18,878 research outputs found

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    Report on the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2)

    Get PDF
    This technical report records and discusses the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2). The report includes a description of the alternative, experimental submission and review process, two workshop keynote presentations, a series of lightning talks, a discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code review. For each topic, the report includes a list of tangible actions that were proposed and that would lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all areas of world-leading research today. The workshop participants then proceeded to explore different perspectives on the concept of sustainability. Key enablers and barriers of sustainable scientific software were identified from their experiences. In addition, recommendations with new requirements such as software credit files and software prize frameworks were outlined for improving practices in sustainable software engineering. There was also broad consensus that formal training in software development or engineering was rare among the practitioners. Significant strides need to be made in building a sense of community via training in software and technical practices, on increasing their size and scope, and on better integrating them directly into graduate education programs. Finally, journals can define and publish policies to improve reproducibility, whereas reviewers can insist that authors provide sufficient information and access to data and software to allow them reproduce the results in the paper. Hence a list of criteria is compiled for journals to provide to reviewers so as to make it easier to review software submitted for publication as a “Software Paper.

    Strategic Directions in Object-Oriented Programming

    Get PDF
    This paper has provided an overview of the field of object-oriented programming. After presenting a historical perspective and some major achievements in the field, four research directions were introduced: technologies integration, software components, distributed programming, and new paradigms. In general there is a need to continue research in traditional areas:\ud (1) as computer systems become more and more complex, there is a need to further develop the work on architecture and design; \ud (2) to support the development of complex systems, there is a need for better languages, environments, and tools; \ud (3) foundations in the form of the conceptual framework and other theories must be extended to enhance the means for modeling and formal analysis, as well as for understanding future computer systems

    Towards data grids for microarray expression profiles

    Get PDF
    The UK DTI funded Biomedical Research Informatics Delivered by Grid Enabled Services (BRIDGES) project developed a Grid infrastructure through which research into the genetic causes of hypertension could be supported by scientists within the large Wellcome Trust funded Cardiovascular Functional Genomics project. The BRIDGES project had a focus on developing a compute Grid and a data Grid infrastructure with security at its heart. Building on the work within BRIDGES, the BBSRC funded Grid enabled Microarray Expression Profile Search (GEMEPS) project plans to provide an enhanced data Grid infrastructure to support richer queries needed for the discovery and analysis of microarray data sets, also based upon a fine-grained security infrastructure. This paper outlines the experiences gained within BRIDGES and outlines the status of the GEMEPS project, the open challenges that remain and plans for the future

    Advanced Knowledge Technologies at the Midterm: Tools and Methods for the Semantic Web

    Get PDF
    The University of Edinburgh and research sponsors are authorised to reproduce and distribute reprints and on-line copies for their purposes notwithstanding any copyright annotation hereon. The views and conclusions contained herein are the author’s and shouldn’t be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of other parties.In a celebrated essay on the new electronic media, Marshall McLuhan wrote in 1962:Our private senses are not closed systems but are endlessly translated into each other in that experience which we call consciousness. Our extended senses, tools, technologies, through the ages, have been closed systems incapable of interplay or collective awareness. Now, in the electric age, the very instantaneous nature of co-existence among our technological instruments has created a crisis quite new in human history. Our extended faculties and senses now constitute a single field of experience which demands that they become collectively conscious. Our technologies, like our private senses, now demand an interplay and ratio that makes rational co-existence possible. As long as our technologies were as slow as the wheel or the alphabet or money, the fact that they were separate, closed systems was socially and psychically supportable. This is not true now when sight and sound and movement are simultaneous and global in extent. (McLuhan 1962, p.5, emphasis in original)Over forty years later, the seamless interplay that McLuhan demanded between our technologies is still barely visible. McLuhan’s predictions of the spread, and increased importance, of electronic media have of course been borne out, and the worlds of business, science and knowledge storage and transfer have been revolutionised. Yet the integration of electronic systems as open systems remains in its infancy.Advanced Knowledge Technologies (AKT) aims to address this problem, to create a view of knowledge and its management across its lifecycle, to research and create the services and technologies that such unification will require. Half way through its sixyear span, the results are beginning to come through, and this paper will explore some of the services, technologies and methodologies that have been developed. We hope to give a sense in this paper of the potential for the next three years, to discuss the insights and lessons learnt in the first phase of the project, to articulate the challenges and issues that remain.The WWW provided the original context that made the AKT approach to knowledge management (KM) possible. AKT was initially proposed in 1999, it brought together an interdisciplinary consortium with the technological breadth and complementarity to create the conditions for a unified approach to knowledge across its lifecycle. The combination of this expertise, and the time and space afforded the consortium by the IRC structure, suggested the opportunity for a concerted effort to develop an approach to advanced knowledge technologies, based on the WWW as a basic infrastructure.The technological context of AKT altered for the better in the short period between the development of the proposal and the beginning of the project itself with the development of the semantic web (SW), which foresaw much more intelligent manipulation and querying of knowledge. The opportunities that the SW provided for e.g., more intelligent retrieval, put AKT in the centre of information technology innovation and knowledge management services; the AKT skill set would clearly be central for the exploitation of those opportunities.The SW, as an extension of the WWW, provides an interesting set of constraints to the knowledge management services AKT tries to provide. As a medium for the semantically-informed coordination of information, it has suggested a number of ways in which the objectives of AKT can be achieved, most obviously through the provision of knowledge management services delivered over the web as opposed to the creation and provision of technologies to manage knowledge.AKT is working on the assumption that many web services will be developed and provided for users. The KM problem in the near future will be one of deciding which services are needed and of coordinating them. Many of these services will be largely or entirely legacies of the WWW, and so the capabilities of the services will vary. As well as providing useful KM services in their own right, AKT will be aiming to exploit this opportunity, by reasoning over services, brokering between them, and providing essential meta-services for SW knowledge service management.Ontologies will be a crucial tool for the SW. The AKT consortium brings a lot of expertise on ontologies together, and ontologies were always going to be a key part of the strategy. All kinds of knowledge sharing and transfer activities will be mediated by ontologies, and ontology management will be an important enabling task. Different applications will need to cope with inconsistent ontologies, or with the problems that will follow the automatic creation of ontologies (e.g. merging of pre-existing ontologies to create a third). Ontology mapping, and the elimination of conflicts of reference, will be important tasks. All of these issues are discussed along with our proposed technologies.Similarly, specifications of tasks will be used for the deployment of knowledge services over the SW, but in general it cannot be expected that in the medium term there will be standards for task (or service) specifications. The brokering metaservices that are envisaged will have to deal with this heterogeneity.The emerging picture of the SW is one of great opportunity but it will not be a wellordered, certain or consistent environment. It will comprise many repositories of legacy data, outdated and inconsistent stores, and requirements for common understandings across divergent formalisms. There is clearly a role for standards to play to bring much of this context together; AKT is playing a significant role in these efforts. But standards take time to emerge, they take political power to enforce, and they have been known to stifle innovation (in the short term). AKT is keen to understand the balance between principled inference and statistical processing of web content. Logical inference on the Web is tough. Complex queries using traditional AI inference methods bring most distributed computer systems to their knees. Do we set up semantically well-behaved areas of the Web? Is any part of the Web in which semantic hygiene prevails interesting enough to reason in? These and many other questions need to be addressed if we are to provide effective knowledge technologies for our content on the web
    corecore