1,623 research outputs found

    Experimental Application of Hybrid Fractional-Order Adaptive Cruise Control at Low Speed

    Get PDF
    International audienceThis brief deals with the design and experimen-tal application of a hybrid fractional adaptive cruise control (ACC) at low speeds. First, an improved fractional-order cruise control (CC) is presented for a commercial Citroën C3 prototype—which has automatic driving capabilities—at low speeds, which considers a hybrid model of the vehicle. The quadratic stability of the system is proved using a frequency domain method. Second, ACC maneuvers are implemented with two different distance policies using two cooperating vehicles— one manual, the leader, and the other, automatic—also at very low speeds. In these maneuvers, the objective is to maintain a desired interdistance between the leader and follower vehi-cles, i.e., to perform a distance control—with a proportional differential (PD) controller in this case—in which the previously designed fractional-order CC is used for the speed control. Simulation and experimental results, obtained in a real circuit, are given to demonstrate the effectiveness of the proposed control strategies. Index Terms— Adaptive cruise control (ACC), fractional-order control (FOC), hybrid system and control, stability

    Iso-damping fractional-order control for robust automated car-following

    Get PDF
    This work deals with the control design and development of an automated car-following strategy that further increases robustness to vehicle dynamics uncertainties. The control algorithm is applied on a hierarchical architecture where high and low level control layers are designed for gap-control and desired acceleration tracking, respectively. A fractional-order controller is proposed due to its flexible frequency shape, fulfilling more demanding design requirements. The iso-damping loop property is sought, which yields a desired closed-loop stability that results invariant despite changes on the controlled plant gain. In addition, the graphical nature of the proposed design approach demonstrates its portability and applicability to any type of vehicle dynamics without complex reconfiguration. The algorithm benefits are validated in frequency and time domains, as well as through experiments on a real vehicle platform performing adaptive cruise control.This research is supported by the Vehicle Technology Office (VTO), U.S. Department of Energy, under the Energy Efficient Mobility Systems (EEMS) initiative of the SMART Mobility Program, through the Lawrence Berkeley National Laboratory. The contents of this paper reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein

    Hybrid Systems and Control With Fractional Dynamics (II): Control

    Full text link
    No mixed research of hybrid and fractional-order systems into a cohesive and multifaceted whole can be found in the literature. This paper focuses on such a synergistic approach of the theories of both branches, which is believed to give additional flexibility and help the system designer. It is part II of two companion papers and focuses on fractional-order hybrid control. Specifically, two types of such techniques are reviewed, including robust control of switching systems and different strategies of reset control. Simulations and experimental results are given to show the effectiveness of the proposed strategies. Part I will introduce the fundamentals of fractional-order hybrid systems, in particular, modelling and stability of two kinds of such systems, i.e., fractional-order switching and reset control systems.Comment: 2014 International Conference on Fractional Differentiation and its Application, Ital

    Applications of Mathematical Models in Engineering

    Get PDF
    The most influential research topic in the twenty-first century seems to be mathematics, as it generates innovation in a wide range of research fields. It supports all engineering fields, but also areas such as medicine, healthcare, business, etc. Therefore, the intention of this Special Issue is to deal with mathematical works related to engineering and multidisciplinary problems. Modern developments in theoretical and applied science have widely depended our knowledge of the derivatives and integrals of the fractional order appearing in engineering practices. Therefore, one goal of this Special Issue is to focus on recent achievements and future challenges in the theory and applications of fractional calculus in engineering sciences. The special issue included some original research articles that address significant issues and contribute towards the development of new concepts, methodologies, applications, trends and knowledge in mathematics. Potential topics include, but are not limited to, the following: Fractional mathematical models; Computational methods for the fractional PDEs in engineering; New mathematical approaches, innovations and challenges in biotechnologies and biomedicine; Applied mathematics; Engineering research based on advanced mathematical tools

    Platoon Merging Approach Based on Hybrid Trajectory Planning and CACC Strategies

    Get PDF
    Currently, the increase of transport demands along with the limited capacity of the road network have increased traffic congestion in urban and highway scenarios. Technologies such as Cooperative Adaptive Cruise Control (CACC) emerge as efficient solutions. However, a higher level of cooperation among multiple vehicle platoons is needed to improve, effectively, the traffic flow. In this paper, a global solution to merge two platoons is presented. This approach combines: (i) a longitudinal controller based on a feed-back/feed-forward architecture focusing on providing CACC capacities and (ii) hybrid trajectory planning to merge platooning on straight paths. Experiments were performed using Tecnalia’s previous basis. These are the AUDRIC modular architecture for automated driving and the highly reliable simulation environment DYNACAR. A simulation test case was conducted using five vehicles, two of them executing the merging and three opening the gap to the upcoming vehicles. The results showed the good performance of both domains, longitudinal and lateral, merging multiple vehicles while ensuring safety and comfort and without propagating speed changes.This research was supported by the European Project SHOW from the Horizon 2020 program under Grant Agreement No. 875530

    Low Speed Hybrid Generalized Predictive Control of a Gasoline-Propelled Car

    Get PDF
    International audienceLow-speed driving in traffic jams causes significant pollution and wasted time for commuters. Additionally, from the passengers' standpoint, this is an uncomfortable, stressful and tedious scene that is suitable to be automated. The highly nonlinear dynamics of car engines at low-speed turn its automation in a complex problem that still remains as unsolved. Considering the hybrid nature of the vehicle longitudinal control at low-speed, constantly switching between throttle and brake pedal actions, hybrid control is a good candidate to solve this problem. This work presents the analytical formulation of a hybrid predictive controller for automated low-speed driving. It takes advantage of valuable characteristics supplied by predictive control strategies both for compensating un-modeled dynamics and for keeping passengers security and comfort analytically by means of the treatment of constraints. The proposed controller was implemented in a gas-propelled vehicle to experimentally validate the adopted solution. To this end, different scenarios were analyzed varying road layouts and vehicle speeds within a private test track. The production vehicle is a commercial Citroën C3 Pluriel which has been modified to automatically act over its throttle and brake pedals

    Using Fractional Calculus for Cooperative Car-Following Control

    Get PDF
    International audienceThe Cooperative Adaptive Cruise Control (CACC) is one of the most promising aiding systems to improve traffic flow in highways. When it comes to design a proper control algorithm, robustness against non-modeled dynamics and noise plays a key role not only for improving controller performance but also for increasing the ability of handling heterogeneous vehicle strings. This paper proposes a fractional order controller that is able to deal with non-modeled dynamics whereas keeping simplicity and a low computational cost. System robustness and string stability responses are analyzed for a string of six vehicles, showing a good performance

    Display/control requirements for automated VTOL aircraft

    Get PDF
    A systematic design methodology for pilot displays in advanced commercial VTOL aircraft was developed and refined. The analyst is provided with a step-by-step procedure for conducting conceptual display/control configurations evaluations for simultaneous monitoring and control pilot tasks. The approach consists of three phases: formulation of information requirements, configuration evaluation, and system selection. Both the monitoring and control performance models are based upon the optimal control model of the human operator. Extensions to the conventional optimal control model required in the display design methodology include explicit optimization of control/monitoring attention; simultaneous monitoring and control performance predictions; and indifference threshold effects. The methodology was applied to NASA's experimental CH-47 helicopter in support of the VALT program. The CH-47 application examined the system performance of six flight conditions. Four candidate configurations are suggested for evaluation in pilot-in-the-loop simulations and eventual flight tests

    A Vehicle Simulation Model and Automated Driving Features Validation for Low-Speed High Automation Applications

    Get PDF
    The low-speed high automation (LSHA) is foreseen as a development path for new types of mobility, improving road safety and addressing transit problems in urban infrastructures. As these automation approaches are still in the development phase, methods to improve their design and validation are required. The use of vehicle simulation models allows reducing significantly the time deployment on real test tracks, which would not consider all the scenarios or complexity related to automated driving features. However, to ensure safety and accuracy while evaluating the proper operation of LSHA features, adequate validation methodologies are mandatory. In this study a two-step validation methodology is proposed: Firstly, an open-loop test set attempts to tune the required vehicle simulation models using experimental data considering also the dynamics of the actuation devices required for vehicle automation. Secondly, a closed-loop test strives to validate the selected automated driving functionality based on test plans, also improving the vehicle dynamics response. To illustrate the methodology, a study case is proposed using an automated Renault Twizy. In the first step, the brake pedal and steering wheel actuators' behavior is modeled, as well as its longitudinal dynamics and turning capacity. Then, in a second step, an LSHA functionality for Traffic Jam Assist based on a Model Predictive Control approach is evaluated and validated. Results demonstrate that the proposed methodology is capable not only to tune vehicle simulation models for automated driving development purposes but also to validate LSHA functionalities
    • …
    corecore