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A fully autonomous modular 8 cm
3
 robot is presented using commercially available 

off-the-shelf (COTS) components. The robot introduced is called Tiny Terrestrial 

Robotic Platform (TinyTeRP) which provides an inexpensive, easily assembled, 

small robotic platform for researchers to study swarm behavior. TinyTeRP can be 

assembled in 30 minutes and costs $51.50. TinyTeRP is fully autonomous, with 

approximately 10 minutes of run time, and the ability to travel over 20 cm/s with DC 

motors and wheels. Communication to other TinyTeRP robots and stationary sensors 

is performed using a 2.4 GHz IEEE 802.15.4 radio. TinyTeRP has the ability to 

interface with additional sensors modules and locomotion actuators, including a 

wheeled locomotion and inertial measurement unit (IMU) module. An additional 

legged platform module that uses thermally actuated polymer legs with a silver 

composite acrylic is discussed. Finally, TinyTeRP demonstrates the use of two 

control algorithms to interact with a fixed beacon using received signal strength 

indicator (RSSI).  
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Chapter 1 Introduction 

In the last century robots have become an integral part of life. A robot, for this 

research, is a device that has the ability to perform tasks repetitively. Robots can 

complete tasks from assembling cars to cleaning floors. These robots can be found in 

various sizes, ranging from several meters to millimeters in length. Small robots are 

capable of completing tasks that larger robots cannot, such as scurrying under doors 

and stealthily moving from place to place.  

These small robots can be broken down into groups based on their size. This 

paper will focus on two sizes; centimeter robots (centi-robots) and millimeter robots 

(milli-robots). Centi-robots have characteristic feature sizes of centimeters and 

volumes of several or more centimeters. Milli-robots have characteristic feature sizes 

of millimeters and volumes from 1.0 cm
3
 to several mm

3
.  

Robots can also be described as autonomous, mobile, smart, non-tethered, etc. 

This work will focus on centi/milli autonomous smart un-tethered mobile robots 

Autonomous will refer to a robot that can perform tasks without human intervention 

and have self contained sensing and control. Mobile robots will refer to robots that 

can move the entire robot from one location to another. Smart robots have the ability 

to sense and make decisions based on its environment. Non-tethered robots will not 

be linked to an external power or control unit to operate.  

1.1 Applications for Small Autonomous Robots 

 

 The main reason for creating the small robot in this paper is for further 

research with small robots, such as fabrication, control, actuation, sensing, etc. There 
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can be many interesting applications for small robots excluding research. It would be 

most useful to use these small robots to their advantage, which is size, cost, stealth 

and swarm applications. These robots can reach places larger robots cannot and a 

larger number of smaller robots can be used in a small area. Using many small robots 

can increase their versatility with the use of different sensors outfitted on the robots. 

The different sensors on different robots could collect more data measuring different 

stimuli.  

 One application for small robots is data collection in hazardous environments. 

The hazardous environments could include nuclear fallout, such as the disaster of 

Three Mile Island and more recently the reactors leaking in Japan, to visual images 

inside of a locked hazardous room using a camera. This could eliminate human 

workers that would have to otherwise go into the hazardous area. The use of hundreds 

or thousands of robots could spread throughout the area and relay information back to 

a base station, which would be very beneficial to the workers. If the area is too large 

for direct communication back to the base station, then robots could hop the message 

back to the base station.  

Spy applications are another area where size, costs, and stealth are important. A 

well known military spy robot classification is the Unmanned Aerial Vehicle (UAV). 

UAVs fly in the air and send information, such as images, back to a base station. In 

addition to UAVs there is Unmanned Ground Vehicles (UGV). These robots are 

usually hundreds of centimeters or meters in size. The military is currently testing the 

usefulness of a Small Unmanned Ground Vehicle (SUGV), the XM1216 [1], [2]. 
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Another classification of military robots is called Micro Unmanned Ground Vehicles 

(MUGV). SUGV and MUGV could be a great addition to the military‟s arsenal. 

1.2 Literature Review: Centi and Milli Robots 

 

The centimeter scale will refer to robots with a volume of several or more 

centimeters cubed and lengths and widths of several centimeters. There have been 

many robots built by various designers at the centimeter scale. Each robot is often 

built tailored to the designer‟s objectives, goals, and motives for building the robot. 

These robots come with a variety of design choices including: locomotion methods, 

data processing capabilities, and sensor payloads. Depending on the intended 

application, these design choices will affect the final configuration of the robot.  

Millimeter scale robots are robots with volume of mm
3
 and feature sizes of 

millimeters. Some of these robots have to be tethered due to the inability to supply 

enough power on board to actuate the robot. Also, these robots often use actuators 

that require high voltages, >100 V, which introduces a challenge since most 

microcontrollers and lithium ion batteries supply 3.5 V. 

1.2.1  Centi-robots 

 

One example of a centi-scale robot is ALICE from EPFL, shown in Figure 1.1 

[3–5]. Alice is approximately 2.0 x 2.0 x 2.0 cm (8.0 cm
3
). Alice is a robot with a 

reconfigurable base module, watch motors with aluminum wheels for locomotion, 

and button cell batteries for power [4]. The designers of ALICE decided to use 

infrared (IR) transceivers for both obstacle detection and short range communication 
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[5]. IR transceivers send and sense IR light. IR transceivers are convenient because 

the same sensor can be used for two purposes, IR obstacle detection and IR 

communication. IR communication has several challenges including extremely short 

range, about 4 cm, and low data transfer rates [5]. A separate radio module was 

available for ALICE that used an 868 MHz transceiver, which could send and receive 

868 MHz radio transmissions. This transceiver used more power than IR; transmit 

power increased from 3 mW for IR to 24 mW for the radio. The tradeoff for an 

increase in power consumption was a increase in communication distance. The radio 

module also added height to ALICE‟s platform, increasing the overall volume from 

approximately 8.0 cm
3
 to 10.0 cm

3
. Exact dimensions were not given but it appeared 

that ALICE grew larger with each additional sensor module and larger locomotion 

platforms. Several revisions were made to ALICE which included a rechargeable 

NiMH battery, various wheeled locomotion devices, and different sensor payloads 

[5].  

 
Figure 1.1: ALICE in 2002 [3] 
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RoACH is another example of a centi-robot designed by Dr. Fearing, shown 

in Figure 1.2 [6], [7]. This robot is approximately 3.0 x 3.0 x 2.0 cm ( 18 cm
3
). 

RoACH‟s locomotion is achieved by using bio-inspired legs. One challenge for 

RoACH was using Shape Memory Alloy (SMA) for its actuator. SMA was chosen for 

its high force density and ease of assembly. However, the SMA actuators use over 0.8 

W of power when actuated and have slow response times due to heating and cooling 

SMA. A DC-DC step-up module was used to increase the battery voltage from 3.7 V 

to 13.6 V needed to properly actuate the SMA. RoACH also uses IR for 

communication. Combined with a legged platform, the robot moved slowly, roughly 

3 cm/s.  

 
Figure 1.2: RoACH standing next to a U.S. quarter [6] 

 

The Kilobots are relatively new robots, appearing in 2011, from Harvard, 

shown in Figure 1.3 [8] . This robot has a circular platform with a diameter of 

approximately 3.0 cm and a height of 3.5 cm (25 cm
3
).  A few interesting design 

choices made with attention to the challenges of using numerous robots. For example, 

an over head IR programming device can program large numbers of Kilobots at once. 
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Charging of the Kilobot‟s lithium ion polymer battery is done collectively, which 

decreases charging time compared to charging a large number of robot batteries 

independently with a single charger. Each Kilobot costs about $14.00 total, which is 

the least expensive robot available by $120.00 [8]. One limitation of this robot is 

using IR communication because IR‟s short communication distance. Another 

limitation of the Kilobot is using vibrating legs for locomotion. The vibrating leg 

locomotion limits the robot to extremely smooth surfaces.   

 
Figure 1.3: An illustration of two Kilobots communicating [8] 

 

HAMR
3
 is a third generation autonomous hexapod by Dr. Wood, shown in 

Figure 1.4 [9]. HAMR
3
 is approximately 4.0 x 2.0 x 1.5 cm (12 cm

3
). The robot can 

move with an average speed of 3.0 cm/s using a six leg platform with piezoelectric 

actuators. Piezoelectric actuators create a mechanic stress when voltage is applied, 

actuating the legs. This voltage is usually high and in the case of HAMR
3
 a custom 

circuit was needed to step 3.7 V up to 200 V. This high voltage presents a challenge 

because most rechargeable batteries store less than 5.0 V and integrated circuits often 

use less than 5.0 V. 
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Figure 1.4: HAMR

3
 next to a penny [9] 

 

Table 1.1: Comparison of Centimeter Scale Robots ([4], [6–9]) 

Robot Name 

Size 

(cm
3
) 

Comm. 

Type Locomotion Actuator Speed (cm/s) 

Alice  8 IR Wheel DC motor ? 

Roach 18 IR SMA SMA 3 

KiloBots 25  IR Stick Slip DC motor 1 

HAMR3 12 None Legs Piezoelectric 3 

This Work 8 RF Wheel DC motor 20 

 

1.2.2  Milli-robots 

 

A tethered walking silicon milli-robot was created by Ebefors, shown in 

Figure 1.5 [10–12]. This robot is approximated to be 1.0 x 0.7 x 0.5 cm (0.35 cm
3
).  

This robot could achieve locomotion speeds of 0.6 cm/s and the ability to lift loads 30 

times its own weight. The robot was created by etching “V” shaped grooves into 

silicon. Polyimide was then deposited into the grooves which allowed greater 

expansion in the wide portion of the groove than the narrow portion. The expansion 

was caused by joule heating which occurs when current flows through a conductive 

medium, in this case through doped silicon heaters. The increase in temperature 
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causes polyimide to expand and the expansion causes the leg to move. One challenge 

when using thermally actuated legs was large power consumption, this robot used 1.1 

W when walking at maximum speed.  To supply this large amount of power at this 

scale, the robot had to be tethered for powere and control using bond wires. 

 
Figure 1.5: Walking silicon robot by Ebefors [10] 

 

Churaman, of the University of Maryland, created the first autonomous 

jumping energetic porous silicon robot, shown in Figure 1.6 [13–16]. This robot was 

approximately 0.7 x 0.6 x 0.7 cm (0.3 cm
3
). Non-tethered jumping locomotion was 

demonstrated by using a phototransistor to trigger an energetic nanoporous silicon 

reaction and propel the robot into the air. Power for the circuit was stored in a 

capacitor on top and porous silicon was attached to the bottom of the robot platform. 

One challenge for the use of porous silicon is water absorption from humid air. 

Another challenge is the limited jump cycles that the robot can perform.   
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Figure 1.6: Porous Silicon Jumping Robot Courtesy of Wayne Churaman [13] 

 

  

A flying robot was created by Dr. Robert Wood of Harvard, shown in Figure 

1.7 [17], [18]. This robot, with wings, is approximately 3.2 x 0.5 by 0.3 cm (0.48 

cm
3
), classifying it as milli-bot for this paper. The robot uses a piezoelectric actuator 

and transmission to flap wings. The actuator and transmission are created using smart 

composite microstructures (SCM) [19], a process that allows scalable micro-

structures to be created quickly. The robot was able to achieve flight using off board 

power and control. One challenge for this robot is the use of piezoelectric actuation, 

which needs high voltages to operate, 300 V. Another challenge is flight stability, 

which is currently provided using guiding rods and off board control.  

 

 
Figure 1.7: The robot created by Wood [17] 
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Table 1.2: Comparison of millibots 

Robot Size (cm3) Power Control Locomotion Actuator 

Ebefors 0.35 tethered tethered legs Thermal 

Churaman 0.3 on board on board jumping Energetic silicon 

Wood 0.48 tethered tethered flying Piezoelectric 

 

1.2.3 Literature Review Conclusions 

 

 While not every robot was analyzed, most centimeter robots use IR 

communication, which has a short communication range. These centimeter robots are 

also generally larger than 10 cm
3
 and are expensive to make, with the exception of 

Kilobot. Millimeter robots often use off board power and control. This limits the 

ability for autonomous robot control because the robot has to be attached to a 

stationary device.  
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Chapter 2 TinyTeRP 

The robot introduced in this paper is called the Tiny Terrestrial Robotic Platform, 

or TinyTeRP for short. TinyTeRP is a step in the process of creating a milli-scale 

robot. This research was completed as part of Antbot at the University of Maryland, 

College Park; a collaborated project between multiple departments that started in the 

Fall of 2009. Of interest to Antbot is creating actuators and platforms for centimeter 

and millimeter scale robots. Work in the Antbot group includes designing time 

difference of arrival (TDOA) distance measuring devices [20], control algorithms 

[21–23], actuators [24], [25], and several other projects. To be useful to the Antbot 

group a few key parameters were addressed. These parameters are:  

 Size: Hundreds of small autonomous robots will fit within 1.0  m
2
.  

 Cost: Will have an effect on the number of robots built with a reasonable 

amount of money.  

 Fabrication Time: Will influence the number of robots that are able to be 

built in a reasonable amount of time. 

 Reconfigurability: Will allow different sensor, actuator, and robot 

configurations to be studied working together in a collective group. 

 Communication: The robots will need to communicate to other robots and 

computers. 

2.1 Design Goals 

TinyTeRP began with six goals, the first being size. TinyTeRP would also have to 

contain locomotion, energy, sensors, and control boards while remaining small. 
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TinyTeRP‟s target size was set at 1.0 cm
3
 because it would break into milli-robot 

size. These included the surface it would operate on, the environment it would 

operate in, and the duties that TinyTeRP was to perform. It was assumed that 

TinyTeRP would operate on smooth surface such as tile. The tile surface in the 

Antbot lab rarely has obstacles more than 0.1 cm in size, excluding tables, chairs, etc.  

The second goal was the final cost of the robot, including parts for locomotion 

would be under $50.00 which would allow 100 TinyTeRP robots to be built for 

$5000.00. To reduce cost, TinyTeRP will use products that are commercially 

available of the shelf (COTS), such as in [26]. If TinyTeRP has a length and width of 

1.0 cm, then 100 robots could be released in a 1.0 m
2
 area with only 1.0% being 

filled. For swarm behavior research having hundreds of robots would be beneficial 

and the cost of each robot would most likely be the limiting factor in acquiring 

hundreds of robots.  

Using little power is the third goal of TinyTeRP. The robot should use less 

than 0.35 W at full power. 0.35 W of power can be provided by 3.5 V batteries with 

50.0 mAh capacities discharging at 2.0 C. This means the robot should run for 

approximately 30 minutes, more than long enough for the Antbot group testing. The 

battery should be easily recharged and easily connected to TinyTeRP.  

Fourth, TinyTeRP should be able to move quickly from place to place, much 

like a cockroach. A speed of 20.0 cm/s, ~20.0 body lengths, should be achieved. This 

will allow control logic to be tested in a reasonable amount of time.  
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The fifth goal for TinyTeRP is the ability to communicate over 30.0 cm away 

to another robot, static sensor, or computer. This would allow researchers to test 

dispersed swarm behavior and relay information to a computer for analysis.  

Lastly, the robot should be reconfigurable. An outline for TinyTerp was 

created using the knowledge learned from previous robots. The robot was designed so 

that it would have five distant parts. The outline for TinyTeRP is shown in a 

Computer Aided Drawing (CAD) model in Figure 2.8. This CAD model shows a 

sensor module, base module, battery, chassis, and locomotion actuators. Different 

sensor and locomotion modules can be added to the TinyTeRP depending on the 

application of interest. This CAD model uses wheeled DC motors for locomotion and 

an ambiguous sensor module. The different sensor modules will contain different 

sensors and additional processors if necessary. The base module will provide the 

“brains” of robot, ie a microcontroller. Data will be transmitted between the base and 

sensor modules through a common interface that would allow multiple modules to be 

connected with a common header. This base module will contain a communication 

device, motor controllers, LEDs, and an interface for data transfer between modules. 

The chassis will hold the robot together, connecting the modules and battery to the 

locomotion actuators. In the case of Figure 2.8, the chassis would connect the 

modules and battery to electric motors.  
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Figure 2.8: Exploded CAD view of TinyTeRP design 

 

2.3 Battery Selection 

 TinyTerp will need a rechargeable small battery to power all the modules. The 

battery will be connected to the common header so that other modules can receive 

power from it. Lithium polymer batteries were chosen because these batteries can 

purchased as an COTS component from www.PowerStream.com. Lithium polymer 

batteries have a nominal voltage of 3.7 V when charged and have the ability to be 

recharged hundreds of times.  

Unfortunately, to achieve long run times, 50 mAh batteries will be needed. 

Also, cheaper batteries were a priority to keep costs to a minimum. A 50 mAh 

rechargeable lithium polymer battery was chosen for $6.15 from 

www.poerstream.com. These were chosen because other websites, such as 

www.microflight.com, contain the same 50 mAh batteries. Table 2.3 is a comparison 

of a few batteries that PowerStream has available.  
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Table 2.3: Comparison of different lithium polymer batteries [27] 

    

Capacity (mAh) Length Width (cm) 

Thickness 

(cm) 

Volume 

(cm3) Cost 

8 0.3 0.9 1 0.27  $ 15.00  

40 0.45 1.1 2 0.99  $   6.45  

50 0.5 1.2 1.5 0.9  $   6.15  

75 0.5 1.1 2 1.1  $   6.15  

 

TinyTeRP needs to be rechargeable, so magnets were attached to the batteries 

for quick attachment. The magnets were attached by soldering the magnets to the 

battery leads. This is the same method used on the batteries on www.microflight.com. 

This allowed different batteries to be tested with TinyTeRP because changing 

batteries is as easy as clipping them on.  

A charger from www.microflight.com was also purchased for charging the 

batteries. The charger can charge batteries up to 130 mAh. The charger also includes 

magnets so the batteries can be quickly attached. Charge times were approximately 

one hour. 
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Chapter 3  TinyTeRP’s Base Module 

TinyTeRP needs to be a milli autonomous smart mobile robot with the capability 

of making decisions. To accomplish this task, TinyTeRP will need processing, 

sensing, power, and locomotion. The base module will contain most of the processing 

and power control for the locomotion and sensing modules. This will allow for quick 

reconfigurability because each different locomotion and sensing module can be 

plugged into a common base module. 

3.1  TinyTeRP Base Module Design 

 

 A few key components will be needed onboard for the base module to 

properly control the sensing and locomotion modules. Additionally various discrete 

components, such as resistors and capacitors, must all fit on a printed circuit board 

(PCB) with a cross sectional area of 1.0 cm
2
. The components include: 

 Microcontroller: This is an IC that contains processing capabilities along with 

peripheral components. Peripheral components could include operational 

amplifiers, analog to digital convertors, hardware multipliers, etc.  

 H-bridge: An IC that allows a low current logic signal to control a internal circuit 

that will allow more current to be sourced to the locomotion module.  

 LEDs: A programmer can use LEDs for visual feedback of the state of the base 

module. The LED can be switched on and off depending of sensed data, time, or 

state condition. 
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 Header: A way for multiple sensing or locomotion modules to be connected to 

one another. Also a way to program the microcontroller. The header should also 

include pins for serial communication between boards. 

 Radio: The radio will allow TinyTeRP to communicate to other robots, stationary 

sensors, and computers wirelessly.  

3.1.1  Mini-bot 

 

Research began for the TinyTeRP base module with the creation of mini-bot 

[20]. This robot was approximately 6.0 x 3.5 x 5.5 cm (115.5 cm
3
) and used a Texas 

Instrument‟s eZ430rf2500 (eZ430) development board. The eZ430 and locomotion 

module were both COTS components. A 50 mAh Full River LiPo battery was 

connected to a header and was used to power a eZ430 board.  Figure 3.9 is a picture 

of the mini-bot. 

 

 

Figure 3.9: eZ430 mounted on mini-bot [20] 

 

eZ430 

Additional 

senor 

module 

Header 

Locomotion 

module 



 

 18 

 

The base module‟s eZ430 target board costs $25.00 and the hardware for 

debugging and programming dongle costs an additional $25.00 [28], [29]. The eZ430 

was chosen because it is COTS, low cost, available, well documented on the web, and 

shipped assembled. The eZ430 contains an MSP430F2274 microcontroller, CC2500 

radio IC, LEDs, and other various discrete components necessary for the 

microcontroller and radio. The dimensions of the board are 2.0 x 3.0 x 0.3 cm (1.8 

cm
3
) and a picture of the board is shown in Figure 3.10.  

 

 
Figure 3.10: eZ430RF2500 Evaluation Kit 

 

Limitations for the eZ430 included connecting the motors directly to the 

eZ430. There was a concern for circuit failure since the maximum current output of 

the microcontroller is only 20 mA and the motors in mini-bot used approximately 100 

mA. Although, the robot was still mobile and the DC motors would run, it was 

decided that a better design would have an H-bridge on the base module to distribute 

current to the motors with control from the microcontroller.  

Another limitation of the eZ430 was size. Since the eZ430 was already over 

the target size, it was clear that a new base module would be needed. The eZ430 was 

great for evaluation purposes, which is what it was designed for, but it could be made 
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smaller by using a four layer printed circuit board (PCB) rather than a two layer 

board. Components could also be placed on both sides of the board rather than one 

side. Extras components on the eZ430 for evaluation purposes, such as a button, 18 

pin outs, and large chip antenna took up valuable space. 

Serial communication ports became another limitation of the EZ430. Serial 

communication is a way to communicate from board to board or board to device. 

There are several communication techniques which include Serial Port Interface 

(SPI), Universal Asynchronous Receive/Transmit (UART), and Inter-Integrated 

Circuit (I
2
C). Serial communication was supported with two sets of hardware 

peripherals in the MSP430F2274 microcontroller. Unfortunately the radio uses one 

set of these pins. This means that the radio would have to be inaccessible while 

another device was being communicated with causing messages to be missed. The 

other set of pins were routed to the 6 pin programming header and only allowed for 

UART communication, a serial communication method that is supported by fewer 

devices than I
2
C and SPI.   

 

3.1.2  PCB 1  

 

 Several revisions to the TinyTeRP base module were made. Figure 3.11 

shows the progression as boards were made more efficiently. PCB 1 is the oldest 

board, PCB 3 is the newest, and PCB 2 is in the middle. Notice that each board 

becomes denser with more components being added to the boards. Also only PCB 3 

has components on both sides of the board.  



 

 20 

 

 
Figure 3.11: Three Revisions of Base Module (Most Recent Is Bottom Board) 

 

 

The first board, PCB 1, was a two layer, one sided component board. The 

dimensions were 4.6 cm x 2.8 cm. This board was created to learn the ins and outs of 

creating a PCB. An MSP430F2274 was chosen in a plastic quad flatpack no lead 

package (PVQFN) because it was the same microcontroller used on the eZ430. The 

PVQFN package was chosen because pins were only on two sides of the package and 

where spaced farther apart than plastic small outline packages (PDSO). This made 

soldering and component placement easier.  
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An Allegro 3901 H-bridge was placed on the PCB 1 because it fit the 

requirements for the small PCB. The 3901 contained two full H-bridges and had a 

small form factor, 0.3 x 0.3 cm. It was also able to source 400 mA of current per H-

bridge which would be enough current for 100 mA DC motors. It also operates at 3.0 

V for logic inputs, and up to 5.0 V for outputs. It has a low pin count, ten pins, and 

pins on only two sides of the package. This allows easy soldering and placement of 

the H-bridge. This H-bridge was also easy to use, requiring two I/O logic pins for 

control [30].  

Two types of headers were included on PCB 1. One header was used to 

connect to the motors, microcontroller, battery, and I/O devices together. This header 

allowed easy connection of devices by plugging into the header. The second header 

was a six pin header used for debugging, programming, serial communication. The 

pins included: 

1. Receive data  

2. Power  

3. Microcontroller reset 

4. Test 

5. Ground 

6. Transmit data 

A LED was placed on PCB 1 mainly for debugging purposes. The LED could 

flash at certain frequency denoting time, progress through a program, powering up 

stages, etc. Various discrete components were also added such as capacitors and 

resistors that were needed for the msp430 and LED. Capacitors were also used for 
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decoupling of the msp430 from the power supply. Decoupling acts as energy sources 

that would filter noises and spikes in the power supply. These spikes could damage or 

reset the microcontroller, causes the board to fail. 

 

 

 

Figure 3.12: Picture labeling all the major components on PCB 1 

 

3.1.3  PCB 2 

 

The second board created was geared toward a smaller PCB with more 

functionality. The same model microcontroller and H-bridge were used again in PCB 

2. In this version four LEDs were added to increase debugging capabilities. Multiple 

LEDs allowed for multiple visual feedback lights to be used at the same time. An 

analog accelerometer was also included for measuring acceleration. The 

accelerometer output was an analog voltage signal, so the signal was converted to 

digital using the analog-to-digital (ADC) inside the MSP430f2274.  

The final dimensions of PCB 2 were 3.1 cm x 2.4 cm. The board and 

components are shown in Figure 3.13. A slight mistake was made when designing the 
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board that cause a pin to be connect to ground instead of power. This was fixed with a 

jumper wire and allowed the board to function properly. 

 

 

 
Figure 3.13: Picture of PCB 2 labeling the major components 

 

3.1.4 PCB 3 

 

The third and latest board, PCB 3, was entirely redesigned to be 1.0 cm
2
 and 

have an on board radio. To further reduce size, PCB 3 was created as a 4 layer and 

two sided component board. Additionally a microcontroller with built-in radio, the TI 

CC2533 system-on-chip (SOC), was selected [31]. The decision to use the CC2533 

over others was due to size, features, and availability. Other microcontrollers that 

included a radio were reviewed, such as the ATmega128RFA1 but were discarded 

due to size, cost, or availability. For example, the ATmega128RFA1‟s dimensions 

were 0.9 cm x 0.9 cm compared to the CC2533‟s dimensions of 0.6 x 0. 6 cm [32].  

The CC2533 came in a plastic quad flatpack no lead package (PVQFN). This 

was chosen as it was much smaller than using other package types such as plastic 

small outline package (PDSO). Figure 3.14 shows the size difference between the 
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PDSO and PVWFN package. The PVQFN package is more difficult to solder because 

four sides need to be aligned increasing the chance of bridging the leads together or 

misalignment. Bridging of leads occurs when solder connects adjacent connections 

mistakenly during soldering. Misalignment occurs when the component becomes 

soldered to the wrong pads. Bridging and misalignment will both cause problems and 

the board may not work if either occurs.  

 

 
Figure 3.14: Comparison of Size Based Solely on Package Type 

 

 

The CC2533 has a built-in radio and therefore requires additional components 

to connect the CC2533 to an antenna. These additional components were needed for 

all SOCs reviewed that included a radio, so the additional components were 

unavoidable. The additional components included a balun and crystal [33]. The use of 

the small chip antenna was known to decrease the efficiency of the radio and range 

but it was necessary to fit all the required components onto a small form factor board. 
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Although, packet loss (<10%) at distances greater than 20 m outdoors and several 

meters indoors were later demonstration on a completed TinyTeRP module.  

The Allegro 3901 dual H-bridge motor controller was chosen as it was the 

smallest and easiest to use. The use of the Allegro 3901 allowed the microcontroller 

to reverse the direction the DC motor rotated. This 3901 also allowed more current to 

be sourced to the locomotion devices rather than the 20 mA available directly from 

the CC2533. 

Finally, a 7 pin female header was used for serial communication between 

boards, as well as power and programming. The pins included power and ground 

from the battery, three pins for programming the CC2533, and two pins for I
2
C 

communication. I
2
C was chosen because it was available on the CC2533 and had the 

ability to communicate with multiple devices by using the device‟s I
2
C address.  

Basic resistors and capacitors were also included on the board that were 

needed for the ICs and for power decoupling. These discrete components come in 

standard sizes. A short comparison of sizes can be seen in Table 3.4. 0402 standard 

size packages were chosen because the resistors are placed with tweezers onto the 

base module because 0201 were determined to small for reflow soldering by hand 

placement. 

 

Table 3.4: Comparison of different standard discrete component sizes 

Package Length (mm) 

Width 

(mm) Power Rating (W) 

201 0.61 0.30 0.0500 

402 1.00 0.51 0.0625 

603 1.60 0.79 0.0625 

805 2.00 1.30 0.1000 
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The final cost of the base module is $19.28. Table 3.5 breaks down the cost of 

the base module. The CC2533 is the most expensive component, which makes up 1/3 

of the final cost. All the components, except for the PCB, are COTS and available of 

www.digikey.com. 

 

Table 3.5: Cost of all components on PCB 3 

Base Module Cost 

Part Quantity  Cost Total 

Resistors  4  $   0.05   $    0.20  

Capacitors 6  $   0.05   $    0.30  

Crystal  1  $   3.60   $    3.60  

Balun 1  $   1.50   $    1.50  

Antenna 1  $   1.18   $    1.18  

Headers 1  $   3.50   $    3.50  

CC2533 1  $   6.50   $    6.50  

Allegro 3901 1  $   1.50   $    1.50  

PCB (large order) 1  $   1.00   $    1.00  

Total 
  

 $  19.28  

 

3.2  PCB Fabrication 

  

The next step in the design of the base module was to create a CAD model the 

base module in ProEngineer, with the all the components using the dimensions of the 

components. By placing and adjusting each component, it was found that the board 

could be made very close to 1.0 cm
2
. The ProEngineer model saved time later in the 

board layout program because it showed whether it would be feasible to fit these 

components on a 1.0 cm
2
 board before going onto the next step. Figure 3.15 shows 
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what the board would look like by recreating the components and board in 

ProEngineer.  

 

 

 
Figure 3.15: CAD drawing of base module. (Dimensions in mm) 

 

 

3.2.1 PCB Creation 

 

 

EAGLE was the software used to layout and route the board. Layout and 

routing is the process of creating the computer files needed to send to a PCB 

fabrication house. EAGLE is a freeware PCB designing software available for 

download on the web [34]. The version used was 5.11 along with the 60 day trial for 

creating four layer boards. Advanced Circuits, www.4pcb.com, was used as the 
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fabrication house for the PCB. Advanced Circuits was used because of the quick 

turnaround time, customer support, and inexpensive fabrication prices.  

Advanced Circuits set certain limitations on the board design. These rules 

affected the minimum board size. For example, Advanced Circuits required 6 mil line 

and space along with 20 mil drill holes. The use of four layers allowed for a ground 

and power plane, but micro vias were not permitted [35]. These rules bumped the 

design from target 1.0 cm x 1.0 cm to 1.2 cm x 1.2 cm.  

 The board was hand routed because it was determined that auto-routing was 

not taking full advantage of the power and ground plane to save space. The routing by 

hand took much more time but was effective and was checked by the design rule 

checker in EAGLE so the design rules were still upheld.  

Gerber files were created once the board was routed in EAGLE. The four 

layer cam processing tool in EAGLE produced the GERBER files that the fabrication 

house uses to create the PCB. The $66.00 prototype with $50.00 step and repeat was 

used bring the price of board fabrication to about $116.00 without shipping. There 

were fourteen boards in one $116.00 order, so the cost of each board was less than 

$10.00. 

3.2.2 PCB Component Population 

 

Populating the PCBs and other reflow soldering started with 63%Sn / 37%Pb, 

as seen in Figure 3.16, because it has a low melting point of ~183°C. To apply the 

solder paste to the PCB 3, a stencil was made from the gerber board files. The stencils 

were made by cutting 3M transparency film in a Versa laser cutter on low power. The 

steps to make the stencil are as follows: 
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1) Open up board in eagle. 

2) Display only the layers you need (Usually tCream and bCream) 

3) Use DRC to shrink Cream layers (Tools->DRC->Masks, Set Cream Max to 2-

3 mil) 

4) Export with CAM Processor (CAM, Device:GERBER_RS274X, Select 

tCream, 

5) Process, Select bCream, Process) 

6) Use LinkCAD to convert to DXF, follow screenshots, use Tools->Convert to 

outline 

7) Open with DWG Editor, make sure the pads aren't filled in, scale ground pad 

to .5, 

8) Save to DWG 

9) Cut. Settings that worked: 2% Power, 12% Speed 

 

 
Figure 3.16: Chipquik solder paste 

 

After the solder paste was applied to the PCB, the components for one side 

were placed onto the board. The board was then placed into a toaster over and heated 
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to 200°C for 5 minutes. The board was then removed and allowed to cool. The board 

was turned over and solder paste was applied to the PCB. The components for that 

side were placed on and the board was once again placed in the oven and heated to 

200°C for 5 minutes. The board was removed and allowed to cool.  

The final board, shown in Figure 3.17, was 1.2 cm by 1.2 cm board with all 

components soldered on. The package was trimmed using a dremel with a cut-off 

wheel. The whole process took about one hour to create five boards.  

 

 
Figure 3.17: Picture labeling all the major components of PCB 3 

 

3.3  Programming 

  

The boards were finished by verifying every component was properly 

connected. The microcontroller was then programmed. The CC2533 needed a CC 

Debugger from TI [36] to allow the computer to flash the code onto the CC2533. The 

CC Debugger comes with a ten pin header that is connected to a custom connector. 
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This custom connector, shown in Figure 3.18, provided a place to reroute the power, 

ground, and debugging pins from the base module to match the CC Debugger. This 

connector was included in the board order to 4pcb.  

 
Figure 3.18: The custom connector next to the CC 

 

The first test was a simple code that blinked the LED. Once it was determined 

that the CC2533 and LED were working properly, a program used the radio to send 

and receive a known payload. A TI sniffer [37] for the CC2533 series chips was used 

to determine the radio packet error rate; the sniffer is discussed further in appendix A. 

An arbitrary payload success rate of 90% was used to categorize working boards 

when placed 1.0 m away from the sniffer. It was found that most the boards, with the 

exception of a few, worked without any errors. The boards that did not work usually 

had some bridging between pads. 

 

3.4 TinyTeRP Base Module Summary 

  

 TinyTeRP went through an iterative design process to reach the current base 

module, PCB 3. Learning along the iterative process, the PCB 3 uses a CC2533 
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system-on-chip with built in 8051 processor and 2.4 GHz 802.15.4 radio. The base 

module also includes an Allegro 3901 H-bridge to drive the locomotion devices, like 

DC motors. A header was included that allowed power to be transmitted between 

modules and serial communication with I
2
C.  The components were soldered on PCB 

3 and PCB 3 had final dimensions of 1.2 cm by 1.2 cm. The on board wireless radio 

allowed PCB 3 to communicate to other devices and a computer with a reasonable 

success rate, greater than 90%.  

 

   



 

 33 

 

Chapter 4  Locomotion Module 

 

There are several ways for locomotion that could be used on TinyTeRP. The 

robot could use wheels to roll or legs to walk like many insects and animals. Legs can 

have a variety of designs, such as stick-slip [8] or whegs [38]. Whegs have the 

advantage over wheels for climbing over large obstacles, like legs, with speeds closer 

to wheeled designs.  

TinyTeRP could use wings to allow the robot to fly, such as [17]. Jumping 

could be another method of locomotion, such as [15]. Weight is an issue with winged 

and jumping robots to be able to achieve lift off, but allow the robot to surmount large 

obstacles.  

Two different approaches to locomotion, wheeled and legged, that can be used 

on the TinyTeRP will be discussed, shown in Figure 4.19. The choice for the first 

TinyTeRP platform uses wheels and DC motors, similar to ALICE [3–5], because of 

availability, large selection, and efficiency.  

 

 
Figure 4.19: Comparison of Wheeled versus Legged Platform 
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4.1 Wheeled Locomotion 

 

Wheels can surmount relatively large obstacles proportional to their radius 

unlike stick-slip methods that are usually limited to very smooth surfaces. DC motors 

and wheels are also available as COTS components, reducing price and increasing 

availability. Two common types of DC motors are brushed and brushless motors. 

Brushed motors operate with an applied voltage. Brushless motors need to be 

controlled using some type of feedback for proper operation. Brushed DC motors 

were chosen over brushless motors due to ease of use.  

4.1.1 Motor Selection 

 

 

There were several motors to choose from, but after sorting for redundancy, 

cost, and functions, three motors were chosen that were small and can run between 

2.0 and 5.0 V DC. Figure 4.20 shows the three motors side by side. Motors 1 and 3 

were not geared while motor 2 had a planetary gear head. Motor 2 was chosen and 

purchased so that no gear assembly was required. A disassembled geared motor, 

Motor 2, is shown in Figure 4.21. All three can be purchased from 

www.solarbotics.com or www.gizmozone.com.  
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Figure 4.20: Comparison of three DC motors for TinyTeRP 

 

 
Figure 4.21: Planetary Geared Pager Motor Disassembled 

 

 

Motor 2 ($15.00) was more expensive than both the non geared motors 

(<$5.00) but provided more torque. Despite the cost, the geared motor was chosen as 

it made assembly of the robot easier and allowed the wheels to be directly attached. 

The prices and sizes of the three motors can be seen in Table 4.6. Motor 1 and 3 were 

tested because they were inexpensive, but it was determined that motors 1 and 3 

would need gearing to be properly controlled because without gearing the motors did 
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not provide enough torque to start the robot from a standstill.  Adding gears for 

motors 1 and 3 was avoided at this time due added complexity and cost.  

 

Table 4.6: Comparison of 3 DC Motors [39], [40] 

Motor Geared Size (mm) 

No Load Speed 

(rpm) Torque (N-m) Cost 

1 no 7x16 18000 1.50E-04  $   3.95  

2 25:1 6x16 1000 1.50E-03  $ 15.00  

3 no 4x12 20000 9.80E-05  $   4.40  

 

 

4.1.2 Wheels 

 

The smallest off-the-shelf wheels were from Solarbotics. Even though they 

seem small they are relatively large, 9mm in diameter and 4mm in width. Figure 4.22 

shows the wheel that was used on TinyTeRP. Glue was used to attach the wheels to 

the motors. 

If the motors were able to reach their maximum unloaded speed of 1000 rpm, 

then the robot could travel up to 52.0 cm/s. Even with some loss, friction, and other 

effects that would not allow 1000 rpm, TinyTeRP was still able to reach speeds of 

20.0 cm/s.  

 
Figure 4.22: Wheel Chosen for TinyTeRP Wheeled Platform 
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4.1.3 Chassis 

 

 A chassis was created to connect the DC motors to the base module and 

battery. The dimensions of the chassis were large enough for motor 2 to sit partially 

into the chassis. This allowed two motors to be easily connected parallel to one 

another. Figure 4.23 is a CAD drawing of the chassis used for TinyTerp.  

 

 
Figure 4.23: CAD drawing of the chassis (Dimensions in mm) 

  

  

The CAD drawing was saved as a .DWG file to be used in a laser cutter. The 

material chosen for the chassis was 1.6 mm delrin, a low cost material available at 

www.McMaster.com. This material was known to cut well in the lab Versa laser 

cutter. Figure 4.24 is the  chassis after being cut from the delrin. The chassis was then 

attached to the motors using glue. A piece of double sided tape was used to attach the 

battery, so that the battery could be removed easily.   
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Figure 4.24: The final chassis after being cut from the white delrin in the laser cutter  

 

 

4.1.4 Future Wheeled Locomotion Module 

 

Smaller components were found through further investigation. Smaller DC 

motors, gears, and wheels have been found that are more inexpensive than previously 

thought. A new brushed DC motor wheeled locomotion module is being created that 

will use a smaller non geared DC motor rather than the geared motor seen previously. 

The new motor is 0.4 x 0.8 mm and costs $2.50. This new motor can provide 5.9e-5 

N-m of torque.  

 Gears are needed for this new module because the motor produces low 

torque. Worm gears combined with spur gears were chosen for the new locomotion 

module because this can provide gear reduction in a small form factor. Figure 4.25 

shows the worm gear and the spur gear that will be used. The spur gear cost $2.10 

and the worm gear cost $2.60. This made the total cost of the new gearing and motor 

$7.20. This will reduce the cost of the locomotion module by $15.60 by replacing the 

expensive planetary geared motors.  
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Figure 4.25: Worm Gear and Spur Gear Chosen for Newest Wheeled Platform 

 

One of the biggest improvements will be the use of a new wheel. This new 

wheel is actually a o-ring made by Precision Associates, Inc. This new o-ring is 0.5 x 

0.2 cm making the o-rings 0.4 cm smaller in diamter and 0.3 cm smaller in width than 

the old wheels. This will help to decrease the volume of the robot be removing the 

larger bulky wheels. Figure 4.26 shows the old wheel next to the new o-ring wheel 

beside .  

 
Figure 4.26: Solarbotics wheel versus o-ring 

 

 The use of gears, new motors, and wheels requires a new chassis. 

Unfortunately, this chassis needs to be custom made and assembled. To keep the 

chassis as thin and small as possible, 0.8 mm delrin from McMaster was bought. The 
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Versa laser cutter cut the chassis from the 0.8 mm delrin. A 0.8 mm metal rod was 

used as the axel for the spur gears and wheels. A CAD model of the final platform is 

shown in Figure 4.27.  

 
Figure 4.27: CAD of Newest Wheeled Platform created by Mr. Maxwell 

 

This platform is amazingly 3.6 cm
3 

smaller than previous chasis. The chassis 

also is $15.60 cheaper. The disadvatange to this design is the complexity it adds to 

creating the locomotion module. A thorough assembly procedure will need to be 

made so that each module will be made the same and to ease assembly.   

4.2 Legged Platform 

 

While the wheeled platform worked, there is interest in creating robots that 

are bio-inspired because it builds upon thousands of years of natural engineering 

and/or the ability to disguise a robot as a living biological creature. Wheels for 
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locomotion are not found in nature, but winged and legged creatures are very 

common. For TinyTeRP, having a legged locomotion platform would provide an 

additional module to study. Adding various locomotion methods to TinyTerp will 

allow researchers to experiment with different control methods because different 

locomotion methods interact with the environment, the robot, and control algorithms 

differently.  

 Different actuators could provide the force to drive a legged module. 

Electrostatic actuactors, dielectric elastomer actuactors (DEAs), piezoelectric 

actuactors, DC motors, shape memory alloy, and thermal actuactors are a few of 

technologies that could be used for a legged module.    

Thermal actuators were chosen because thermal actuators can create large 

forces with joule heating, as seen with Ebefor‟s robot [10]. Another attractive quality 

of thermally actuated legs is the potential for low voltage actuation, as low as 3.5 V, 

which is already available on TinyTeRP. This is a benefit over some other actuator 

types that use much higher voltages, such as [9], [18], [24], [41], although 

electrostatic actuators are much more efficient because less power is lost through 

dissipated heat. 

 Another disadvantage of thermally actuated legs is high electrical currents and 

high powers used. In Ebefor‟s robots, 1.0 W of power was used at times [10]. Using 

heat for actuation has negative consequences such as slow actuation cycle speed, 

large current consumptions, and effects of high temperatures on the robot. 

 The legged research should create a millimeter scale legged platform for 

TinyTeRP that avoids using the clean room. The clean room adds costs, hazards, 
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time, and accessibility problems to the legged platform. Avoiding the clean room will 

help the legged platform be available to more researches and increase its ability to be 

studied.   

4.2.1 Previous Work in Thermally Actuated Legs 

  

Ms. Rajkowski created a polymer leg platform that used copper electrical 

heating elements to actuate the legs [42], [43]. The process, Rapid Microrobot 

Prototyping (RaMP), was proven to be cheap, fast, and precise enough for millimeter 

robots. Figure 4.28 shows a hexapod created using the RaMP process. Actuation was 

achieved by using two different materials with different coefficients of thermal 

expansion (CTE). This CTE mismatch causes, with an increase in temperature, one 

material to expand more than the other. The material with low CTE was copper and 

the material with high CTE was LocTite 3525.  

 

 
Figure 4.28: Hexapod created using the RaMP process  

Courtesy of Ms. Rajkowski [44] 
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 A Loctite hexapod was created by ultraviolet (UV) curing using a UV lamp 

and a mask. The mask defines which parts of the LocTite were exposed to the UV 

light, thus defining what part of the LocTite cured. A copper trace was then deposited 

by evaporating copper onto the LocTite hexapod body. Evaporation provided a very 

uniform thickness and width which is important to control resistance. The resistance 

of the copper trace was important because it is inversely proportional to the power 

that the heater would dissipate. The copper was the chemically etched to create 

heating elements. Current could then be passed through the copper trace and the leg 

would actuate, bending in the direction of the copper. Figure 4.29 shows the final 

result after the copper has been evaporated and etched. Figure 4.30 shows a hexapod 

with discrete components soldered on. 

 
Figure 4.29: Etched Cu on Hexapod Courtesy of Ms. Rajkokswi [44] 
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Figure 4.30: Final hexapod with components courtesy of Mr. Churaman 

 

The RaMP process proved to be a very easy way to create a milli-robot 

polymer legged platform. Unfortunately RaMP still had a few challenges that 

restrained its use for TinyTeRP. One challenge was that the copper traces tended to 

crack and components were rather hard to solder on. The RaMP process also does not 

avoid the clean room, which some researchers may not have access to.  

4.3 Thermally Actuated Legs 

 

This research will use a similar process to RaMP but tries to completely 

remove the clean room. Instead of evaporating copper onto the polymer body, a thin 

layer of liquid conductive silver polymer adhesive is stenciled onto the polymer. This 

decreases fabrication time, complexity, and cost of each platform.  The platform 

should able to be classified as a milli-robot platform, with dimensions of 1.0 x 1.0 x 

1.0 cm or smaller. Displacements of 0.02 cm should also be achieved. This will allow 

for the actuated step sizes to be seen visually under a low power microscope. 
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4.3.1 Design 

 

The leg design examined for use in the polymer locomotion platform is shown 

in Figure 4.31. The two layer leg uses a high CTE material as the base layer for the 

thermal leg. A low CTE material will be patterned on the base layer to act as a 

heating element.  

 

 

 

 

 
 

Figure 4.31: CAD Bilayer Leg Consisting of Silver Composite and Polymer 

 

4.3.3 Material Selection 

  

 A fabrication challenge for low voltage thermal bimorph actuators is finding 

an electrode material that is conductive and able to be patterned. Additionally, the 

electrode should be able to be deposited and patterned without the use of clean room. 

A solution to this problem is to use a liquid conductive composite material. The 

composite material will have some conductive particles mixed within it.  

This research used Conductive Silver 187, from www.TedPella.com, which is 

a liquid silver composite acrylic [45]. Sylgard 184 was used for the high CTE base 
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layer [46]. This polymer was used because it was readily available, easy to work with 

and had a high CTE. The Sylgard 184 cures in less than 1 hour on a 50.0°C hot plate. 

Sylgard 184 also has a viscosity low enough to create thin layers without much effort. 

4.3.4 Fabrication 

  

 Fabrication of the actuators started by mixing Sylgard 184 with a 1:10 ratio as 

defined in the data sheet. A mold was created by placing a piece of transparency on a 

flat surface. Four spacers were then placed onto the transparency; the spacers will 

define the thickness of the actuator.  The Sylgard was then poured onto the 

transparency, in between the spacers. A final piece of transparency was placed on top 

of the spacers. A flat rigid weight was placed on top of the transparency to squeeze 

the Sylgard to the desired thickness. The mold was then placed on a hot plate at 50 C 

and allowed to cure.  

After the mold cured, the top transparency was removed along with the four 

spacers. The Sylgard and bottom transparency was then laser cut in a Versa laser to 

the desired shaped. The bottom transparency was then removed to leave a laser cut 

polymer base. A piece of Mylar was laser cut to act as a stencil for the silver 

composite acrylic. The silver will be brushed on the leg so the stencil would mask the 

area where no silver was desired. The silver composite acrylic is then allowed to cure. 

Figure 4.32 shows a completed actuator. 

4.3.3 Results 

 

 200 micron thick glass slides were used as spacers causing the leg to be 200 

microns thick. A 12.5 micron mylar was used as the stencil creating a conductive 
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trace. The process took about one hour to produce an actuator, however most of the 

time was for the curing of the polymer. Figure 4.32 shows the fabricated leg.  

 

 

 
Figure 4.32: Bilayer leg after silver composite deposition 

 

After the actuator was fabricated, current was passed through the leg. Figure 

4.33 shows the leg being actuated. The left side is fully actuated by heating the 

electrode and the right is at room temperature. About 350 microns of displacement 

can be seen in the picture with 0.3 A and 1.2 V being passed through probes into the 

silver composite layer.   
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Figure 4.33: Bilayer leg being actuated 

 

A full hexapod was not yet created due to several challenges encountered 

while trying to make the thermally actuated leg. One challenge was keeping the 

heating electrode from cracking, which created discontinuity in the electrode. 

Cracking was most likely due to handling and actuation. Cracking of the silver 

electrode occurred at times when the leg was removed from the transparency because 

the silver acrylic would attach to the transparency. Cracking occurred during 

actuation by possibly, exceeding the maximum stress and strain of the silver acrylic 

through actuation. The exact maximum strain of this material is not known but the 

strain could be reduced by a different design. 

4.3.4 Future Work 

 

A better design might be a three layer leg that has an additional middle rigid 

layer, as seen in Figure 4.34. This rigid layer would be thin with a low CTE. There 

would be a polymer base under the middle layer and the silver composite as the top 

layer and would heat all the layers. The CTE mismatch between the rigid layer and 

Probes 

Leg 



 

 49 

 

polymer would cause bending towards the rigid layer. The benefit of this would be a 

reduction in stress in the silver composite and ease of fabrication. 

 

 
 

Figure 4.34: CAD Trilayer leg consisting of silver composite,  

thin film, and polymer 

 

 

Another challenge was adhesion between the silver acrylic and the Sylgard. 

The Sylgard does not adhere to mylar or the transparency very well. This makes 

finding a COTS thin rigid layer more difficult because the Sylgad needs to adhere to 

the rigid layer to bend the leg. A different material, such as a urethane rubber pmc-

724 [cite], might be a solution to this problem. This urethane rubber seems to adhere 

to material better than the Sylgard. The urethane has similar mechanical properties 

and preparation to Sylgard though. Both are soft, shore hardness A of ~20-40, and 

require two part mixing. 
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Chapter 5 Sensors 

 

 As stated earlier, TinyTeRP must be smart and have the ability to make 

decisions based on sensed stimuli from the environment. Different sensors may be 

needed depending on the application that TinyTeRP is being used for. For example, 

distance measurements will use different sensors than temperature measurements. 

Different sensors and applications will also require different processing resources. 

Given the simple computational resources available on the base module, 

sensor modules with additional processing capability will be beneficial. Also, some 

sensors can provide some preprocessed data, such as on the IMU-6000 from 

invensense. The benefit of such sensors is computation time and complexity can be 

left to the sensor or sensor module rather than using the main microcontroller‟s 

resources. 

 Sensors that were considered for TinyTeRP were; infrared (IR), received 

signal strength indication (RSSI), time difference of arrival (TDOA), inertial 

measurement unit, global positioning system (GPS), touch, and optical mouse. Most 

of these sensors were considered because they could be used for some method of 

navigation control. Out of these, RSSI was the only one that could be tested on 

TinyTeRP due to time constraints. A mouse sensor was tested separate from the robot 

and an inertial sensor was created but due to time constraints was not able to be 

tested. 

 



 

 51 

 

5.1 RSSI 

 

The CC2253‟s received signal strength indicator (RSSI) quantifies the 

received power of wireless packets sent using the IEEE 802.15.4 protocol. In the ideal 

(free space) case, this value varies inversely with the square of distance, and 

consequently has been suggested as a means to estimate distances between nodes in 

mobile sensor networks [20], [47]. The most significant advantage of using RSSI for 

distance sensing is that it is already built in most radios and therefore requires no 

additional sensing hardware. However, recent work has showed that inherent 

inaccuracies of using RSSI in practical environments makes it almost useless for 

distance sensing without significant pre-processing or computational resources [47] 

In addition, since RSSI will be a function of board and antenna design, such results 

do not necessarily generalize across platforms. 

Given the size constraints of TinyTeRP, RSSI‟s advantages outweigh its 

potential problems. In addition, most previous research focused on the use of RSSI 

over long distances (10s to 100s of meters) and TinyTeRP will generally be 

constrained to environments only meters across. Some recent work has shown better 

results for RSSI distance measurements over shorter distances [48]. For these reasons, 

RSSI was investigated to determine its performance over shorter distances. For the 

algorithms suggested later in Chapter 6, only an approximation of a linear 

relationship between RSSI and distance over 10s of centimeters is required.  
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5.1.1 Experimental Set-up 

 

Two TinyTeRPs and a modified serial packet sniffer were used to determine 

the relationship between RSSI and distance. One of the two platforms (the sender, 

“TX”) was programmed to transmit simple packets to the other robot (the receiver, 

“RX”) placed a distance D away with a given orientation of the receiver relative to 

the transmitter. An illustration of the test set-up can be seen in Figure 5.35.  

Since the software interface defined by Texas Instruments‟ libraries for the 

CC2533 provided the transmission‟s RSSI value as part of the receipt of a packet, the 

receiver repackaged that value into another transmission sent to the packet sniffer. 

The packet sniffer is a device that allows a computer to communicate to the 

TinyTeRP. Each of these two routes of communication, illustrated in Figure 5.35 

operated on different channels to avoid interference.  

Packets were captured from the sniffer using a serial interface on a PC while 

the sender TinyTeRP was incrementally moved away from the receiver. Intervals of 5 

cm were used up to a distance of 20 cm, and then data were taken at intervals of 10 

cm up to maximum distance of 80 cm. The PC recorded 100 data points at each 

distance. 

 



 

 53 

 

 
Figure 5.35: RSSI Test Setup. The orientations tested  

are in the upper right hand corner 

 

5.1.2 Testing 

 

Controlled experiments were performed to measure the dependence of RSSI 

versus distance with variable orientation, transmit power, channel frequency, and 

time. 

The first test measured the RSSI value at a distance of 20cm over a long 

period of time (Figure 5.36). The test setup was allowed to record data until the 

sender TinyTeRPs‟ batteries were discharged. The battery power source dropped 

below the minimum required for the CC2533 approximately 50 minutes after the test 

began.  

Figure 5.36 shows a very constant value throughout the test. It is important to 

note that the CC2533 chip minimizes the effect of a variable battery voltage on radio 

transmissions, which can be seen here in the constant RSSI at the end of battery life. 
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Slight variation only occurs in the last few transmissions, and the RSSI changes only 

by one unit in these cases. Consequently, it was determined that there is effectively no 

time-dependent noise in the signal. 

 

 
Figure 5.36: 50 minute test of RSSI at a fixed distance of 20 cm. 

 

 

Next, iterative testing was performed by varying the distance between the 

sender TinyTeRP and its paired receiver, as discussed above. The test was repeated 

for three different channel frequencies with the results shown in Figure 5.37. Even 

though 14 different channel frequencies are allowed by the CC2533, only 5 channels 

resulted in successful packet transmission during pre-testing. The 2425 MHz 

frequency was the default setting in the libraries provided by Texas Instruments, and 

the remaining two frequencies were chosen to sample higher and lower bands 
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surrounding this default frequency. Due to the nature of the TinyTeRP‟s environment, 

ambient RF noise was expected in the 2.4 GHz range, and thus altering the 

transmission sub-channel could significantly affect the precision of RSSI values. In 

addition, the wavelength of a 2.4GHz radio transmission is approximately 12.5cm – 

on the same order of magnitude as the distances tested. 

 

 
Figure 5.37: RSSI versus distance with different channel frequencies 

 

 

Figure 5.37 shows a monotonically decreasing RSSI value versus distance in 

each of three chosen bands up to distances of 50 cm. The variability between bands is 

small within the first 20 cm and grows to approximately 5 dBm at greater distances. 

Notice that no error bars are present in these data, since the standard deviations of 

each set of 100 RSSI values were so small that they could not be displayed properly.  
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The transmission output power was also varied on the transmitting TinyTeRP 

and the resulting changes in RSSI were recorded. In this case, the channel was held 

constant at 2425 MHz and the robots‟ antennas were oriented along a straight line. 

Figure 5.38 contains data for each of three discrete transmit power levels. These 

transmit powers were the only available options provided for the CC2533. 

It was expected that lower transmit powers would shift the curve down, but 

the large inconsistencies around 50 cm were not anticipated. One possibility is that 

some artifact of the testing setup, such as signal reflection off surrounding surfaces in 

the lab environment, could have contributed to the low points seen in Figure 5.38 at 

50 cm when transmitting at both 0 dBm and -3 dBm. In any case, the default setting 

of 4 dBm resulted in consistent and usable data for the entire desired range of 

distances, so it was selected as the gain for future uses of the TinyTeRP. 

 

 
Figure 5.38: RSSI versus distance with different transmit powers 
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Finally, the influence of platform orientation on the consistency of RSSI 

values was investigated. Since the ultimate goal of this evaluation was to determine 

the suitability of RSSI sensing for control algorithms, and since such algorithms 

involve rotation of the platform, comparing the RSSI values between different 

rotational angles of the robot was necessary.  

The same experiment was performed with the addition of four manual 90° 

rotations of the platform at each distance. As seen in Figure 5.39, the RSSI is still 

monotonically decreasing with distance over approximately 50 cm. While there is 

some variation between orientations, this variation is relatively small – only 5 dBm.  

 

 
Figure 5.39: RSSI versus distance with different orientations 
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5.1.3 Summary 

 

 The final settings for the radio used the 2425 MHz frequency and 4 dbm 

transmission power. A quadratic function was used to provide an approximation of 

distance based on the data from RSSI versus Distance in Figure 5.39. The quadratic 

equation is shown in Figure 5.40, along with the data that was used to derive the 

equation.  

 

 
Figure 5.40: Quadratic equation relating RSSI to distance 

 

While RSSI does not provide a great metric for distance between robots over 

long distances, this data has shown that RSSI is a reasonable distance indicator up to 

approximately 50 cm. Given that this is approximately 50x the size of the TinyTeRPs, 

RSSI is a sufficient distance sensor for this platform. Most importantly, RSSI 
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demonstrates a consistent downward trend versus distance which will make it highly 

appropriate for the control algorithms described in Chapter 6.  

 

5.3 Optical Mouse Odometry 

 

 The use of an optical mouse sensor for odometry is not a new technique [49], 

[50]. The basic principle is to use the same sensor that a computer uses to track a 

users hand motion but instead to track a robot. The sensor contains a LED, low 

resolution camera, and a processing unit. The sensor uses the built in processing unit 

to process low resolution images, ~16 pixels, to determine direction and magnitude of 

motion. The advantage of using this sensor for navigation over other sensors, such as 

IMUs, is the mouse sensor will not suffer from integration error because distance is 

measured directly. A disadvantage is that the mouse sensor cannot measure rotation, 

which can cause errors in navigation. A manufacturer of optical mouse sensors 

pointed out that accuracy of the computer curser is partially based on feedback that 

the user has and the ability to keep adjusting the mouse.  

 Even with those challenges, the optical mouse sensor for navigation still 

seemed worth pursuing. It was quickly found that most mouse sensors were larger 

than 1.0 cm
2
, needed to be within 0.1 cm of the ground, and automatically went into a 

low power mode and without a way to prevent this from happening. Entering low 

power mode is a problem because only motion can cause the sensor to return to active 

mode and a delay caused motion to not be measured while the sensor was actually in 

motion.  
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5.3.2 Test Set-up 

 

The smallest sensor found was an ADNK-3530 mouse sensor that included a 

lens [51–53]. This sensor was chosen to test for a possible module for TinyTeRP. A 

computer controlled test mechanism, shown in Figure 5.41, was built to test the 

accuracy and reliability of the optical sensor. The set-up consisted of an old scanner, 

TI launch-pad, Arduino, and stepper motor board. The TI launchpad, shown in Figure 

5.42, was chosen because it was inexpensive, $5.00, and had an usb connection to a 

computer with pin outs for serial connection to external devices. The Arduino, Figure 

5.43, was chosen as it had USB to a computer, easy to program, and 5.0 volt outputs 

to the stepper board. 

The scanner was disassembled to leave only the stepper motor, slide 

mechanism, and belt. The optical sensor was fitted, with lens, onto the slide 

mechanism. An Arduino was connected to a stepper motor board. The stepper motor 

board contained dual H-bridges that allowed more current to the stepper motor than 

the Arduino‟s processor could source. The TI launch-pad was connected to the optical 

sensor and collected the data that the optical sensor measured.  
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Figure 5.41: Optical mouse sensor test set-up 

 
Figure 5.42: Ti launch pad for sensor communication 
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Figure 5.43: Arduino and stepper motor board for stepper motor control 

 

 

5.3.2 Results 

 

The first experiment performed tested whether the stepper motor and control 

could repeatedly and precisely move the slide a certain distance. A mark was placed 

where the slide would begin and then stepper motor was rotated 500 steps, about 8.4 

cm. This was several times to see if the slide would repeatedly travel 8.4 cm. It was 

found that the slide did in fact move 8.4 each time. Thus, it was assumed that if the 

optical sensor was attached it could move a known distance at a constant rate.  

A computer was then connected to both the TI launch-pad and the Arduino to 

control the movement of the slide and data collection from the optical sensor. This 

recorded the number of motor steps and the distance that the sensor measured into a 

file synchronously allowing many trials could be tested without user intervention.  

 Preliminary results have been obtained, shown in Figure 5.44 and Figure 5.45.  

Figure 5.44 is the sensor data for the 500 step test. The distance measured should be 

Stepper 

motor 

board 

Arduino 
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8.4 cm. It was found that the actual distance measured was 8.4 cm with a standard 

deviation of 0.2 cm. Figure 5.45 the data from a 1000 step test. The measured value 

should be 16.8 cm. The average measured value was 17.4 cm with a standard 

deviation of 0.1 cm.   

 

 
Figure 5.44: Distance traveled versus trial number for 500 step test 

 
Figure 5.45: Distance traveled versus trial number for 1000 step test 

 

 

5.3.3 Discussion  

 

 Overall it seemed that the sensor maybe useful as a distance 

measurement device. While this was only meant to be a one degree of freedom (DOF) 



 

 64 

 

test, the results seem promising. An IMU may be added to overcome the inability of 

the mouse sensor to measure rotation. 

Due to using a one DOF test, other challenges could still arise. There could be 

different accuracy based on direction of motion and surfaces that the sensor is used 

on. Additionally, speed could be a variable for the performance of the sensors, and 

this set-up only tested one speed. It is also a rather large sensor, 1.3 x 1.0 cm, which 

may make this sensor too large for TinyTeRP. 

 

5.2 IMU 

5.2.1 Inertial Naviagtion 

 

Intertial navigation is a type of navigation that uses measurements of 

acceleration and rotation rate to determine position. This method uses inertial 

measurement units (IMUs) to measure acceleration using accelerometers and the rate 

of rotation with gyroscopes.  

There are inherent drawbacks of using IMUs for navigation because position 

is never actually measured; rather it is derived from the measurements. For the 

accelerometers the measurements have to be integrated twice to find linear position. 

The gyroscopes need to be integrated once to find angular rotation. Integration is 

known to induce error by compounding small errors continuously.  Drift is another 

error that occurs within IMUs. The measurements tend to “drift” from a value due 

changes within the sensors. Such changes can include degradation of the sensor, poor 

calibration, temperature, etc. The error is the compounded with the integration and 

small errors can turn results quickly into useless information.   



 

 65 

 

The benefit of using inertial navigation is the device is small, lightweight, 

makes measurements based internal stimuli and can be used in other ways besides 

navigation. IMUs could be used to determine free fall, object detection, stationary 

orientation, etc.  

 

5.2.1 IMU navigation Module 

 

An IMU module was chosen as a module to be built for TinyTeRP due to size, 

cost, and functionality. A COTs six axis accelerometer and gyroscope are available 

from Invensense. The six axis IMU, the IMU-6000, has a digital output, three axis 

accelerometer, and three axis gyroscope for $15.00. The IMU-6000 has a small 

footprint, 0.4 x 0.4 cm.  

5.2.2 IMU Module Design 

 

A PCB was created to connect the IMU to the TinyTeRP base module. An 

IMU-6000 along with a MSP430f2370. The MSP430f2370 communicates to the 

IMU-6000 through SPI because SPI can handle faster data transfer speeds that I
2
C. 

The MSP430f2370 communicates to the base module through the header with I
2
C.   

This microcontroller was included on the board to process the IMU data. To reduce 

integration error, sample rates must be high causing the processing speed of the 

processor to be fast. Integration requires multiplication and addition. Multiplication 

can take hundreds of processor cycles to complete. The MSP430f2370 includes a 

hardware multiple, a device that is capable of multiplying numbers in a few processor 

cycles, which the CC2533 does not have.  
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Figure 46: IMU sensor module 

 

 

5.2.4 Future work 

 

 Due to time constraints the IMU module it was never tested. The PCB was 

ordered and populated. The MSP430f2370 was programmed, successfully, to blink 

the LED. There still needs to be a program coded to retrieve and process the IMU 

data.  

 

MSP430f2370 IMU-6000 
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Chapter 6  Control Logic 

6.1 RSSI Navigation 

 

Given the limited computation and sensing resources on TinyTeRP, 

significant emphasis was placed on designing control algorithms that could 

demonstrate interesting robot behavior despite these constraints. For example, RSSI 

only provides an approximation of distance from other robots and does not provide 

orientation. In addition, as shown in section 5.1.3, the relationship between RSSI and 

distance is not linear and there is some difference between RSSI at different robot 

orientations. Rate of packet transmission will also affect the robot‟s ability to provide 

a good estimate of RSSI while it is in motion.  

A second consideration is the precision of the locomotion module. The base 

module does not include an on-board voltage regulator which means that voltage 

applied to the motors changes significantly over the robot‟s lifespan. While the delrin 

chassis provides some consistency in robot assembly, the motor placement was not 

always repeatable, so the same signal applied to both motors resulted in a curved 

robot trajectory instead of a straight line.  

Two algorithms are described below. Both utilize a single transmitting 

“beacon” that the robots attempt to approach or stay near. In the first algorithm, the 

robots use previous RSSI measurements along with current RSSI measurements to 

find a gradient (Gradient Descent). The robots then descend this gradient to find the 

beacon. In the second algorithm, the robots only use current RSSI measurements to 

stay within a given radius of the beacon (Vicinity). This algorithm is especially 
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interesting because it does not require the robot to have any memory of where it has 

been.  

6.2 Gradient Descent 

 

The first algorithm uses a gradient descent approach to find the transmitting 

beacon. Only a few constraints were hard coded onto the robot: the robot needed to 

know when it was close enough to the beacon to stop, when it was too far away to 

rely on RSSI, and when it was moving toward the beacon. Robot speed was hard 

coded to match the beacon‟s packet transmission rate, and the robot ignored any RSSI 

values received while turning to avoid confusion based on the orientation dependence 

of RSSI. The basic algorithm is described by the following pseudocode:  

 

While (true)  

Wait for RSSI packet  

Average N RSSI values  

Gradient = CurrentAverage – PreviousAverage  

If close to the beacon  

  STOP  

Else if too far away  

  STOP  

Else if Gradient > 0 (moving away from beacon)  

  TURN for fixed time  

Else  

  Go FORWARD  

 

This algorithm was tested on single robots moving toward a beacon (shown in 

Figure 5.47) and on multiple robots moving toward the beacon. In general, the 

algorithm was fairly robust and the robot was able to find the beacon most of the 

time. A packet sniffer was used to record RSSI values during the test and inconsistent 

RSSI values were generally the cause of test failures. For example, the robot would 
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record an RSSI value classifying it as “too far away” even though it was close to the 

beacon. These failure cases are still being investigated. 

 

 
Figure 5.47: Time-lapse of TinyTeRP using gradient descent logic 

 

6.3 Vicinity 

 

A second algorithm was created through collaboration with Dr. Martins. The 

second algorithm did not calculate a gradient and only used current RSSI values to 

stay within a defined distance of the transmitting beacon based on a hard coded RSSI 

threshold. This algorithm requires even fewer computational resources than Gradient 

Descent since it does not require any memory of a previous state, and as a result, the 

robot never knows if it is moving closer to the beacon or further away. A hardcoded 
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variable is used to define the RSSI threshold or radius through which the TinyTeRP 

travels. A greater threshold means that the TinyTeRP will travel further away from 

the beacon while a closer threshold will constrain the TinyTeRP to a smaller circle 

around the beacon. It is important to note that the robot‟s speed is proportional to its 

distance away from the beacon. Therefore, it should stay close to the beacon for a 

longer period of time. The turn behavior is defined by a turn followed by a short 

forward motion to bring the robot back within the threshold. Algorithms such as this 

may become especially important as robots are further reducing in size. The basic 

algorithm is described by the following pseudocode:  

 

While (true)  

Wait for RSSI packet  

If robot is near threshold  

  TURN for a fixed time  

Else  

  Go FORWARD with speed distance from beacon  

 
 

Timelapse of a trial generated path by this algorithm is shown in Figure 5.48. 

While there is still a great deal to explore using this algorithm, the figure clearly 

shows that the robot stays within a defined boundary during its wandering over a 25 

second time period. The robot actually moved within this region for 2 minutes and 

failed when it moved too far from the beacon and turns did not bring it back in range. 

The turn behavior is currently being adjusted to prevent this failure. 
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Figure 5.48: Time-Lapse of TinyTeRP using memory less logic 
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Chapter 7  Conclusion 

  

 This work presented the design of an 8.0 cm
3
 autonomous mobile robot 

platform called Tiny Terrestrial Robotic Platform, TinyTerp , shown in Figure 6.49. 

TinyTeRP has an 802.15.4 wireless radio capable of RF communication that has the 

ability to transmit data several meters combined with the ability to navigate/localize. 

A robot with the functionality, low cost ($51.50), speed, and long range 

communication is not found on another robot of the same size. The final costs for 

each portion of TinyTeRP are displayed in Table 6.7. TinyTeRP is able to move at 

speed over ten body lengths per second for several minutes. Several sensing and 

navigation methods and modules were discussed that show promise for future use on 

TinyTeRP. Locomotion methods were also discussed with focus on DC motors with 

wheels as the primary method of locomotion for TinyTeRP. A new thermal actuated 

leg manufacturing technique is currently being tested and prepared so that polymer 

legs can be an additional locomotion module for TinyTeRP.  

 
Figure 6.49: Five TinyTeRPs around a quarter 
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Table 6.7: List of costs for TinyTeRP 

 

7.1 Future Work 

  

 The future of TinyTeRP can be in various directions. TinyTeRP is the 

beginning of an iterative process that will make the robot smaller. With technology 

constantly changing, microcontrollers becoming smaller, and batteries with higher 

energy densities made every year, it is only a matter of time before TinyTeRP will 

become 1.0 cm
3
. TinyTeRP, in its current state, can still be useful to researches 

interest in 1.0 cm
3
 to study control algorithms, locomotion methods, and design 

techniques that can be used to create smaller robots. Additional work on the thermal 

legs is another promising interest. About half of the cost of TinyTeRP is in the 

locomotion module. The polymer legs with patterned silver composite have the 

ability to dramatically reduce the cost and size of the robot by reducing the cost of the 

locomotion module.   
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Appendix A 
 

 The devices used to support this project may be useful so they are included 

here. Probably the most frequently used piece of equipment was an oscilloscope, the 

Tekronix 2014, shown in Figure A.50. It has a bandwidth of 200 Mhz and was used 

to test I
2
C communication, I/O outputs (including PWM), noise in lines, etc. Further 

information can be found at: http://www.tek.com/products/oscilloscopes/tds2000/ 

 

 
Figure A.50: Tekronix 2014 oscilliscope 

 

  

 Another useful piece of equipment was the “Bus pirate”, shown in Figure 

A.51. This device has the ability to “spy” serial communication, such as the I
2
C, and 

initiate serial communication. The best reason for using this device is it comes 

assembled and can be assumed to work, allowing the programmer to use interpret 

serial communication into symbols on a computer. It is available at 

http://www.sparkfun.com/products/9544 for $30.00. The manual can be found at 

http://dangerousprototypes.com/docs/Bus_Pirate. 



 

 75 

 

 
Figure A.51: BusPirate 

 

To use the “bus pirate” in spy mode, connect the clips to the serial 

communication lines of the device using the serial communication (mosi = data clk = 

clock). Connect the Bus Pirate to a computer using usb. Thenfollow the following 

instructions.  

1) Install Tera Term 

2) Set the com port 

3) Type “m” for menu 

4) “4” for i2c 

 

5) “(2)” for sniffer 

 

 

The Figure A.52 shows the Bus Pirate interface, set-up, and some communication 

between two devices. The following will help decipher the communication between 

the two devices: 

 “[ ” = Start bit 

Clips 
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 “+” = Space 

 “0x1E”  = Address with write bit 

 “0x06” = Address of register 

 “[“ = Start bit 

 “0x1F” = Address with read bit 

 “0x30” = Device response 

 

 
Figure A.52: Spied communication between two  

devices using I
2
C using the bus pirate 

 

 

 Finally a radio packet sniffer, shown in Figure A.53, was used to spy and 

communicate with the TinyTerp base module [37]. The EZ430 and CC2533 do not 

have compatible radios so a separate sniffer was purchased. The was assembled be TI 

and was assumed to work error free. The sniffer served several purposes, capturing 

radio packets from TinyTeRP, spying between two robots, and sending out 

commands. Additionally, error rates could be found, various data could be collected, 

or direct computer to TinyTeRP communication could be used. The sniffer could also 

IMU and ez430 devices 

communicating 
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be reprogrammed using the CC debugger, which allowed for different programs to be 

flashed onto the sniffer board.  Over all this was an indispensable device to measure 

the success of the TinyTeRP base module.  

 

 
Figure A.53: CC2531 RF sniffer 
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