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ABSTRACT The complexity and variability of wireless channels makes reliable mobile multiuser com-
munications challenging. As a consequence, research on mobile multiuser communication networks has
increased significantly in recent years. The outage probability (OP) is commonly employed to evaluate
the performance of these networks. In this paper, exact closed-form OP expressions are derived and an
OP prediction algorithm is presented. Monte-Carlo simulation is used to evaluate the OP performance and
verify the analysis. Then, a grey wolf optimization back-propagation (GWO-BP) neural network based OP
performance prediction algorithm is proposed. Theoretical results are used to generate training data. We also
examine the extreme learning machine (ELM), locally weighted linear regression (LWLR), support vector
machine (SVM), BP neural network, and wavelet neural network methods. Compared to the wavelet neural
network, LWLR, SVM, BP, and ELMmethods, the results obtained show that the GWO-BPmethod provides
the best OP performance prediction.

INDEX TERMS Mobile multiuser communication, outage probability, performance prediction, GWO-BP
neural network.

I. INTRODUCTION
The explosive growth in the number of mobile users
has motivated research on fifth generation (5G) mobile
communication systems [1]–[5]. Non-orthogonal multiple
access (NOMA) has been proposed for 5G systems [6], and
in [7] an effective deep learning scheme for NOMA systems
was presented.

Cooperative communications is widely used in 5G
mobile multiuser communication systems [8]–[11]. The
outage performance of a multiuser relay system with
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approving it for publication was Guan Gui .

amplify-and-forward (AF) relaying was investigated in [12].
A new precoder design was proposed in [13] for a multiuser
AF relaying system. In [14], secure multiuser communica-
tions in a relaying system was examined. The secrecy per-
formance of mobile cooperative networks over 2-Rayleigh
fading channels was analysed in [15], [16]. Mobile cooper-
ative communications over N-Rayleigh fading channels was
examined in [17].

Only Rayleigh and Nakagami-m fading channels were
considered in [8]–[17]. However, these channel models may
not be suitable to characterize the complexities of practi-
cal mobile communication systems. The N-Nakagami model
was considered in [18]–[20] for mobile communications.
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The outage probability (OP) can be used to characterize
the performance of mobile multiuser communication sys-
tems over N-Nakagami fading channels. If the OP is poor,
communications will be unreliable. Thus, it is important to
predict the OP performance of these systems in complex
and variable environments such as N-Nakagami fading chan-
nels. Because of the good nonlinear prediction capabilities,
back-propagation (BP) neural networks have been widely
used [21]. A novel bee colony algorithmwas used to optimize
a BP neural network in [22]. A BP-based detection algorithm
was proposed for unmanned aerial vehicle systems in [23].

To date, OP performance prediction of mobile multiuser
communication systems has not been considered. Therefore,
this prediction is investigated here. The main contributions of
this paper are as follows.

1. The OP performance of mobile multiuser communica-
tion networks is investigated considering transmit antenna
selection (TAS). Exact closed-form expressions for the OP
are derived which differ from those in [8]–[17].

2. OP performance prediction is analysed using the
OP expressions obtained. A grey wolf optimization
back-propagation (GWO-BP) neural network based OP per-
formance prediction algorithm is presented. Theoretical OP
results are used to generate training data. Simulation is used
to evaluate the extreme learning machine (ELM), locally
weighted linear regression (LWLR), support vector machine
(SVM), wavelet neural network, GWO-BP neural network,
and BP neural network methods. These results show that
compared to the LWLR, SVM, BP, wavelet neural network,
and ELM methods, the GWO-BP method provides the best
OP performance prediction results.

3. The analysis is validated via Monte-Carlo simulation.
The impact of fading and the system parameters on the OP
performance are examined.

The remainder of this paper is organized as follows. The
system model is given in Section II. The OP performance
for two TAS schemes is derived in Sections III and IV,
respectively. OP performance prediction using the GWO-BP
method is presented in V. Section VI provides the simula-
tion results, and finally Section VII gives some concluding
remarks.

II. SYSTEM MODEL
Fig. 1 shows the system model. There is a mobile source
(MS), L mobile users (MU), and a mobile relay (MR). The
MS uses Nt antennas. GSR=1, which is the relative gain of
the MS→MR. The total power is E. h=hk, and k∈{SUil, SRi,
RUl}. h follows an N-Nakagami distribution [18].
In the first time slot, MSi transmits the x which has zero

mean and variance 1. MUl and MR receive the signals as

rSUil =
√
GSUilKEhSUilx + nSUil (1)

rSRi =
√
KEhSRix + nSRi (2)

where GSUil is the relative gain of MSi→MUl, and nSRi and
nSUil have means of 0 and variances of N0/2. K is the power
allocation parameter.

FIGURE 1. System model.

In the second time slot, the MR uses the decode and
forward (DF) scheme so that MUl receives the signal as

rRUl = g
√
GRUl(1− K )EhRUlx + nRUl (3)

ISRi is the mutual information between MSi and the MR,
which can be expressed as

ISRi =
1
2
log2(1+ γSRi) (4)

where

γSRi =
K |hSRi|2 E

N0
= K |hSRi|2 γ (5)

Let R is the spectral efficiency. If ISRi < R, the MR will not
participate in the cooperation, namely,

Pr(ISRi ≤ R)=Pr(
1
2
log2(1+γSRi) ≤ R) = Pr(γSRi ≤ γth)

(6)

where

γth = 22R − 1 (7)

The signal-to-noise ratio (SNR) at MUl can be expressed as

γil =

{
γSUil, γSRi ≤ γth

max(γSUil, γRUil), γSRi > γth
(8)

where

γSUil =
KGSUil |hSUil |2 E

N0
= KGSUil |hSUil |2 γ (9)

γRUil =
(1− K )GRUil |hRUil |2 E

N0
= (1− K )GRUil |hRUil |2 γ

(10)

The best user given by

γSCi = max
1≤l≤L

(γil) (11)
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is selected. For TAS scheme I, this is

ν = arg max
1≤i≤Nt

(γSCi)

= arg

 max
1≤i≤Nt,1≤l≤L

(γSUil), if |C| = 0

max
j∈C,1≤l≤L

(γSUl, γRUjl), if |C| 6= 0
(12)

where the decoding set C is given as

C =
{
1 ≤ j ≤ Nt| γSRj > γth

}
(13)

γSUl = max
1≤i≤Nt

(γSUil) (14)

and |C| is the cardinality of C.
For TAS scheme II, we select

k = arg max
1≤i≤Nt,1≤l≤L

(γSUil) (15)

III. THE OP OF TAS SCHEME I
We obtain the OP as

Foptimal(Rth)

= Pr(γSC < Rth)

= Pr(|C| = 0)Pr( max
1≤i≤Nt,1≤l≤L

(γSUil) < Rth)

+Pr(|C| 6= 0)Pr( max
i∈C,1≤l≤L

(γSUil, γRUl) < Rth)

= Pr(|C| = 0)Pr( max
1≤i≤Nt,1≤l≤L

(γSUil) < Rth)

+

Nt∑
n=1

(
Nt
n

)
Pr(|C| = n)

×Pr( max
1≤j≤n,1≤l≤L

(γSUl, γRUjl)<Rth)

= Pr(|C| = 0)V1 +
Nt∑
n=1

(
Nt
n

)
Pr(|C| = n)V2 (16)

where Rth is a given threshold, m is the fading coefficient,
and

Pr(|C| = 0)

=

 1
N∏
j=1
0(mj)

GN ,11,N+1

 γth
γSR

N∏
j=1

mj
�j

∣∣∣1m1,....,mN ,0



Nt

(17)

Pr(|C| = n)

=

 1
N∏
j=1
0(mj)

GN ,11,N+1

 γth
γSR

N∏
j=1

mj
�j

∣∣∣1m1,....,mN ,0



Nt−n

×

1−
1

N∏
j=1
0(mj)

GN ,11,N+1

 γth
γSR

N∏
j=1

mj
�j

∣∣∣1m1,....,mN ,0



n

(18)

V1 is given as

V1=Pr( max
1≤i≤Nt,1≤l≤L

(γSUil)<Rth)

=

 1
N∏
d=1

0(md )

GN ,11,N+1

[
Rth
γSU

N∏
d=1

md
�d

∣∣∣1m1,....,mN ,0

]
Nt×L

(19)

γSU = KGSUγ (20)

V2 is given as

V2=Pr( max
1≤j≤n,1≤l≤L

(γSUl, γRUjl) < Rth)

=Pr( max
1≤i≤Nt,1≤l≤L

(γSUil)<Rth)Pr( max
1≤j≤n,1≤l≤L

(γRUjl)<Rth)

=

 1
N∏
d=1

0(md )

GN ,11,N+1

[
Rth
γSU

N∏
d=1

md
�d

∣∣∣1m1,....,mN ,0

]
Nt×L

×

 1
N∏
jj=1

0(mjj)

GN ,11,N+1

Rth
γRU

N∏
jj=1

mjj
�jj

∣∣∣1m1,....,mN ,0



n×L

(21)

γRU = (1− K )GRUγ (22)

IV. THE OP OF TAS SCHEME II
The SNR at the MU is

γSC = max(γSUk , γSRUk ) (23)

and the cumulative density function (CDF) of γ SUk is

FγSUk (r)

= Pr( max
1≤i≤Nt,1≤l≤L

(γSUil) < r)

=

 1
N∏
d=1

0(md )

GN ,11,N+1

[
r
γSU

N∏
d=1

md
�d

∣∣∣1m1,....,mN ,0

]
Nt×L

(24)

The CDF of γ SRUk is given as

FγSRUk (r)

= Pr(γSRUk < r)

= Pr(γSRk < γth)+ (1− Pr(γSRk < γth))FγRUk (r)
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=



1
N∏
j=1
0(mj)

GN ,11,N+1

[
γth
γSR

N∏
j=1

mj
�j

∣∣∣1m1,....,mN ,0

]
+

1− 1
N∏
j=1
0(mj)

GN ,11,N+1

[
γth
γSR

N∏
j=1

mj
�j

∣∣∣1m1,....,mN ,0

]
×

1
N∏
jj=1

0(mjj)
GN ,11,N+1

[
r
γRU

N∏
jj=1

mjj
�jj

∣∣∣1m1,....,mN ,0

]


(25)

The OP is then

Fsuboptimal

=

 1
N∏
d=1

0(md )

GN ,11,N+1

[
Rth
γSU

N∏
d=1

md
�d

∣∣∣1m1,....,mN ,0

]
Nt×L

×



1
N∏
j=1
0(mj)

GN ,11,N+1

[
γth
γSR

N∏
j=1

mj
�j

∣∣∣1m1,....,mN ,0

]
+

1− 1
N∏
j=1
0(mj)

GN ,11,N+1

[
γth
γSR

N∏
j=1

mj
�j

∣∣∣1m1,....,mN ,0

]
×

1
N∏
jj=1

0(mjj)
GN ,11,N+1

[
Rth
γRU

N∏
jj=1

mjj
�jj

∣∣∣1m1,....,mN ,0

]


(26)

V. OP PERFORMANCE PREDICTION BASED ON
THE GWO-BP NEURAL NETWORK
A. GWO ALGORITHM
In the GWO algorithm there are alpha (α), beta (β), delta (δ)
and omega (ω) wolves [24].
The GWO algorithm is as follows.

1) PREY ENCIRCLING
The encircling behaviour of the GWO is calculated as
follows:

→

D =

∣∣∣∣→C ·→Xp(t)−→X (t)∣∣∣∣ (27)

→

X (t + 1) =
→

Xp(t)−
→

A ·
→

D (28)

where the coefficient vectors are
→

A and
→

C , the distance
between the prey and wolves is

→

D, the prey’s position vector

is
→

Xp, and
→

X represents the wolves’ position vector.
→

A and
→

C are given as

→

A = 2a·
→
r1 −

→
r2 (29)

→

C = 2·
→
r2 (30)

where
→
r1,
→
r2 are vectors that are in the range of [0, 1] and

a decreases linearly from 2 to 0 according to the iteration
number t.

2) HUNTING
The α, β and δ wolves guide the whole hunting process. The
ω wolves update their positions as follows:

→

X (t + 1) =

→

X1 +
→

X2 +
→

X3
3

(31)

where

→

X1 =
→

Xα −
→

A1·
→

Dα (32)
→

X2 =
→

Xβ −
→

A2·
→

Dβ (33)
→

X3 =
→

Xδ −
→

A3·
→

Dδ (34)
→

Dα =

∣∣∣∣→C1·
→

Xα(t)−
→

X

∣∣∣∣ (35)

→

Dβ =

∣∣∣∣→C2·
→

Xβ (t)−
→

X

∣∣∣∣ (36)

→

Dδ =

∣∣∣∣→C3·
→

Xδ(t)−
→

X

∣∣∣∣ (37)

3) ATTACKING PREY
When the wolves stop moving, they attack the prey.
Using (29), a can implement this process. a is given by

a = 2−
2t
ter

(38)

where ter is the maximum of iterations and t is the iteration
number.

4) SEARCH FOR PREY
The search for prey is based on the α, β and δ wolf locations.
→

A and
→

C control the exploitation and exploration. In the end,
the GWO algorithm will stop and output the best position.

The GWO algorithm is demonstrated as follows:
1) Initialize a parent population of popsize grey

wolves positions;

Initialize a,
→

A ,
→

C ;
2) Based on all wolves’ fitness values, the α, β and δ

wolves are selected from popsize grey wolves.
3) t = 0.
while t ≤ ter do
For each wolf in the parent population
Update the current wolf’s position using (31);
End
Update

→

A ,
→

C and a using (29), (30) and (38), respectively;
Evaluate the individual wolves’ positions;
Update the α, β and δ positions in the current population;
t = t + 1;
End
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B. BP NEURAL NETWORK
1) INPUT AND OUTPUT SELECTION
The OP performance is significantly affected by m, N, V
and K. Thus, these 17 indicators are used as the input X, and
the OP performance is output y. X can be expressed as

X = (x1, x2, ..., x17) (39)

and is used in (16) and (26) to obtain y.

2) NETWORK STRUCTURE
Fig. 2 shows the BP network. For the input layer, there are
17 neurons. For the hidden layer, there are q neurons. For
the output layer, there is 1 neuron. For the input and hidden
layers, wij is the weight coefficient, and bj is the bias. For
the hidden and output layers, vj is the weight coefficient, and
θ is the bias. The calculation flow is as follows.

FIGURE 2. The BP neural network structure.

(1) For the hidden layer, the input is

sj =
17∑
i=1

wijxi + bj, j = 1, 2, ..., q (40)

The output is given as

cj = f
(
sj
)

(41)

where f(x) is the activation function.
For the output layer, the input is given as

τ =

q∑
j=1

vjcj + θ (42)

The output is given as

y = f (τ ) (43)

(2) yλ is the output for the λ-th data, and dλ is the desired
output. The overall output error Er of P training data is
given as

Er =
P∑
λ=1

(
dλ − yλ

)2
(44)

(3) For different layers, the weights and biases are calcu-
lated as follows.

The error of the output layer is given as

δ = (d − y)(1− y) (45)

The error of the hidden layer is given as

σj = δvj(1− yj) (46)

The weights and biases are then updated as follows

vj = vj + ηδyj (47)

θ = θ + ηδ (48)

wij = wij + cσjxi (49)

bj = bj + cσj (50)

where η is the weight adjustment parameters, 0< η < 1; and
c is learning coefficient, 0 < c < 1.

C. OP PERFORMANCE PREDICTION BASED ON
GWO-BP NEURAL NETWORK
The flowchart of the OP performance prediction algorithm is
shown in Fig. 3. The concrete steps are as follows.

(1) The closed form expressions derived previously are
used to generate 3050 groups of data and these groups are nor-
malized, 3000 groups are used for training, and the remaining
50 groups are used to test the BP network.

(2) For the BP neural network, small random numbers are
used to initialize the bias and weights. The minimum error,
maximum number of iterations, and learning rate are also set.

(3) For GWO algorithm initialization, set the number of
wolves and the maximum number of iterations. The biases
and weights in (40), (42) are used as the initial solution of the
GWO algorithm. The GWO algorithm is used to search for
the optimal solution.

(4) For BP neural network training, the output of each layer
is used to calculate the training error and adjust the bias and
weights of the layers. This is repeated until the maximum
number of iterations is reached or the error is less than the
threshold.

(5) The BP neural network is tested using the test data to
determine if the required accuracy is met. If so, the network
is used to obtain the OP performance prediction results.

D. METRIC
The mean squared error (MSE) and absolute error (AE) are
used to evaluate the performance of the methods. A smaller
MSE or AE reflects a higher prediction accuracy. The MSE
and AE are given by

MSE =

PP∑
λ=1

(
dλ − yλ

)2
PP

(51)

AE =
∣∣dλ − yλ∣∣ (52)

where PP is the number of testing data.
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FIGURE 3. The flowchart of the OP performance prediction algorithm.

TABLE 1. Simulation parameters.

VI. PERFORMANCE RESULTS
Define µ=WRD/WRE as the relative geometrical gain and let
E=1.

Table 1 gives the simulation parameters employed for OP
performance evaluation. Figs. 4 and 5 present the perfor-
mance of the TAS I and II schemes, respectively. These
figures show close agreement between the analytic and
Monte-Carlo simulation results, which validates our analysis.
Further, increasing Nt reduces the OP, as expected.
Fig. 6 presents the effect of L on the OP performance with

the parameters given in Table 2. This shows that increasing L

FIGURE 4. The OP performance of TAS I.

reduces the OP. For example, for an OP of 1×10-3, increasing
L from 2 to 3 improves the performance by more than 2 dB.

Figs. 7 to 18 give the actual and predicted results with the
GWO-BP neural network, LWLR [25], SVM [26], ELM [27],
wavelet neural network [28] and BPmethods. The parameters

VOLUME 7, 2019 152695
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FIGURE 5. The OP performance of TAS II.

TABLE 2. Simulation parameters.

FIGURE 6. The OP performance versus L.

for the six different methods are given in Table 3. From
Figures 7-18, we obtain that the MSE of the GWO-BP neural
network is 0.000575, and the maximum AE is 0.093742,
which are lower than those of the BP, SVM, ELM, wavelet
neural network and LWLR methods. Compared to the BP,
SVM, ELM, wavelet neural network and LWLR methods,
the experimental results verify that the GWO-BP method can
consistently achieve higher OP performance prediction result.

FIGURE 7. Actual and predicted outputs of the GWO-BP neural network.

FIGURE 8. AE of the GWO-BP neural network.

FIGURE 9. Actual and predictive outputs of the BP neural network.

Table 4 shows the MSE and AE comparison for six
different methods. In Table 4, we obtain that, compared
to the ELM, BP, SVR, LWLR, and wavelet neural net-
work methods, the GWO-BP has the smallest MSE and
AE. In conclusion, the GWO-BP is the best forecasting
model.

Fig. 19 shows the best validation performance. This shows
that the MSE generally improves as the number of epochs
increases. In our setup, if the validation error increases for

152696 VOLUME 7, 2019



L. Xu et al.: GWO-BP Neural Network Based OP Performance Prediction for Mobile Multiuser Communication Networks

TABLE 3. Simulation parameters.

FIGURE 10. AE of the BP neural network.

FIGURE 11. Actual and predictive outputs of the SVM.

FIGURE 12. AE of the SVM.

20 consecutive steps, the training stops. In Fig. 19, it stops
after 92 epochs, while the best validation performance occurs
at epoch 72.

FIGURE 13. Actual and predictive outputs of the ELM.

FIGURE 14. AE of the ELM.

FIGURE 15. Actual and predictive outputs of the wavelet neural network.

In Fig. 20, we can obtain the training state. From Fig. 20,
we can see how the gradient changes as the number of itera-
tions increases. After 92 epochs, when the validation checks
fail 20 times, the training stage will stop.

VOLUME 7, 2019 152697
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FIGURE 16. AE of the wavelet neural network.

TABLE 4. The AE and MSE comparison of the six methods.

FIGURE 17. Actual and predictive outputs of the LWLR.

FIGURE 18. AE of the LWLR.

The regression results are shown in Fig. 21. In each plot,
the relationship between the targets and outputs is mea-
sured by the correlation coefficient RR. If RR is bigger,

FIGURE 19. The Best validation performance of the GWO-BP neural
network.

FIGURE 20. The training stage of the GWO-BP neural network.

FIGURE 21. The regression of the GWO-BP neural network.

the GWO-BP neural network model has a better prediction
capability. In Fig. 21, RR is 0.99707, which indicates that our
method has a good prediction capability.
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VII. CONCLUSION
This paper considered OP performance prediction for mobile
multiuser communication networks. Closed form expressions
were derived for the OP over N-Nakagami fading channels.
A GWO-BP based OP performance prediction algorithm was
proposed. Numerical results were presented which show that
this algorithm provides better OP performance prediction
results than the wavelet neural network, SVM, LWLR, BP,
and ELM methods.
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