543 research outputs found

    A Survey on UAV-Aided Maritime Communications: Deployment Considerations, Applications, and Future Challenges

    Full text link
    Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements

    Ten years of cooperation between mobile robots and sensor networks

    Get PDF
    This paper presents an overview of the work carried out by the Group of Robotics, Vision and Control (GRVC) at the University of Seville on the cooperation between mobile robots and sensor networks. The GRVC, led by Professor Anibal Ollero, has been working over the last ten years on techniques where robots and sensor networks exploit synergies and collaborate tightly, developing numerous research projects on the topic. In this paper, based on our research, we introduce what we consider some relevant challenges when combining sensor networks with mobile robots. Then, we describe our developed techniques and main results for these challenges. In particular, the paper focuses on autonomous self-deployment of sensor networks; cooperative localization and tracking; self-localization and mapping; and large-scale scenarios. Extensive experimental results and lessons learnt are also discussed in the paper

    A Survey on Cellular-connected UAVs: Design Challenges, Enabling 5G/B5G Innovations, and Experimental Advancements

    Full text link
    As an emerging field of aerial robotics, Unmanned Aerial Vehicles (UAVs) have gained significant research interest within the wireless networking research community. As soon as national legislations allow UAVs to fly autonomously, we will see swarms of UAV populating the sky of our smart cities to accomplish different missions: parcel delivery, infrastructure monitoring, event filming, surveillance, tracking, etc. The UAV ecosystem can benefit from existing 5G/B5G cellular networks, which can be exploited in different ways to enhance UAV communications. Because of the inherent characteristics of UAV pertaining to flexible mobility in 3D space, autonomous operation and intelligent placement, these smart devices cater to wide range of wireless applications and use cases. This work aims at presenting an in-depth exploration of integration synergies between 5G/B5G cellular systems and UAV technology, where the UAV is integrated as a new aerial User Equipment (UE) to existing cellular networks. In this integration, the UAVs perform the role of flying users within cellular coverage, thus they are termed as cellular-connected UAVs (a.k.a. UAV-UE, drone-UE, 5G-connected drone, or aerial user). The main focus of this work is to present an extensive study of integration challenges along with key 5G/B5G technological innovations and ongoing efforts in design prototyping and field trials corroborating cellular-connected UAVs. This study highlights recent progress updates with respect to 3GPP standardization and emphasizes socio-economic concerns that must be accounted before successful adoption of this promising technology. Various open problems paving the path to future research opportunities are also discussed.Comment: 30 pages, 18 figures, 9 tables, 102 references, journal submissio

    AVENS - A Novel Flying Ad Hoc Network Simulator with Automatic Code Generation for Unmanned Aircraft System

    Get PDF
    The wireless communication has played a significant impact on our daily lives introducing simplicity and making life more comfortable. \ As a result of faster technological advances in electronics and communications, the development of different types of unmanned aerial vehicles (UAVs) has become possible. \ Recently, many efforts have been made to develop more efficient inter- and intra-vehicle communication protocols introducing new challenges, e. g. multiple-UAV communication and Flying Ad Hoc Networks (FANETs). \ However, most of the experiments using real prototypes or systems are not feasible due to the costs and risks involved. \ Thus, simulating network protocol behavior in FANET scenarios is increasingly required to evaluate the applicability of developed network protocols. \ Thereby, we have been developing AVENS, a hybrid aerial network simulation framework, which merges LARISSA Architectural Model, X-Plane Flight Simulator and OMNeT++ Discrete Event Simulator. \ In a proof-of-concept study, we highlighted its advantages. \ Using AVENS, we can advance in the state-of-the-art concerning performance evaluation of intelligent aerial vehicles and provide means to evaluate the development of protocols, codes and systems more accurately

    UAV Connectivity over Cellular Networks:Investigation of Command and Control Link Reliability

    Get PDF

    Formation coordination and network management of UAV networks using particle swarm optimization and software-defined networking

    Get PDF
    In recent years, with the growth in the use of Unmanned Aerial Vehicles (UAVs), UAV-based systems have become popular in both military and civil applications. The lack of reliable communication infrastructure in these scenarios has motivated the use of UAVs to establish a network as flying nodes, also known as UAV networks. However, the high mobility degree of flying and terrestrial users may be responsible for constant changes in nodes’ positioning, which makes it more challenging to guarantee their communication during the operational time. In this context, this work presents a framework solution for formation coordination and network management of UAVs, which aims to establish and maintain a set of relays units in order to provide a constant, reliable and efficient communication link among user nodes - which are performing individual or collaborative missions on its turn. Such a framework relies on a set of formation coordination algorithms - including the Particle Swarm Optimization (PSO) evolutionary algorithm -, and also considers the use of Software-defined Networking-based (SDN) communication protocol for network management. For coordination proposes, a novel particle selection criteria is proposed, which aims to guarantee network manageability of UAV formations, therefore being able to guarantee service persistence in case of nodes’ failure occurrence, as well as to provide required network performance, as a consequence. Simulations performed in OMNeT++ show the efficiency of the proposed solution and prove a promising direction of the solution for accomplishing its purposes.Em regiões de confrontos militares, em cenários pós-catástrofes naturais e, inclusive, em grandes áreas de cultivo agrícola, é comum a ausência de uma infra-estrutura préestabelecida de comunicação entre usuários durante a execução de uma ou mais operações eventuais. Nestes casos, Veículos Aéreos Não Tripulados (VANTs) podem ser vistos como uma alternativa para o estabelecimento de uma rede temporária durante essas missões. Para algumas aplicações, a alta mobilidade destes usuários podem trazem grandes desafios para o gerenciamento autônomo de uma estrutura de comunicação aérea, como a organização espacial dos nós roteadores e as políticas de encaminhamento de pacotes adotadas durante a operação. Tendo isso em vista, esse trabalho apresenta o estudo de uma solução que visa o estabelecimento e manutenção das conexões entre os usuários - nos quais executam tarefas individuais ou colaborativas -, através do uso de algoritmos de coordenação de formação - no qual inclui o algoritmo evolucionário Otimização por Enxame de Partículas -, e, também, de conceitos relacionados a Rede Definidas por Software para o gerenciamento da rede. Ainda, é proposto um novo critério de seleção das partículas do algoritmo evolucionário, visando garantir gerenciabilidade das topologias formadas e, consequentemente, a persistência do serviço em caso de falha dos nós roteadores, assim como o cumprimento de especificações desejadas para o desempenho da rede. Simulações em OMNeT++ mostraram a eficácia da proposta e sustentam o modelo proposto a fim de atingir seus objetivos
    corecore