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Overview

v Static v. dynamic testing
v Forensic work: patterns in failure
v Wallowing in data
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Control Process feedback - the 
essence of engineering improvement

Process Product

Measure samples 
of product for 

quality

Feed-back into 
Process to 
improve it

If you want to improve reliability, measure and
analyse failures.
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Preparing the ground

Fixing the definitions
– A fault is a statically detectable property 

of a piece of code or a design
– A failure is a fault or set of faults which 

together cause the system to show 
unexpected behaviour at run-time

– A defect or bug is a generic term for 
either faults which fail or faults which do 
not.

– Fault density is the number of faults 
divided by the number of lines of code
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Preparing the ground

Note that the causal relationship between fault 
and failure differs in some standards:-

• IEEE + other sources:
error -> fault -> failure

• IEC 61508, (formerly IEC SC 65A):
fault -> error -> failure
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Preparing the ground

The basis of measurement is to define the 
dependent and independent variables
– Independent variables

u LOC (line of code)
u Time
u Function points

– Dependent variables
u Defect type
u Defect severity
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What is a line of code ?

Correlation between two measures 
of source lines in C
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Correlation between two measures of line of code
in systems written in C.  The two measures are
executable lines and total number of pre-processed
lines, Hatton (1995).
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Fault density is a function of 
time

Faults
per
1000
lines

DKLOC

Time of testing

Fault density depends on how much the system 
has been used, (c.f. HP)



v. 1.2, 09/Mar/2000 , (slide 1 - 9).  Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Where and how do defects 
occur historically ?

All faults

Those faults
which fail
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Mean time to fail in Adams 
(1984)

Mean time to fail
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Cost v. detection point

Cost of fixing defects
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Data from Boehm, (1981) and many others.
Note that curve kicks only around coding stage.
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Overview

v Static v. dynamic testing
v Forensic work: patterns in failure
v Wallowing in data
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Patterns in failure

There are two complicating factors in the 
forensic analysis of software failure

• Exponentially increasing complexity
• Chaotic behaviour
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Exponentially increasing 
complexity

The amount of software in consumer electronic 
products is currently doubling about every 
18 months.

• Line-scan TVs have ~250,000 lines of C.
• There are around 200,000 lines of C in a car.
• Most consumer devices, washing-machines 

and so on have a few K of software.
• The Airbus A340 and Boeing 777 are totally 

dependent on software.
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Chaotic behaviour

AT & T Jan,  Jan 15, 1990:
• Single misplaced line of C in 3 million lines by-

passed network error-recovery code
• For 9 hours, millions of long-distance callers 

just heard message “all circuits are busy”
• Reported $1.1 billion loss
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Anatomy of a $1billion bug

...
switch( message )
{
case INCOMING_MESSAGE:

if ( sending_switch == OUT_OF_SERVICE )
{

if ( ring_write_buffer == EMPTY )
send_in_service_to_smm(3B);

else
break; /* Whoops ! */

}
process_incoming_message(); /* skipped */
break;

...
}
do_optional_database_work();
...
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Chaotic behaviour

Cars too ...:
• 22/July/1999.  General Motors has to recall 3.5 

million vehicles because of a software defect.  
Stopping distances were extended by 15-20 
metres.

• Federal investigators received almost 11,000 
complaints as well reports of 2,111 crashes and 
293 injuries.

• Recall costs ?  (An exercise for the reader).
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The PC picture ...
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Useful links

v On software failure:-
– http://www.csl.sri.com/risks.html, (general failures)
– http://www.rvs.uni-bielefeld.de/publications, 

(aircraft)
– http://www.bugnet.com/, (PC)
– http://www.oakcomp.co.uk/TechPub.html, (general 

failure)
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Overview

v Static v. dynamic testing
v Forensic work: patterns in failure
v Wallowing in data
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Where and how do defects occur 
historically ?

Looking for properties of defects
– Defects tend to cluster, (in one case 47% of 

defects in 4% of modules in IBM’s S/370 OS
– The earlier you find them, the cheaper you 

find them
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Where and how do defects occur 
historically ?

Where you find one, you find more, (Pfleeger, (1998))

Defect clustering
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Where and how do defects occur 
historically ?

Defect density clustering
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Where you find one, you find more.
The effect is even more emphatic when you normalise
against lines of code.  (Hatton (1998), Pfleeger, (1998))
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Where and how do defects 
occur historically ?

The following slides show 
distributions of faults and failures 
from a number of case studies, 
each with an introduction and a 
conclusion.
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Where and how do defects 
occur historically ?

Defect clustering in systems
Introduction:
The following data shows how 

defects cluster in systems as a 
function of module complexity

Source:
Compton and Whitrow (1990), Moller

and Paulish (1993), Hatton (1997), 
Swanton (1996)
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Failures and component size, 
(new and changed)

Size in statements
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What happens for big 
components ?

Logarithmic Quadratic

Average size in statements
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Failure density and component 
size

Average size in statements

0

2

4

6

8

10

12
60

10
0

16
0

25
0

40
0

63
0

10
00

20
00

C&W density data

Moller Columbus

Comparison of Ada and assembler,
Hatton (1997)
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Failure density and component 
size

Defect density v. C function size
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The defect density U 
curve

For Ada, various  assembler, C, C++, Fortran, Pascal and PL/M systems:

Defects per
KLOC

Average component complexity
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What happens if you 
intervene at the top end ?

There are two ways of restricting the appearance 
of complex components:-
– Design / Test intervention whereby test plans 

are required to evolve in parallel with the 
component

– Complexity metric limits
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Complexity measurement 
limiting

Complexity testing generally includes the 
following:-
– Measurement of complexity values such as 

lines of code (LOC), cyclomatic or path 
complexity

– Identification of the worst 10% of a population
– Using the known properties of the U curve to 

exclude this 10%
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The defect density U curve -
invasive truncation

In those systems where excessive complexity has been restricted:-

Defects per
KLOC

Average component complexity
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Complexity measurement 
limiting

Complexity measures:-
– Cyclomatic complexity is a count of the number 

of decisions plus 1, (in an if else, don’t count the 
else.  In a switch, don’t count the default).

– The path count is calculated by assuming that 
every decision is independent.  Sequential 
blocks multiply and parallel blocks add.
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Cyclomatic complexity distributions
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Path complexity distributions
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The same complexity limiting is equally successful at controlling
path complexity, improving dynamic testability dramatically.

Complexity measurement 
limiting
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Complexity measurement 
limiting

Complexity limiting notes:-
– It doesn’t seem to matter which complexity 

metric you use to do this, they are currently very 
crude

– It should be used at either end because of the 
U-curve effect.
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Where and how do defects 
occur historically ?

Defect clustering in systems
Defects are not spread equally as 
a function of component size.  
They tend to cluster

Conclusion:
– Use defect clustering to guide 

inspection and testing strategies
– Use complexity metric limits
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Where and how do defects 
occur historically ?

Statically detectable fault
Introduction:
The following slides show the distribution of 

statically detectable inconsistencies and 
widely-known faults in C and Fortran 77

These were measured using purpose built 
tools exploiting the knowledge base of such 
behaviour

Source:
Hatton (1995)
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The logical argument

v We will establish the following chain of 
reasoning:-
– Known fault modes exist in programming 

languages
– They appear regularly in user’s code
– These faults fail with a certain frequency
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Sources of information

v Sources of information on problematic 
behaviour in languages come from two 
sources:-
– The committee’s work, (formally identified 

problem areas). Approximately 300 items.
– Experience in the world at large through news 

groups, comp.lang.c, the Obfuscated C 
competition and so on, (informally identified 
problem areas).  Approximately 400 items.
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Problems with programming 
languages

The need for subsetting programming languages

Scope of Standard 
language

Subset of 
well-defined 
features

Extensions
Subset of 
allowed features
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Formally identified problem 
areas

v Let us consider C.  The following areas of C 
are problematic:
– At standardisation in 1990 (197 items)

u Unspecified behaviour
u Undefined behaviour
u Implementation-defined behaviour
u Locale-specific behaviour

– Since standardisation (119 items)
u Defect Reports



v. 1.2, 09/Mar/2000 , (slide 1 - 44).  Not to be copied without permission from copyright holder. © L.Hatton, 2000-

Examples reported by user 
community

v There are approximately 400 known.  They are 
usually well-defined but misleading.
Examples:
– Returning the address of a local from a 

function.
– Assignment in a conditional

if ( a = b )

– Relational equality in an assignment
a == b;

– Spare semi-colons:
if ( a == b );    { ... }
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Fault frequencies in C 
applications 
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Fault frequencies in Fortran 77 
applications
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Where and how do defects 
occur historically ?

Data derived from CAA CDIS
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This study shows that statically detectable faults do in fact fail
during the life-cycle of the software.
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Where and how do defects 
occur historically ?
Conclusions on safer subsetting:
– We can prove the following:

u There is a class of defect in programming languages 
which to a significant extent is statically detectable, 
widely reported and entirely avoidable

u This class of defect evades conventional testing to the 
extent of around 8 residual defects per 1000 lines of 
code

u A significant percentage of this class of defect fails 
during the life-cycle of the code but we are not able to 
predict which faults fail, so we must remove them all.

– Engineer education and tool support is 
crucial to the control of this class of defect.
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Do languages improve with 
time ?

v Things get worse with time.  The following 
areas of C are problematic because the 
committee could not agree:
– At standardisation in 1990 (197 items)
– At re-standardisation in 1999 (366 items)

v By comparison, C++99 contains the words:-
– Undefined, 1825 times
– Unspecified, 1259 times.
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Why languages can’t improve

ADD NEW
FEATURES

Re-
standardise

language

Recognise poor
features

Feedback
crippled by
backwards

compatibility

Using the model of control process feedback, we see that
the feedback stage is crippled by the “shall not break old
code” rule or “backwards compatibility” as it is more
commonly known.
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Where and how do defects 
occur historically ?

Statically detectable fault
Static analysis suffers from a noise problem

u When sometimes its a fault and sometimes not, for 
example:-

if ( a = b )
instead of
if ( a == b )

u In this case, if we warn of all transgressions those 
statements which are OK will tend to hide those 
which are not from the programmer.  The ‘signal’ is 
hidden by the noise.

u Some form of filtering is necessary, to maximise the 
likelihood of positive detection, for example a safer 
subset standard.
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Where and how do defects 
occur historically ?

Statically detectable fault
We do not know in advance which statically 

detectable faults will fail, but on average a 
significant percentage will

Conclusions:
– Source code should not be released with 

any statically detectable fault
– Learn about the fault modes of your 

language
– Beware of the static noise problem
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Conclusions

The view from data:-
– Static testing v. dynamic testing

u Efficient static testing via inspections with semi-automated 
tool support has a dramatic beneficial effect on software 
reliability and production cost

– Tool support
u Automation should and can support:-

– The best static fault detection possible
– Education of engineers on difficult language areas
– Manual code inspections
– Dynamic checking
– Simple complexity control
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More information ...

For more information on safer subsets, 
static testing, downloadable technical 
publications and tools and other links, you 
are invited to browse our site:-

http://www.oakcomp.co.uk/
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