269 research outputs found

    The Future of Construction as it Applies to the Colonization of the Moon and Mars

    Full text link
    The goals of this research are: 1. To compile a comprehensive list of all the viable known solutions (and early stage potential solutions) to the issues related to constructing permanent, sustainable, and safe structures for human colonies on our moon and Mars, 2. Determine the most effective potential solutions, and 3. Further develop these ideas as to assist in further space endeavors. This proposed paper will assist space experts in determining the best next steps in the development of deep-space travel and colonization technologies. Preliminary research has identified several key problems associated with establishing space colonies. They are as follows: (1) damaging effects of cosmic radiation, (2) the need to generate and maintain a breathable atmosphere, (3) the time it takes to reach other celestial bodies, and (4) scarcity of conventional construction materials and life-supporting supplies/systems. Each of these four problems has many components that must be solved for humans to successfully colonize our planetary neighbors. Many promising construction technologies are being developed and used by several large-scale space operation organizations. Some of these solutions are being used to directly solve the problems while others are smaller parts of a larger solution. For example, there have been recent material advancements with respect to 3D printing; sintering technology may also prove to be a viable solution for construction materials. Some current solutions from NASA involve modularized space station units. The findings summarized in this paper incorporate several cutting-edge and innovative technologies related to constructing an extraterrestrial base for humans. There are several proposed solutions for overcoming the four primary issues, though a few solutions demand the attention of further development as they are more feasible than others. When overcoming cosmic radiation, the most feasible solution is the use of Hydrogenated Boron Nitride Nanotubes which are able to block both primary and secondary radiation particles making it an ideal shielding material. In order to overcome the lack of an atmosphere on the moon or Mars, a technology called MOXIE, developed by the Massachusetts Institute of Technology, is able to develop and harvest breathable oxygen with the assistance of microbial life. Overcoming the issues related to time can be the most difficult as no current technology exists that speeds up time or reduces trip duration between worlds. However, preliminary developments in hibernation technologies may very well be the future of long-term interstellar missions. Finally, when overcoming material-related problems on other planets, the advanced applications of additive manufacturing processes appear to be the solution for building habitats as well as creating tools, spare parts, and inadvertently solving some of the other problems. These solutions and more will be discussed in greater detail throughout the solutions and results portion of this paper

    Access Mars: Assessing Cave Capabilities Establishing Specific Solutions: Final Report

    Get PDF
    The human race has evolved, grown and expanded through the exploration of Earth. After initial steps on the Moon, our next challenge is to explore the solar system. Mars shows potential for both scientific discovery and future human settlement, and so is a prime candidate for the next leap of human exploration. Such a bold endeavor will be a driver for an unprecedented worldwide cooperative effort and the catalyst for a new era of international, intercultural and interdisciplinary human relations. Scientific and technological progress will also accelerate as mankind is ushered into a new era of space exploration. Currently proposed Mars missions have identified a number of challenges such as high levels of radiation, harsh climate and limited launch windows. Recently discovered lava tubes on Mars present potential solutions to some of these issues, but raise a variety of intriguing new challenges. These encompass not only technological and engineering considerations, but also legal, ethical and societal issues such as planetary protection and crew safety. This report assesses the feasibility of overcoming such challenges through the exploitation of Mars caves. This report reviews existing reference missions and identifies areas of further research essential for adapting mission architectures to utilize caves. Cave suitability is considered with respect to size, type, location and their potential to mitigate hazards. They are also assessed with respect to their potential for scientific work adhering to astrobiology guidelines and the search for extra-terrestrial life. This report compares surface and subsurface habitat options. Engineering challenges arising from the use of caves are addressed along with proposals for alternate architecture solutions. Mission analysis is conducted to determine the transit trajectory and define two possible mission scenarios with surface crews of 6 and 12 crew members. Different types of habitat are described and evaluated. An architecture for precursor missions is provided utilizing surface rovers, cargo delivery rovers and pressurized human transport vehicles. The implications of sub-surface operations on thermal control, communications and power systems are investigated with recommendations given. Crew selection, training methods and life support system solutions are also addressed. Literature suggests a low radiation environment within Martian caves, allowing for extended duration missions. The ACCESS Mars Team concludes that using lava tubes as human habitats is not merely a viable habitat solution for a Mars expedition, but also potentially more beneficial than proposed surface solutions

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Multi-Objective UAV Mission Planning Using Evolutionary Computation

    Get PDF
    This investigation purports to develop a new model for multiple autonomous aircraft mission routing. Previous research both related and unrelated to this endeavor have used classic combinatoric problems as models for Unmanned Aerial Vehicle (UAV) routing and mission planning. This document presents the concept of the Swarm Routing Problem (SRP) as a new combinatorics problem for use in modeling UAV swarm routing, developed as a variant of the Vehicle Routing Problem with Time Windows (VRPTW). The SRP removes the single vehicle per target restraint and changes the customer satisfaction requirement to one of vehicle on location volume. The impact of these alterations changes the vehicle definitions within the problem model from discrete units to cooperative members within a swarm. This represents a more realistic model for multi-agent routing as a real world mission plan would require the use of all airborne assets across multiple targets, without constraining a single vehicle to a single target. Solutions to the SRP problem model result in route assignments per vehicle that successfully track to all targets, on time, within distance constraints. A complexity analysis and multi-objective formulation of the VRPTW indicates the necessity of a stochastic solution approach leading to the development of a multi-objective evolutionary algorithm. This algorithm design is implemented using C++ and an evolutionary algorithm library called Open Beagle. Benchmark problems applied to the VRPTW show the usefulness of this solution approach. A full problem definition of the SRP as well as a multi-objective formulation parallels that of the VRPTW method. Benchmark problems for the VRPTW are modified in order to create SRP benchmarks. These solutions show the SRP solution is comparable or better than the same VRPTW solutions, while also representing a more realistic UAV swarm routing solution

    Space Station Systems: a Bibliography with Indexes (Supplement 8)

    Get PDF
    This bibliography lists 950 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1989 and December 31, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Tools and Technologies for Enabling Characterisation in Synthetic Biology

    Get PDF
    Synthetic Biology represents a movement to utilise biological organisms for novel applications through the use of rigorous engineering principles. These principles rely on a solid and well versed understanding of the underlying biological components and functions (relevant to the application). In order to achieve this understanding, reliable behavioural and contextual information is required (more commonly known as characterisation data). Focussing on lowering the barrier of entry for current research facilities to regularly and easily perform characterisation assays will directly improve the communal knowledge base for Synthetic Biology and enable the further application of rational engineering principles. Whilst characterisation remains a fundamental principle for Synthetic Biology research, the high time costs, subjective measurement protocols, and ambiguous data analysis specifications, deter regular performance of characterisation assays. Vitally, this prevents the valid application of many of the key Synthetic Biology processes that have been derived to improve research yield (with regards to solving application problems) and directly prevent the intended goal of addressing the ad hoc nature of modern research from being realised. Designing new technologies and tools to facilitate rapid ‘hands off’ characterisation assays for research facilities will improve the uptake of characterisation within the research pipeline. To achieve this two core problem areas have been identified that limit current characterisation attempts in conventional research. Therefore, it was the primary aim of this investigation to overcome these two core problems to promote regular characterisation. The first issue identified as preventing the regular use of characterisation assays was the user-intensive methodologies and technologies available to researchers. There is currently no standardised characterisation equipment for assaying samples and the methodologies are heavily dependent on the researcher and their application for successful and complete characterisation. This study proposed a novel high throughput solution to the characterisation problem that was capable of low cost, concurrent, and rapid characterisation of simple biological DNA elements. By combining in vitro transcription-translation with microfluidics a potent solution to the characterisation problem was proposed. By utilising a completely in vitro approach along with excellent control abilities of microfluidic technologies, a prototype platform for high throughput characterisation was developed. The second issue identified was the lack of flexible, versatile software designed specifically for the data handling needs that are quickly arising within the characterisation speciality. The lack of general solutions in this area is problematic because of the increasing amount of data that is both required and generated for the characterisation output to be considered as rigorous and of value. To alleviate this issue a novel framework for laboratory data handling was developed that employs a plugin strategy for data submission and analysis. Employing a plugin strategy improves the shelf life of data handling software by allowing it to grow with the needs of the speciality. Another advantage to this strategy is the increased ability for well documented processing and analysis standards to arise that are available for all researchers. Finally, the software provided a powerful and flexible data storage schema that allowed all currently conceivable characterisation data types to be stored in a well-documented manner. The two solutions identified within this study increase the amount of enabling tools and technologies available to researchers within Synthetic Biology, which in turn will increase the uptake of regular characterisation. Consequently, this will potentially improve the lateral transfer of knowledge between research projects and reduce the need to perform ad hoc experiments to investigate facets of the fundamental biological components being utilised.Open Acces

    Technology for large space systems: A bibliography with indexes (supplement 20)

    Get PDF
    This bibliography lists 694 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System between July, 1988 and December, 1988. Its purpose is to provide helpful information to the researcher or manager engaged in the development of technologies related to large space systems. Subject areas include mission and program definition, design techniques, structural and thermal analysis, structural dynamics and control systems, electronics, advanced materials, assembly concepts, and propulsion
    • …
    corecore