29 research outputs found

    Software development tools: A bibliography, appendix C.

    Get PDF
    A bibliography containing approximately 200 citations on tools which help software developers perform some development task (such as text manipulation, testing, etc.), and which would not necessarily be found as part of a computing facility is given. The bibliography comes from a relatively random sampling of the literature and is not complete. But it is indicative of the nature and range of tools currently being prepared or currently available

    The development of a program analysis environment for Ada

    Get PDF
    A unit level, Ada software module testing system, called Query Utility Environment for Software Testing of Ada (QUEST/Ada), is described. The project calls for the design and development of a prototype system. QUEST/Ada design began with a definition of the overall system structure and a description of component dependencies. The project team was divided into three groups to resolve the preliminary designs of the parser/scanner: the test data generator, and the test coverage analyzer. The Phase 1 report is a working document from which the system documentation will evolve. It provides history, a guide to report sections, a literature review, the definition of the system structure and high level interfaces, descriptions of the prototype scope, the three major components, and the plan for the remainder of the project. The appendices include specifications, statistics, two papers derived from the current research, a preliminary users' manual, and the proposal and work plan for Phase 2

    On the engineering of crucial software

    Get PDF
    The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described

    A System on Visualization of Program Executive Path and Extraction of Path Sets

    Get PDF
    This article goes into the analysis of program executive path at length, performs a system of program executive path visualization, compares several aspects of different path coverage criteria and discusses the implementation of two specific, yet important, path combinations. In the end, it discusses briefly about the significance based on this system and further study

    Detection of faults and software reliability analysis

    Get PDF
    Multi-version or N-version programming is proposed as a method of providing fault tolerance in software. The approach requires the separate, independent preparation of multiple versions of a piece of software for some application. These versions are executed in parallel in the application environment; each receives identical inputs and each produces its version of the required outputs. The outputs are collected by a voter and, in principle, they should all be the same. In practice there may be some disagreement. If this occurs, the results of the majority are taken to be the correct output, and that is the output used by the system. A total of 27 programs were produced. Each of these programs was then subjected to one million randomly-generated test cases. The experiment yielded a number of programs containing faults that are useful for general studies of software reliability as well as studies of N-version programming. Fault tolerance through data diversity and analytic models of comparison testing are discussed

    Automatic marking of Shell programs for students coursework assessment

    Get PDF
    The number of students in any programming language course is usually large; more than 100 students is not uncommon in some universities. The member of staff teaching such a course has to mark, perhaps weekly, a very large number of program assignments. Manual marking and assessing is therefore an arduous task. The aim of this work is to describe a computer system for automatic marking and assessment of students' programs written in Unix Bourne Shell. In this study, a student's program will be assessed by testing its dynamic correctness and its maintainability. For dynamic correctness to be checked the program will be run against sets of input data supplied by the teacher, whereas for maintainability the student's program will be tested statically. The program text will be analysed, and its typographic style and its complexity measured. The typographic assessment in this system is adaptable to reflect the change of emphasis as a course progresses. This study presents the results generated from the assessment of a typical class of students in a Shell programming course. The experience with the development of the typographic assessment system has been generally positive. The results have shown that it is feasible to automate the assessment of this quality factor, as well as dynamic testing. Realistic grading can be achieved and useful information feedback can be obtained. The system is useful to both the students learning programming in Shell, (Arthur, L. J. and Burns, T., 1996) and the staff who are teaching the course. Although the work here is focused on the Bourne Shell, (Bourne, S. R., 1987) the study is still valid, with little or no change, to all other shells. The method used can also be applied, with some modification, to other programming languages. Furthermore this method is not limited to university and teaching, it can also be used in other fields for the purposes of software quality assessment

    QUEST/Ada (Query Utility Environment for Software Testing) of Ada: The development of a program analysis environment for Ada

    Get PDF
    A history of the Query Utility Environment for Software Testing (QUEST)/Ada is presented. A fairly comprehensive literature review which is targeted toward issues of Ada testing is given. The definition of the system structure and the high level interfaces are then presented. The design of the three major components is described. The QUEST/Ada IORL System Specifications to this point in time are included in the Appendix. A paper is also included in the appendix which gives statistical evidence of the validity of the test case generation approach which is being integrated into QUEST/Ada

    Automated Software Test Data Generation: Direction of Research

    Full text link
    corecore