keepers, the other attached with a copper coil and stainless steel holder as the free end mass. Both cantilevers are clamped and fitted to a common base that is subjected to a vibration source. Basic analytical models are derived and a numerical model is implemented in MATLAB-Simulink. Electromagnetic, structural modal and static mechanical analysis for the design of the prototype are completed using ANSYS finite element tools. For a 0.8 m s−2 acceleration, the open-loop voltage obtained from the experiment shows a good correlation with those from the simulation. Peak induced voltage is measured to be 259.5Vrms as compared to 240.9Vrms from the simulator at 21.3 Hz, which implies an error range of 7.7%. The results also indicate that there is a maximum of 58.22% improvement in the induced voltage within the intermediate region which occurs at the intersection point between the output response plots of two single resonator generators

    EVA Glove Research Team

    Get PDF
    The goal of the basic research portion of the extravehicular activity (EVA) glove research program is to gain a greater understanding of the kinematics of the hand, the characteristics of the pressurized EVA glove, and the interaction of the two. Examination of the literature showed that there existed no acceptable, non-invasive method of obtaining accurate biomechanical data on the hand. For this reason a project was initiated to develop magnetic resonance imaging as a tool for biomechanical data acquisition and visualization. Literature reviews also revealed a lack of practical modeling methods for fabric structures, so a basic science research program was also initiated in this area

    Seasonally Frozen Soil Effects on the Seismic Performance of Highway Bridges

    Get PDF
    INE/AUTC 12.0
    corecore