2,313 research outputs found

    Evolving CNN-LSTM Models for Time Series Prediction Using Enhanced Grey Wolf Optimizer

    Get PDF
    In this research, we propose an enhanced Grey Wolf Optimizer (GWO) for designing the evolving Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) networks for time series analysis. To overcome the probability of stagnation at local optima and a slow convergence rate of the classical GWO algorithm, the newly proposed variant incorporates four distinctive search mechanisms. They comprise a nonlinear exploration scheme for dynamic search territory adjustment, a chaotic leadership dispatching strategy among the dominant wolves, a rectified spiral local exploitation action, as well as probability distribution-based leader enhancement. The evolving CNN-LSTM models are subsequently devised using the proposed GWO variant, where the network topology and learning hyperparameters are optimized for time series prediction and classification tasks. Evaluated using a number of benchmark problems, the proposed GWO-optimized CNN-LSTM models produce statistically significant results over those from several classical search methods and advanced GWO and Particle Swarm Optimization variants. Comparing with the baseline methods, the CNN-LSTM networks devised by the proposed GWO variant offer better representational capacities to not only capture the vital feature interactions, but also encapsulate the sophisticated dependencies in complex temporal contexts for undertaking time-series tasks

    Application of artificial intelligence techniques for predicting the flyrock, Sungun mine, Iran

    Get PDF
    Flyrock is known as one of the main problems in open pit mining operations. This phenomenon can threaten the safety of mine personnel, equipment and buildings around the mine area. One way to reduce the risk of accidents due to flyrock is to accurately predict that the safe area can be identified and also with proper design of the explosion pattern, the amount of flyrock can be greatly reduced. For this purpose, 14 effective parameters on flyrock have been selected in this paper i.e. burden, blasthole diameter, sub-drilling, number of blastholes, spacing, total length, amount of explosives and a number of other effective parameters, predicting the amount of flyrock in a case study, Songun mine, using linear multivariate regression (LMR) and artificial intelligence algorithms such as Gray Wolf Optimization algorithm (GWO), Moth-Flame Optimization algorithm (MFO), Whale Optimization Algorithm (WOA), Ant Lion Optimizer (ALO) and Multi-Verse Optimizer (MVO). Results showed that intelligent algorithms have better capabilities than linear regression method and finally method MVO showed the best performance for predicting flyrock. Moreover, the results of the sensitivity analysis show that the burden, ANFO, total rock blasted, total length and blast hole diameter are the most significant factors to determine flyrock, respectively, while dynamite has the lowest impact on flyrock generation.Peer ReviewedObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPostprint (published version

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Development of a Computer Vision-Based Three-Dimensional Reconstruction Method for Volume-Change Measurement of Unsaturated Soils during Triaxial Testing

    Get PDF
    Problems associated with unsaturated soils are ubiquitous in the U.S., where expansive and collapsible soils are some of the most widely distributed and costly geologic hazards. Solving these widespread geohazards requires a fundamental understanding of the constitutive behavior of unsaturated soils. In the past six decades, the suction-controlled triaxial test has been established as a standard approach to characterizing constitutive behavior for unsaturated soils. However, this type of test requires costly test equipment and time-consuming testing processes. To overcome these limitations, a photogrammetry-based method has been developed recently to measure the global and localized volume-changes of unsaturated soils during triaxial test. However, this method relies on software to detect coded targets, which often requires tedious manual correction of incorrectly coded target detection information. To address the limitation of the photogrammetry-based method, this study developed a photogrammetric computer vision-based approach for automatic target recognition and 3D reconstruction for volume-changes measurement of unsaturated soils in triaxial tests. Deep learning method was used to improve the accuracy and efficiency of coded target recognition. A photogrammetric computer vision method and ray tracing technique were then developed and validated to reconstruct the three-dimensional models of soil specimen

    GWO-BP neural network based OP performance prediction for mobile multiuser communication networks

    Get PDF
    The complexity and variability of wireless channels makes reliable mobile multiuser communications challenging. As a consequence, research on mobile multiuser communication networks has increased significantly in recent years. The outage probability (OP) is commonly employed to evaluate the performance of these networks. In this paper, exact closed-form OP expressions are derived and an OP prediction algorithm is presented. Monte-Carlo simulation is used to evaluate the OP performance and verify the analysis. Then, a grey wolf optimization back-propagation (GWO-BP) neural network based OP performance prediction algorithm is proposed. Theoretical results are used to generate training data. We also examine the extreme learning machine (ELM), locally weighted linear regression (LWLR), support vector machine (SVM), BP neural network, and wavelet neural network methods. Compared to the wavelet neural network, LWLR, SVM, BP, and ELM methods, the results obtained show that the GWO-BP method provides the best OP performance prediction

    Individual Differences In Value-Based Decision-Making: Learning And Time Preference

    Get PDF
    Human decisions are strongly influenced by past experience or by the subjective values attributed to available choice options. Although decision processes show some common trends across individuals, they also vary considerably between individuals. The research presented in this dissertation focuses on two domains of decision-making, related to learning and time preference, and examines factors that explain decision-making differences between individuals. First, we focus on a form of reinforcement learning in a dynamic environment. Across three experiments, we investigated whether individual differences in learning were associated with differences in cognitive abilities, personality, and age. Participants made sequential predictions about an on-screen location in a video game. Consistent with previous work, participants showed high variability in their ability to implement normative strategies related to surprise and uncertainty. We found that higher cognitive ability, but not personality, was associated with stronger reliance on the normative factors that should govern learning. Furthermore, learning in older adults (age 60+) was less influenced by uncertainty, but also less influenced by reward, a non-normative factor that has substantial effects on learning across the lifespan. Second, we focus on delay discounting, the tendency to prefer smaller rewards delivered soon over larger rewards delivered after a delay. Delay discounting has been used as a behavioral measure of impulsivity and is associated with many undesirable real-life outcomes. Specifically, we examined how neuroanatomy is associated with individual differences in delay discounting in a large adolescent sample. Using a novel multivariate method, we identified networks where cortical thickness varied consistently across individuals and brain regions. Cortical thickness in several of these networks, including regions such as ventromedial prefrontal cortex, orbitofrontal cortex, and temporal pole, was negatively associated with delay discounting. Furthermore, this brain data predicted differences beyond those typically accounted for by other cognitive variables related to delay discounting. These results suggest that cortical thickness may be a useful brain phenotype of delay discounting and carry unique information about impulsivity. Collectively, this research furthers our understanding of how cognitive abilities, brain structure and healthy aging relate to individual differences in value-based decision-making
    • …
    corecore