4,624 research outputs found

    The MATSim Network Flow Model for Traffic Simulation Adapted to Large-Scale Emergency Egress and an Application to the Evacuation of the Indonesian City of Padang in Case of a Tsunami Warning

    Get PDF
    The evacuation of whole cities or even regions is an important problem, as demonstrated by recent events such as evacuation of Houston in the case of Hurricane Rita or the evacuation of coastal cities in the case of Tsunamis. This paper describes a complex evacuation simulation framework for the city of Pandang, with approximately 1,000,000 inhabitants. Padang faces a high risk of being inundated by a tsunami wave. The evacuation simulation is based on the MATSim framework for large-scale transport simulations. Different optimization parameters like evacuation distance, evacuation time, or the variation of the advance warning time are investigated. The results are given as overall evacuation times, evacuation curves, an detailed GIS analysis of the evacuation directions. All these results are discussed with regard to their usability for evacuation recommendations.BMBF, 03G0666E, Verbundprojekt FW: Last-mile Evacuation; Vorhaben: Evakuierungsanalyse und Verkehrsoptimierung, Evakuierungsplan einer Stadt - Sonderprogramm GEOTECHNOLOGIENBMBF, 03NAPAI4, Transport und Verkehr: Verbundprojekt ADVEST: Adaptive Verkehrssteuerung; Teilprojekt Verkehrsplanung und Verkehrssteuerung in Megacitie

    Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations

    Get PDF
    The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission

    HPC Enhanced Large Urban Area Evacuation Simulations with Vision based Autonomously Navigating Multi Agents

    Get PDF
    AbstractAn evacuation simulation code based on Multi Agent Systems (MAS), with moderately complex agents in 2D grid envi- ronments, is developed. The main objective of this code is to estimate the effectiveness of the measures taken to smoothen and speedup the evacuation process of a large urban area, in time critical events like tsunami. A vision based autonomous navigation algorithm, which enables the agents to move through an urban environment and reach a far visible destination, is implemented. This simple algorithm enables a visitor agent to navigate through urban area and reach a destination which is several kilometers away. The navigation algorithm is verified comparing the simulated evacuation time and the paths taken by individual agents with those of theoretical. Further, a parallel computing extension is developed for studying mass evacuation of large areas; vision based autonomous navigation is computationally intensive. Several strategies like communication hiding, dynamic load balancing, etc. are implemented to attain high parallel scalability. Preliminary tests on the K-computer attained strong scalability above 94% at least up to 2048 CPU cores, with 2 million agents

    Lessons from the evacuation of the World Trade Center, Sept 11th 2001 for the future development of computer simulations

    Get PDF
    This paper provides an overview of the state of the art in evacuation simulations. These interactive computer based tools have been developed to help the owners and designers of large public buildings to assess the risks that occupants might face during emergency egress. The development of the Glasgow Evacuation Simulator is used to illustrate the existing generation of tools. This system uses Monte Carlo techniques to control individual and group movements during an evacuation. The end-user can interactively open and block emergency exits at any point. It is also possible to alter the priorities that individuals associate with particular exit routes. A final benefit is that the tool can derive evacuation simulations directly from existing architects models; this reduces the cost of simulations and creates a more prominent role for these tools in the iterative development of large-scale public buildings. Empirical studies have been used to validate the GES system as a tool to support evacuation training. The development of these tools has been informed by numerous human factors studies and by recent accident investigations. For example, the 2003 fire in the Station nightclub in Rhode Island illustrated the way in which most building occupants retrace their steps to an entrance even when there are alternate fire exits. The second half of this paper uses this introduction to criticise the existing state of the art in evacuation simulations. These criticisms are based on a detailed study of the recent findings from the 9/11 Commission (2004). Ten different lessons are identified. Some relate to the need to better understand the role of building management and security systems in controlling egress from public buildings. Others relate to the human factors involved in coordinating distributed groups of emergency personnel who may be physically exhausted by the demands of an evacuation. Arguably the most important findings centre on the need to model the ingress and egress of emergency personnel from these structures. The previous focus of nearly all-existing simulation tools has been on the evacuation of building occupants rather than on the safety of first responders1

    Macroscopic modeling and simulations of room evacuation

    Full text link
    We analyze numerically two macroscopic models of crowd dynamics: the classical Hughes model and the second order model being an extension to pedestrian motion of the Payne-Whitham vehicular traffic model. The desired direction of motion is determined by solving an eikonal equation with density dependent running cost, which results in minimization of the travel time and avoidance of congested areas. We apply a mixed finite volume-finite element method to solve the problems and present error analysis for the eikonal solver, gradient computation and the second order model yielding a first order convergence. We show that Hughes' model is incapable of reproducing complex crowd dynamics such as stop-and-go waves and clogging at bottlenecks. Finally, using the second order model, we study numerically the evacuation of pedestrians from a room through a narrow exit.Comment: 22 page

    Great East Japan Earthquake, JR East Mitigation Successes, and Lessons for California High-Speed Rail, MTI Report 12-37

    Get PDF
    California and Japan both experience frequent seismic activity, which is often damaging to infrastructure. Seismologists have developed systems for detecting and analyzing earthquakes in real-time. JR East has developed systems to mitigate the damage to their facilities and personnel, including an early earthquake detection system, retrofitting of existing facilities for seismic safety, development of more seismically resistant designs for new facilities, and earthquake response training and exercises for staff members. These systems demonstrated their value in the Great East Japan Earthquake of 2011 and have been further developed based on that experience. Researchers in California are developing an earthquake early warning system for the state, and the private sector has seismic sensors in place. These technologies could contribute to the safety of the California High-Speed Rail Authority’s developing system, which could emulate the best practices demonstrated in Japan in the construction of the Los Angeles-to-San Jose segment

    Scientific knowledge and scientific uncertainty in bushfire and flood risk mitigation: literature review

    Get PDF
    EXECUTIVE SUMMARY The Scientific Diversity, Scientific Uncertainty and Risk Mitigation Policy and Planning (RMPP) project aims to investigate the diversity and uncertainty of bushfire and flood science, and its contribution to risk mitigation policy and planning. The project investigates how policy makers, practitioners, courts, inquiries and the community differentiate, understand and use scientific knowledge in relation to bushfire and flood risk. It uses qualitative social science methods and case studies to analyse how diverse types of knowledge are ordered and judged as salient, credible and authoritative, and the pragmatic meaning this holds for emergency management across the PPRR spectrum. This research report is the second literature review of the RMPP project and was written before any of the case studies had been completed. It synthesises approximately 250 academic sources on bushfire and flood risk science, including research on hazard modelling, prescribed burning, hydrological engineering, development planning, meteorology, climatology and evacuation planning. The report also incorporates theoretical insights from the fields of risk studies and science and technology studies (STS), as well as indicative research regarding the public understandings of science, risk communication and deliberative planning. This report outlines the key scientific practices (methods and knowledge) and scientific uncertainties in bushfire and flood risk mitigation in Australia. Scientific uncertainties are those ‘known unknowns’ and ‘unknown unknowns’ that emerge from the development and utilisation of scientific knowledge. Risk mitigation involves those processes through which agencies attempt to limit the vulnerability of assets and values to a given hazard. The focus of this report is the uncertainties encountered and managed by risk mitigation professionals in regards to these two hazards, though literature regarding natural sciences and the scientific method more generally are also included where appropriate. It is important to note that while this report excludes professional experience and local knowledge from its consideration of uncertainties and knowledge, these are also very important aspects of risk mitigation which will be addressed in the RMPP project’s case studies. Key findings of this report include: Risk and scientific knowledge are both constructed categories, indicating that attempts to understand any individual instance of risk or scientific knowledge should be understood in light of the social, political, economic, and ecological context in which they emerge. Uncertainty is a necessary element of scientific methods, and as such risk mitigation practitioners and researchers alike should seek to ‘embrace uncertainty’ (Moore et al., 2005) as part of navigating bushfire and flood risk mitigation
    • 

    corecore