69 research outputs found

    TinyTerp: A FULLY AUTONOMOUS MOBILE SMART CENTI-ROBOT

    Get PDF
    A fully autonomous modular 8 cm3 robot is presented using commercially available off-the-shelf (COTS) components. The robot introduced is called Tiny Terrestrial Robotic Platform (TinyTeRP) which provides an inexpensive, easily assembled, small robotic platform for researchers to study swarm behavior. TinyTeRP can be assembled in 30 minutes and costs $51.50. TinyTeRP is fully autonomous, with approximately 10 minutes of run time, and the ability to travel over 20 cm/s with DC motors and wheels. Communication to other TinyTeRP robots and stationary sensors is performed using a 2.4 GHz IEEE 802.15.4 radio. TinyTeRP has the ability to interface with additional sensors modules and locomotion actuators, including a wheeled locomotion and inertial measurement unit (IMU) module. An additional legged platform module that uses thermally actuated polymer legs with a silver composite acrylic is discussed. Finally, TinyTeRP demonstrates the use of two control algorithms to interact with a fixed beacon using received signal strength indicator (RSSI)

    Inherently Elastic Actuation for Soft Robotics

    Get PDF

    SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Get PDF
    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity

    Bioinspired Jumping Locomotion for Miniature Robotics

    Get PDF
    In nature, many small animals use jumping locomotion to move in rough terrain. Compared to other modes of ground locomotion, jumping allows an animal to overcome obstacles that are relatively large compared to its size. In this thesis we outline the main design challenges that need to be addressed when building miniature jumping robots. We then present three novel robotic jumpers that solve those challenges and outperform existing similar jumping robots by one order of magnitude with regard to jumping height per size and weight. The robots presented in this thesis, called EPFL jumper v1, EPFL jumper v2 and EPFL jumper v3 have a weight between 7g and 14.3g and are able to jump up to 27 times their own size, with onboard energy and control. This high jumping performance is achieved by using the same mechanical design principles as found in jumping insects such as locusts or fleas. Further, we present a theoretical model which allows an evaluation whether the addition of wings could potentially allow a jumping robot to prolong its jumps. The results from the model and the experiments with a winged jumping robot indicate that for miniature robots, adding wings is not worthwhile when moving on ground. However, when jumping from an elevated starting position, adding wings can lead to longer distances traveled compared to jumping without wings. Moreover, it can reduce the kinetic energy on impact which needs to be absorbed by the robot structure. Based on this conclusion, we developed the EPFL jumpglider, the first miniature jumping and gliding robot that has been presented so far. It has a mass of 16.5g and is able to jump from elevated positions, perform steered gliding flight, land safely and locomote on ground with repetitive jumps1. ______________________________ 1See the collection of the accompanying videos at http://lis.epfl.ch/microglider/moviesAll.zi

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs

    Director's Discretionary Fund Report for Fiscal Year 1997

    Get PDF
    This technical memorandum contains brief technical papers describing research and technology development programs sponsored by the Ames Research Center Director's Discretionary Fund during fiscal year 1997 (October 1996 through September 1997). Appendices provide administrative information for each of the sponsored research programs

    Functional Soft Robotic Actuators Based on Dielectric Elastomers

    Get PDF
    Dielectric elastomer actuators (DEAs) are a promising soft actuator technology for robotics. Adding robotic functionalities--folding, variable stiffness, and adhesion--into their actuator design is a novel method to create functionalized robots with simplified actuator configurations. We first propose a foldable actuator that has a simple antagonistic DEA configuration allowing bidirectional actuation and passive folding. To prove the concept, a foldable elevon actuator with outline size of 70 mm × 130 mm is developed with a performance specification matched to a 400 mm wingspan micro air vehicle (MAV) of mass 130 g. The developed actuator exhibits actuation angles up to ± 26 ° and a torque of 2720 mN·mm in good agreement with a prediction model. During a flight, two of these integrated elevon actuators well controlled the MAV, as proven by a strong correlation of 0.7 between the control signal and the MAV motion. We next propose a variable stiffness actuator consisting of a pre-stretched DEA bonded on a low-melting-point alloy (LMPA) embedded silicone substrate. The phase of the LMPA changes between liquid and solid enabling variable stiffness of the structure, between soft and rigid states, while the DEA generates a bending actuation. A proof-of-concept actuator with dimension 40 mm length × 10mm width × 1mm thickness and a mass of 1 g is fabricated and characterized. Actuation is observed up to 47.5 ° angle and yielding up to 2.4 mN of force in the soft state. The stiffness in the rigid state is ~90 × larger than an actuator without LMPA. We develop a two-finger gripper in which the actuators act as the fingers. The rigid state allows picking up an object mass of 11 g (108 mN), to be picked up even though the actuated grasping force is only 2.4 mN. We finally propose an electroadhesion actuator that has a DEA design simultaneously maximizing electroadhesion and electrostatic actuation, while allowing self-sensing by employing an interdigitated electrode geometry. The concept is validated through development of a two-finger soft gripper, and experimental samples are characterized to address an optimal design. We observe that the proposed DEA design generates 10 × larger electroadhesion force compared to a conventional DEA design, equating to a gripper with a high holding force (3.5 N shear force for 1 cm^2) yet a low grasping force (1 mN). These features make the developed simple gripper to handle a wide range of challenging objects such as highly-deformable water balloons (35.6 g), flat paper (0.8 g), and a raw chicken egg (60.9 g), with its lightweight (1.5 g) and fast movement (100 ms to close fingers). The results in this thesis address the creation of the functionalized robots and expanding the use of DEAs in robotics

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study
    • …
    corecore