489 research outputs found

    vSPARQL: A View Definition Language for the Semantic Web

    Get PDF
    Translational medicine applications would like to leverage the biological and biomedical ontologies, vocabularies, and data sets available on the semantic web. We present a general solution for RDF information set reuse inspired by database views. Our view definition language, vSPARQL, allows applications to specify the exact content that they are interested in and how that content should be restructured or modified. Applications can access relevant content by querying against these view definitions. We evaluate the expressivity of our approach by defining views for practical use cases and comparing our view definition language to existing query languages

    OntoVIP: An ontology for the annotation of object models used for medical image simulation.

    Get PDF
    International audienceThis paper describes the creation of a comprehensive conceptualization of object models used in medical image simulation, suitable for major imaging modalities and simulators. The goal is to create an application ontology that can be used to annotate the models in a repository integrated in the Virtual Imaging Platform (VIP), to facilitate their sharing and reuse. Annotations make the anatomical, physiological and pathophysiological content of the object models explicit. In such an interdisciplinary context we chose to rely on a common integration framework provided by a foundational ontology, that facilitates the consistent integration of the various modules extracted from several existing ontologies, i.e. FMA, PATO, MPATH, RadLex and ChEBI. Emphasis is put on methodology for achieving this extraction and integration. The most salient aspects of the ontology are presented, especially the organization in model layers, as well as its use to browse and query the model repository

    Bridging the gap between social tagging and semantic annotation: E.D. the Entity Describer

    Get PDF
    Semantic annotation enables the development of efficient computational methods for analyzing and interacting with information, thus maximizing its value. With the already substantial and constantly expanding data generation capacity of the life sciences as well as the concomitant increase in the knowledge distributed in scientific articles, new ways to produce semantic annotations of this information are crucial. While automated techniques certainly facilitate the process, manual annotation remains the gold standard in most domains. In this manuscript, we describe a prototype mass-collaborative semantic annotation system that, by distributing the annotation workload across the broad community of biomedical researchers, may help to produce the volume of meaningful annotations needed by modern biomedical science. We present E.D., the Entity Describer, a mashup of the Connotea social tagging system, an index of semantic web-accessible controlled vocabularies, and a new public RDF database for storing social semantic annotations

    Alignment of the UMLS semantic network with BioTop: Methodology and assessment

    Get PDF
    Motivation: For many years, the Unified Medical Language System (UMLS) semantic network (SN) has been used as an upper-level semantic framework for the categorization of terms from terminological resources in biomedicine. BioTop has recently been developed as an upper-level ontology for the biomedical domain. In contrast to the SN, it is founded upon strict ontological principles, using OWL DL as a formal representation language, which has become standard in the semantic Web. In order to make logic-based reasoning available for the resources annotated or categorized with the SN, a mapping ontology was developed aligning the SN with BioTop. Methods: The theoretical foundations and the practical realization of the alignment are being described, with a focus on the design decisions taken, the problems encountered and the adaptations of BioTop that became necessary. For evaluation purposes, UMLS concept pairs obtained from MEDLINE abstracts by a named entity recognition system were tested for possible semantic relationships. Furthermore, all semantic-type combinations that occur in the UMLS Metathesaurus were checked for satisfiability. Results: The effort-intensive alignment process required major design changes and enhancements of BioTop and brought up s

    Expressing OWL axioms by English sentences: dubious in theory, feasible in practice

    Get PDF
    With OWL (Web Ontology Language) established as a standard for encoding ontologies on the Semantic Web, interest has begun to focus on the task of verbalising OWL code in controlled English (or other natural language). Current approaches to this task assume that axioms in OWL can be mapped to sentences in English. We examine three potential problems with this approach (concerning logical sophistication, information structure, and size), and show that although these could in theory lead to insuperable difficulties, in practice they seldom arise, because ontology developers use OWL in ways that favour a transparent mapping. This result is evidenced by an analysis of patterns from a corpus of over 600,000 axioms in about 200 ontologies

    Developing Ontology Support for Human Malaria Control Initiatives

    Get PDF
    Malaria is one of the most common infectious diseases and an enormous public health problem in Sub-Sahara Africa, Asia and parts of America. In this paper, we discuss the development of the Human Malaria Control Ontology (HMCO) which contains general information on Malaria and epidemiological information that can help in the formulation of effective malaria control policies. The HMCO is aimed at providing interoperability support for the knowledge management of malaria control initiatives, and serve as an open semantic web infrastructure for malaria research and treatment

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    The Montagues and the Capulets

    Get PDF
    Two households, both alike in dignity, In fair Genomics, where we lay our scene, (One, comforted by its logic's rigour, Claims ontology for the realm of pure, The other, with blessed scientist's vigour, Acts hastily on models that endure), From ancient grudge break to new mutiny, When ‘being’ drives a fly-man to blaspheme. From forth the fatal loins of these two foes, Researchers to unlock the book of life; Whole misadventured piteous overthrows, Can with their work bury their clans' strife. The fruitful passage of their GO-mark'd love, And the continuance of their studies sage, Which, united, yield ontologies undreamed-of, Is now the hour's traffic of our stage; The which if you with patient ears attend, What here shall miss, our toil shall strive to mend
    corecore