310,538 research outputs found

    Classes of decision analysis

    Get PDF
    The ultimate task of an engineer consists of developing a consistent decision procedure for the planning, design, construction and use and management of a project. Moreover, the utility over the entire lifetime of the project should be maximized, considering requirements with respect to safety of individuals and the environment as specified in regulations. Due to the fact that the information with respect to design parameters is usually incomplete or uncertain, decisions are made under uncertainty. In order to cope with this, Bayesian statistical decision theory can be used to incorporate objective as well as subjective information (e.g. engineering judgement). In this factsheet, the decision tree is presented and answers are given for questions on how new data can be combined with prior probabilities that have been assigned, and whether it is beneficial or not to collect more information before the final decision is made. Decision making based on prior analysis and posterior analysis is briefly explained. Pre-posterior analysis is considered in more detail and the Value of Information (VoI) is defined

    Spatio-temporal Edge Service Placement: A Bandit Learning Approach

    Full text link
    Shared edge computing platforms deployed at the radio access network are expected to significantly improve quality of service delivered by Application Service Providers (ASPs) in a flexible and economic way. However, placing edge service in every possible edge site by an ASP is practically infeasible due to the ASP's prohibitive budget requirement. In this paper, we investigate the edge service placement problem of an ASP under a limited budget, where the ASP dynamically rents computing/storage resources in edge sites to host its applications in close proximity to end users. Since the benefit of placing edge service in a specific site is usually unknown to the ASP a priori, optimal placement decisions must be made while learning this benefit. We pose this problem as a novel combinatorial contextual bandit learning problem. It is "combinatorial" because only a limited number of edge sites can be rented to provide the edge service given the ASP's budget. It is "contextual" because we utilize user context information to enable finer-grained learning and decision making. To solve this problem and optimize the edge computing performance, we propose SEEN, a Spatial-temporal Edge sErvice placemeNt algorithm. Furthermore, SEEN is extended to scenarios with overlapping service coverage by incorporating a disjunctively constrained knapsack problem. In both cases, we prove that our algorithm achieves a sublinear regret bound when it is compared to an oracle algorithm that knows the exact benefit information. Simulations are carried out on a real-world dataset, whose results show that SEEN significantly outperforms benchmark solutions

    von Neumann-Morgenstern and Savage Theorems for Causal Decision Making

    Full text link
    Causal thinking and decision making under uncertainty are fundamental aspects of intelligent reasoning. Decision making under uncertainty has been well studied when information is considered at the associative (probabilistic) level. The classical Theorems of von Neumann-Morgenstern and Savage provide a formal criterion for rational choice using purely associative information. Causal inference often yields uncertainty about the exact causal structure, so we consider what kinds of decisions are possible in those conditions. In this work, we consider decision problems in which available actions and consequences are causally connected. After recalling a previous causal decision making result, which relies on a known causal model, we consider the case in which the causal mechanism that controls some environment is unknown to a rational decision maker. In this setting we state and prove a causal version of Savage's Theorem, which we then use to develop a notion of causal games with its respective causal Nash equilibrium. These results highlight the importance of causal models in decision making and the variety of potential applications.Comment: Submitted to Journal of Causal Inferenc

    Budget-constrained Edge Service Provisioning with Demand Estimation via Bandit Learning

    Full text link
    Shared edge computing platforms, which enable Application Service Providers (ASPs) to deploy applications in close proximity to mobile users are providing ultra-low latency and location-awareness to a rich portfolio of services. Though ubiquitous edge service provisioning, i.e., deploying the application at all possible edge sites, is always preferable, it is impractical due to often limited operational budget of ASPs. In this case, an ASP has to cautiously decide where to deploy the edge service and how much budget it is willing to use. A central issue here is that the service demand received by each edge site, which is the key factor of deploying benefit, is unknown to ASPs a priori. What's more complicated is that this demand pattern varies temporally and spatially across geographically distributed edge sites. In this paper, we investigate an edge resource rental problem where the ASP learns service demand patterns for individual edge sites while renting computation resource at these sites to host its applications for edge service provisioning. An online algorithm, called Context-aware Online Edge Resource Rental (COERR), is proposed based on the framework of Contextual Combinatorial Multi-armed Bandit (CC-MAB). COERR observes side-information (context) to learn the demand patterns of edge sites and decides rental decisions (including where to rent the computation resource and how much to rent) to maximize ASP's utility given a limited budget. COERR provides a provable performance achieving sublinear regret compared to an Oracle algorithm that knows exactly the expected service demand of edge sites. Experiments are carried out on a real-world dataset and the results show that COERR significantly outperforms other benchmarks

    Elicitation of ambiguous beliefs with mixing bets

    Full text link
    I consider the elicitation of ambiguous beliefs about an event and show how to identify the interval of relevant probabilities (representing ambiguity perception) for several classes of ambiguity averse preferences. The agent reveals her preference for mixing binarized bets on the uncertain event and its complement under varying betting odds. Under ambiguity aversion, mixing is informative about the interval of beliefs. In particular, the mechanism allows to distinguish ambiguous beliefs from point beliefs, and identifies the belief interval for maxmin preferences. For ambiguity averse smooth second order and variational preferences, the mechanism reveals inner bounds for the belief interval, which are sharp under additional assumptions. In an experimental study, participants perceive almost as much ambiguity for natural events (generated by the stock exchange and by a prisoners dilemma game) as for the Ellsberg Urn, indicating that ambiguity may play a role in real-world decision making
    • …
    corecore