
IMPERIAL	COLLEGE	LONDON,	DIVISION	OF	MOLECULAR	BIOSCIENCES,	CENTRE	FOR	
SYNTHETIC	BIOLOGY	AND	INNOVATION	

Tools	and	Technologies	
for	Enabling	

Characterisation	in	
Synthetic	Biology	

	
	

Jonathan	Charles	Smith	

19/07/2016	
	

	

	

	 	

Submitted	for	the	Degree	of	Doctor	of	Philosophy	

1	|	P a g e 	
	

Declaration	of	Originality	

I	hereby	declare	that	this	project	was	entirely	my	own	work	and	that	any	additional	sources	of	
information	have	been	duly	cited.	
	

	

	

	

	

	

	

Copyright	Declaration	

The	copyright	of	this	thesis	rests	with	the	author	and	is	made	available	under	a	Creative	
Commons	Attribution	Non-Commercial	No	Derivatives	licence.	Researchers	are	free	to	copy,	
distribute	or	transmit	the	thesis	on	the	condition	that	they	attribute	it,	that	they	do	not	use	it	for	
commercial	purposes	and	that	they	do	not	alter,	transform	or	build	upon	it.	For	any	reuse	or	
redistribution,	researchers	must	make	clear	to	others	the	licence	terms	of	this	work’		 	

2	|	P a g e 	
	

Table	of	Contents	

1	 Table	of	Figures	..	7	

2	 Table	of	Tables	...	11	

3	 List	of	Abbreviations	...	12	

4	 Abstract	..	14	

5	 Background	and	Introduction...	16	

5.1	 Synthetic	Biology	..	16	

5.2	 Characterisation	in	Synthetic	Biology	...	21	

5.3	 Creating	Enabling	Tools	and	Technologies	for	DNA-Based	Biological	Part	Characterisation	in	

Synthetic	Biology	..	25	

5.4	 A	High	Throughput	DNA	Part	Expression	Characterisation	Platform	27	

5.4.1	 Aims	for	the	Investigation	..	27	

5.4.2	 In-Vitro	Transcription-Translation	systems	as	an	Expression	Medium	29	

5.4.3	 Microfluidics	and	Synthetic	Biology	...	31	

5.4.4	 High	Throughput	DNA-Based	Biological	Part	Characterisation	Platform	Overview	34	

5.5	 Handling	of	Characterisation	Data	in	Synthetic	Biology	...	38	

5.5.1	 Aims	for	the	Investigation	..	38	

5.5.2	 Provisioning	for	and	Handling	DNA	Part	Characterisation	Data	Volumes	38	

5.5.3	 Reducing	 the	 Hands-on	 Nature	 of	 Data	 Analysis	 for	 Synthetic	 Biology’s	 DNA	 Part	

Characterisation	...	41	

5.5.4	 Leveraging	Standards	to	Improve	Characterisation	Data	Handling	in	Synthetic	Biology

	 42	

3	|	P a g e 	
	

5.5.5	 Data	Processing,	Analysis	and	Display	–	A	De	Novo	Data	Handling	Software	Suite	for	

Synthetic	Biology	..	44	

6	 The	Microfluidic	In-Vitro	Characterisation	Platform	Results	and	Discussion	47	

6.1	 Platform	Design	and	Testing	Strategy	..	47	

6.1.1	 Design	constraints	..	48	

6.1.2	 Platform	Iterations	and	Modularity	..	51	

6.1.3	 Design	Specifications	and	Platform	Schema	...	52	

6.1.4	 Testing	Strategy	..	55	

6.2	 Biological	Precursors	for	Platform	Operation...	57	

6.2.1	 Expression	Vector	Design	...	57	

6.2.2	 IVTT	Use	within	the	Platform	...	58	

6.3	 Microfluidic	Precursors	for	Platform	Operation	...	61	

6.3.1	 Overview	..	61	

6.3.2	 Surfactant	Variants	...	61	

6.3.3	 Treatment	Variants	..	62	

6.3.4	 Syringes,	Tubing	and	Syringe	Pumps	..	62	

6.4	 Platform	Iterations	...	63	

6.4.1	 Overview	..	63	

6.4.2	 Platform	Iteration	1:	Long	Chip	Design	..	63	

6.4.3	 Platform	Iteration	2:	Modular	Chip	Design	..	67	

6.4.4	 Platform	Iteration	3:	Trapping	Chip	Design	..	72	

6.4.5	 Platform	Iteration	4:	Parking	Chip	Design	..	75	

4	|	P a g e 	
	

6.4.6	 Platform	Iteration	5:	Chip-less	Design	..	79	

6.5	 Droplet	Data	Analysis	...	84	

6.5.1	 Overview	..	84	

6.5.2	 Data	Analysis	for	Microfluidic	Droplets	Detected	Using	an	APD	84	

6.5.3	 Data	Analysis	for	Microfluidic	Droplets	Detected	Using	a	Fluorescence	Microscope	..	98	

6.6	 Outcome	Summary	...	103	

7	 Data	-	Processing,	Analysis	and	Display	Software	Results	and	Discussion	108	

7.1	 Overview	..	108	

7.2	 DPAD	Software	Implementation	..	111	

7.2.1	 Network	Architecture	...	111	

7.2.2	 Database	Architecture	..	116	

7.2.3	 Plugin	Architecture	...	119	

7.3	 DPAD	Demonstration	...	124	

7.4	 Outcomes	...	132	

8	 Materials	and	Methods	..	135	

8.1	 Biological	Techniques	...	135	

8.1.1	 DNA	Manipulation	..	135	

8.1.2	 Digestion	...	137	

8.1.3	 Primer	Annealing	..	137	

8.1.4	 Ligations	...	137	

8.1.5	 Agarose	Gel	Electrophoresis	...	137	

8.1.6	 Electroporation	Cell	Preparation	..	137	

5	|	P a g e 	
	

8.1.7	 Electroporation	...	138	

8.1.8	 DNA	Purification	...	138	

8.1.9	 DNA	Concentration	Quantification	...	138	

8.1.10	 GFP	Purification	..	138	

8.1.11	 In	Vitro	Transcription-Translation	Preparation	...	139	

8.1.12	 Microplate	Assays	...	139	

8.2	 Microfluidic	Techniques	...	141	

8.2.1	 Microfluidic	Chip	Design	...	141	

8.2.2	 Microfluidic	Chip	Fabrication	...	141	

8.2.3	 Microfluidic	Chip	Treatments	...	145	

8.2.4	 Microfluidic	Chip	Oil	Phases	and	Surfactants	...	145	

8.2.5	 Compartment-on-demand	Robot	Software	...	145	

8.3	 Detection	Techniques	...	146	

8.3.1	 Avalanche	Photodiode	Detector	(APD)	..	146	

8.3.2	 Fluorescence	Wide-Field	Microscope	...	147	

8.4	 Analysis	Techniques	...	148	

8.4.1	 APD	Droplet	Detection	...	148	

8.4.2	 Image	Analysis	..	148	

8.4.3	 Characterisation	Data	Analysis	...	148	

8.5	 Data	Processing	Analysis	and	Display	Software	...	150	

9	 Conclusion	..	151	

10	 Appendices	...	153	

6	|	P a g e 	
	

10.1	 List	of	Promoter	Sequences	Generated	...	153	

10.2	 Promoter	Sequence	Generation	Script	..	156	

10.3	 APD	Data	Analysis	–	Data	Selection	Script	...	157	

10.4	 Sample	Microplate	Data	for	the	DPAD	Software	...	161	

11	 References	..	165	

	

	 	

7	|	P a g e 	
	

1 Table	of	Figures	

Figure	1:	The	standard	engineering	cycle	used	in	fields	such	as	software	engineering,	aeronatuics	and	

mechanical	engineering.	..	20	

Figure	2:	The	BioBrickTM	assembly	method	(RFC10).	...	20	

Figure	3:	The	purview	of	characterisation	in	Synthetic	Biology.	..	24	

Figure	4:	Illustrates	the	overall	platform	schema.	...	48	

Figure	5:	Diagram	depicting	the	effect	of	oil	on	GFP	fluorescence.	...	60	

Figure	6:	Production	of	GFP	under	different	conditions	over	 time.	Blue	 is	pure	GFP	at	a	dilution	of	

250ng/μl.	Green	contains	a	GFP	Expression	Vector	with	 J23101	and	 IVTT	with	 the	pre-mix	portion	

diluted	by	1	in	2.	Red	is	the	same	as	green	except	the	cell-free	portion	has	been	diluted	by	1	in	2.	..	60	

Figure	7:	Salient	design	motifs	used	 in	the	construction	of	platform	iterations	1’s	microfluidic	chip.	

Design	...	66	

Figure	8:	An	example	of	a	GFP	droplet	being	observed	as	it	passed	through	standard	100µm	channel.	

The	GFP	concentration	was	1µg/µl	and	the	image	was	acquired	at	40x	magnification.	70	

Figure	9:	Platform	iteration	2	chip	designs.	...	71	

Figure	10:	Diagram	depicting	the	chaining	of	platform	iteration	2’s	detection	chips.	71	

Figure	11:	Platform	iteration	3's	microfluidic	chip	designs.	...	74	

Figure	12:	Salient	design	motifs	used	in	platform	iteration	4’s	microfluidic	device	design	78	

Figure	13:	Graph	to	show	the	production	of	fluorescence	against	droplets	number.	79	

Figure	14:	Schematic	of	platform	iteration	5’s	overall	design.	...	82	

Figure	15:	Graph	showing	the	production	of	fluorescence	over	time.	..	83	

Figure	16:	Graph	showing	the	production	of	fluorescence	over	time	for	a	variety	of	promoters.	Due	to	

droplet	merging,	only	a	single	representative	and	clearly	identifiable	sample	was	used	to	determine	

the	sample’s	 fluorescence.	The	background	 levels	were	measured	 in	a	droplet	containing	 IVTT	and	

tracer	dye	but	no	expression	vector.	...	83	

Figure	17:	A	function	for	loading	data	produced	by	the	APD	into	a	MATLAB	working	environment	..	85	

8	|	P a g e 	
	

Figure	18:	Example	data	for	raw	APD	data	having	loading	into	a	MATLAB	native	format	corresponding	

to	step	1.	..	86	

Figure	19:	Above	shows	a	script	to	perform	low	band	pass	filtering	on	APD	data	(step	2).	87	

Figure	20:	Above	shows	a	script	responsible	for	enacting	step	3	of	APD	Data	Processing.	88	

Figure	21:	Script	and	example	data	for	the	application	of	a	threshold	to	the	data,	corresponding	to	

step	4.	...	89	

Figure	 22:	 Example	 data	 set	 for	 the	 removal	 of	 erroneous	 troughs	 that	 may	 hinder	 droplet	

identification.	...	90	

Figure	23:	Script	for	anomalous	trough	removal	in	APD	data	corresponding	to	step	5.	91	

Figure	24:	An	example	data	set	showing	anomalous	peak	detection	corresponding	to	step	6.	92	

Figure	25:	Script	for	anomalous	peak	removal.	...	93	

Figure	26:	Example	dataset	showing	the	identification	of	droplet	boundaries	where	the	leading	edge	

is	marked	in	blue	and	the	tailing	edge	in	red.	..	94	

Figure	27:	Script	to	find	the	edges	of	droplets	(droplet	boundaries).	..	95	

Figure	28:	Script	and	example	data	showing	the	identification	of	droplets	and	their	average	photon	

count.	...	96	

Figure	 29:	 The	GatherDropletData	 script,	 corresponding	 to	 the	 final	 step	 in	 the	APD	Droplet	Data	

processing	pipeline.	..	97	

Figure	30:	Script	for	processing	images	produced	by	the	fluorescence	microscope.	See	the	annotations	

in	green	for	a	more	detailed	breakdown	of	how	the	script	works	in	each	section.	101	

Figure	31:	Depiction	of	the	image	analysis	process.	..	102	

Figure	32:	Data	handling	pipeline	breakdown.	..	110	

Figure	33:	Runtime	architecture	for	the	DPAD	software.	..	114	

Figure	34:	Schematic	of	the	network	pipeline.	..	114	

Figure	35:	The	abstract	packet	class	that	is	necessary	for	all	network	communication	115	

Figure	36:	Database	schema	for	the	DPAD	software.	..	118	

9	|	P a g e 	
	

Figure	37:	Full	Schema	for	the	DPAD	H2	Database.	...	118	

Figure	38:	The	interface	class	that	acts	as	a	contract	for	all	plugins	for	the	DPAD	software.	121	

Figure	39:	The	abstract	task	object	that	dictates	the	actions	that	can	be	performed	by	a	plugin	121	

Figure	40:	IPluginRuntime	interface.	..	122	

Figure	41:	IPluginDisplay	contract.	...	123	

Figure	42:	IEventThread	contract.	..	123	

Figure	43:	The	GUI	created	on	start	up	of	the	DPAD	software.	...	124	

Figure	44:	The	options	displayed	for	creating	a	new	server	within	the	DPAD	software.	124	

Figure	45:	The	main	client	window	in	the	DPAD	software.	..	125	

Figure	46:	The	client	login	window	for	the	DPAD	software.	..	125	

Figure	47:	The	new	user	window	for	the	DPAD	software.	...	126	

Figure	48:	The	experiment	administration	section	of	the	DPAD	software.	126	

Figure	49:	The	experiment	creation	screen	for	the	DPAD	software.	...	127	

Figure	50:	The	screen	displayed	in	the	DPAD	software	when	Load	Data	is	selected	on	the	main	panel.

..	128	

Figure	51:	Step	1	in	the	microplate	text	file	loader	plugin.	..	129	

Figure	52:	The	modal	dialog	box	displayed	to	the	user	within	the	microplate	text	file	loader	plugin	for	

file	selection.	..	129	

Figure	53:	Step	2	in	the	microplate	text	loader	plugin.	..	130	

Figure	54:	Step	3	in	the	microplate	text	loading	plugin.	..	130	

Figure	55:	The	outcome	of	loading	data	into	the	DPAD	software	using	the	microplate	text	file	loading	

plugin.	...	131	

Figure	56:	A	plasmid	map	depicting	the	archetype	expression	vector's	component	parts.	136	

Figure	57:	An	example	depicting	 the	primer	design	used	 to	 insert	promoter	 regions	 into	a	pre-cut	

expression	vector	backbone.	..	136	

Figure	58:	Overview	of	microfluidic	chip	fabrication	including	the	divergent	chip	types.	144	

10	|	P a g e 	
	

Figure	59:	The	APD	confocal	microscope	setup	used	in	the	investigation.	..	146	

Figure	60:	Script	for	generating	compatible	primers	for	the	generation	of	promoter	sequences	157	

Figure	61:	Example	of	how	data	is	selected	for	trimming	using	the	script	above.	160	

	

	 	

11	|	P a g e 	
	

2 Table	of	Tables	

Table	 1:	 A	 summary	 of	 the	 most	 salient	 points	 tested	 and	 observed	 from	 each	 platform	 design	

iteration.	...	52	

Table	2:	List	standard	promoters	used	in	this	investigation.	...	56	

Table	3:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	1.	These	attempts	

were	sometimes	informed	by	later	work	which	lead	to	iterations	being	revisited.	66	

Table	4:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	2.	These	attempts	

were	sometimes	informed	by	later	work	which	lead	to	iterations	being	revisited.	70	

Table	5:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	3.	These	attempts	

were	sometimes	informed	by	later	work	which	lead	to	iterations	being	revisited.	74	

Table	6:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	4.	These	attempts	

were	sometimes	informed	by	later	work	which	lead	to	iterations	being	revisited.	77	

Table	7:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	5.	These	attempts	

were	sometimes	informed	by	later	work	which	lead	to	iterations	being	revisited.	82	

Table	8:	GFP	Expression	vector	parts	list.	..	136	

Table	9:	Master	fabrication	properties	according	to	channel	depth	...	142	

Table	10:	Full	list	of	promoters	used	in	this	study.	..	153	

	

	 	

12	|	P a g e 	
	

3 List	of	Abbreviations	

Abbreviation	 Meaning	

AHL	 Acyl-Homoserine	Lactone	

APD	 Avalanche	Photodiode	Detector	

API	 Application	Programming	Interface	

CAD	 Computer	Aided	Design	

CCD	 Charge	Coupled	Device	

DICOM	 Digital	Imaging	and	Communications	in	Medicine	

DICOM-SB	 Digital	Imaging	and	Communications	in	Medicine	Synthetic	Biology	

DNA	 Deoxyribonucleic	Acid	

DPAD	 Data	Processing	Analysis	and	Display	

emCCD	 Electron	Multiplying	Charge	Coupled	Device	

EDTA	 Ethylenediaminetetraacetic	acid	

FIFO	 First	In	First	Out	

GFP	 Green	Fluorescent	Protein	

GUI	 Graphical	User	Interface	

HTTP	 Hypertext	Transfer	Protocol	

IVC	 In	Vitro	Comparmentalisation	

IVTT	 In	Vitro	Transcription	Translation	

JDBC	 Java	Database	Connectivity	

LB	 Lysogeny	Broth	

LIMS	 Laboratory	Information	Management	System	

MIAME	 Minimum	Information	about	a	Microarray	Experiment	

MIBBI	 Minimum	Information	for	Biological	and	Biomedical	Investigations	

MINSEQE	 Minimum	Information		about	a	high-throughput	SEQuencing	Experiment	

mRNA	 Messenger	Ribonucleic	Acid	

OD	 Optical	Density	

PCR	 Polymerase	Chain	Reaction	

PDMS	 Polydimethyl	Siloxane	

RBS	 Ribosome	Binding	Site	

13	|	P a g e 	
	

ReST	 Representational	State	Transfer	

rpm	 revolutions	per	minute	

SBOL	 Systems	Biology	Open	Language	

SOAP	 Simple	Object	Access	Protocol	

SQL	 Structured	Query	Language	

TAE	 Tris	base,	acetic	acid	and	EDTA	

TCP	 Transmission	Control	Protocol	

UV	 Ultra	Violet	

	

	

	

	 	

14	|	P a g e 	
	

4 Abstract	

Synthetic	Biology	represents	a	movement	to	utilise	biological	organisms	for	novel	applications	through	

the	 use	 of	 rigorous	 engineering	 principles.	 These	 principles	 rely	 on	 a	 solid	 and	 well	 versed	

understanding	of	the	underlying	biological	components	and	functions	(relevant	to	the	application).	In	

order	to	achieve	this	understanding,	reliable	behavioural	and	contextual	information	is	required	(more	

commonly	known	as	 characterisation	data).	 Focussing	on	 lowering	 the	barrier	of	entry	 for	 current	

research	 facilities	 to	 regularly	 and	 easily	 perform	 characterisation	 assays	will	 directly	 improve	 the	

communal	 knowledge	 base	 for	 Synthetic	 Biology	 and	 enable	 the	 further	 application	 of	 rational	

engineering	principles.	

	 Whilst	characterisation	remains	a	fundamental	principle	for	Synthetic	Biology	research,	the	

high	time	costs,	subjective	measurement	protocols,	and	ambiguous	data	analysis	specifications,	deter	

regular	performance	of	characterisation	assays.	Vitally,	this	prevents	the	valid	application	of	many	of	

the	key	Synthetic	Biology	processes	that	have	been	derived	to	improve	research	yield	(with	regards	to	

solving	application	problems)	and	directly	prevent	the	intended	goal	of	addressing	the	ad	hoc	nature	

of	modern	research	from	being	realised.	

	 Designing	new	technologies	and	tools	to	facilitate	rapid	‘hands	off’	characterisation	assays	for	

research	facilities	will	improve	the	uptake	of	characterisation	within	the	research	pipeline.	To	achieve	

this	 two	 core	 problem	 areas	 have	 been	 identified	 that	 limit	 current	 characterisation	 attempts	 in	

conventional	research.	Therefore,	it	was	the	primary	aim	of	this	investigation	to	overcome	these	two	

core	problems	to	promote	regular	characterisation.	

	 The	first	issue	identified	as	preventing	the	regular	use	of	characterisation	assays	was	the	user-

intensive	methodologies	and	technologies	available	to	researchers.	There	is	currently	no	standardised	

characterisation	equipment	for	assaying	samples	and	the	methodologies	are	heavily	dependent	on	

the	researcher	and	their	application	for	successful	and	complete	characterisation.	This	study	proposed	

a	 novel	 high	 throughput	 solution	 to	 the	 characterisation	 problem	 that	 was	 capable	 of	 low	 cost,	

15	|	P a g e 	
	

concurrent,	 and	 rapid	 characterisation	 of	 simple	 biological	 DNA	 elements.	 By	 combining	 in	 vitro	

transcription-translation	with	microfluidics	 a	 potent	 solution	 to	 the	 characterisation	 problem	was	

proposed.	 By	 utilising	 a	 completely	 in	 vitro	 approach	 along	 with	 excellent	 control	 abilities	 of	

microfluidic	technologies,	a	prototype	platform	for	high	throughput	characterisation	was	developed.	

	 The	second	issue	identified	was	the	lack	of	flexible,	versatile	software	designed	specifically	for	

the	 data	 handling	 needs	 that	 are	 quickly	 arising	within	 the	 characterisation	 speciality.	 The	 lack	 of	

general	solutions	 in	this	area	 is	problematic	because	of	the	 increasing	amount	of	data	that	 is	both	

required	and	generated	for	the	characterisation	output	to	be	considered	as	rigorous	and	of	value.	To	

alleviate	 this	 issue	a	novel	 framework	 for	 laboratory	data	handling	was	developed	 that	employs	a	

plugin	strategy	for	data	submission	and	analysis.	Employing	a	plugin	strategy	improves	the	shelf	life	

of	data	handling	software	by	allowing	it	to	grow	with	the	needs	of	the	speciality.	Another	advantage	

to	this	strategy	is	the	increased	ability	for	well	documented	processing	and	analysis	standards	to	arise	

that	 are	 available	 for	 all	 researchers.	 Finally,	 the	 software	 provided	 a	 powerful	 and	 flexible	 data	

storage	schema	that	allowed	all	currently	conceivable	characterisation	data	types	to	be	stored	in	a	

well-documented	manner.	

	 The	 two	 solutions	 identified	 within	 this	 study	 increase	 the	 amount	 of	 enabling	 tools	 and	

technologies	available	to	researchers	within	Synthetic	Biology,	which	in	turn	will	increase	the	uptake	

of	 regular	 characterisation.	 Consequently,	 this	 will	 potentially	 improve	 the	 lateral	 transfer	 of	

knowledge	 between	 research	 projects	 and	 reduce	 the	 need	 to	 perform	 ad	 hoc	 experiments	 to	

investigate	facets	of	the	fundamental	biological	components	being	utilised.	 	

16	|	P a g e 	
	

5 Background	and	Introduction	

5.1 Synthetic	Biology	

Recent	efforts	to	standardise	Life	Sciences	by	applying	an	engineering	paradigm	(Serrano,	2007)	have	

led	to	the	emergence	of	the	field	of	Synthetic	Biology,	which	aims	to	design	and	manufacture	novel	or	

reconstituted	biological	 constructs	with	 functional	applications	as	an	end	point	 (Royal	Academy	of	

Engineering,	 (2009)).	 To	 facilitate	 this,	 the	 field	 has	 embraced	 three	 core	 tenets	 derived	 from	 the	

engineering	paradigm:	abstraction,	decoupling	and	standardisation.	Abstraction	aims	to	break	down	

the	 complexity	 of	 biological	 systems	 to	 define	discrete	 functional	 components,	 thereby	 increasing	

specialisation	within	these	areas	and	decreasing	the	need	to	understand	areas	other	than	those	of	

interest	to	the	researcher.	Decoupling	reduces	the	complexity	of	achieving	applications	by	breaking	

down	the	investigations	into	discrete	steps,	also	generating	areas	of	specialisation	related	to	the	type	

of	 investigative	 step	 being	 performed.	 Finally,	 standardisation	 allows	 increased	 understanding	

through	the	use	of	common	tools	and	methods	and	gives	rise	to	common	annotations	for	biological	

functions	 and	 activity.	 A	 comprehensive	 review	 of	 these	 can	 be	 found	 in	 the	 excellent	 review	 by	

Andrianantoandro	et	al.		(Andrianantoandro	et	al.,	2006).	Briefly,	these	tenets	aim	to	reduce	the	ad	

hoc	 nature	 of	 biotechnology	 research	 through	 systematic	 design	 and	 rational	 engineering	 by	

improving	 the	 transfer	 of	 information	 between	 research	 investigations,	 decreasing	 the	 required	

knowledge	 to	 operate	 in	more	 complex	 applications,	 and	 increasing	 specialisation	within	 discrete	

areas	 of	 investigation.	 These	 tenets	 have	 hastened	 the	 arrival	 of	 novel	 applications	 for	 the	 field,	

including	work	on	the	production	of	a	synthetic	microbe	(Gibson	et	al.,	2010)	and	the	industrialisation	

of	artemisinin	production	for	use	as	an	antimalarial	drug	(Ro	et	al.,	2006).	Previously	such	applications	

would	have	taken	many	more	research	hours	to	achieve	but	by	reducing	the	ad	hoc	nature	of	 the	

research	 and	 increasing	 the	 lateral	 transfer	 of	 knowledge	post	 hoc	 applications	 can	be	 realised	 at	

increased	rates	without	re-inventing	the	wheel.		

17	|	P a g e 	
	

	 The	seminal	work	performed	by	Elowitz	et	al.	(Elowitz	and	Leibler,	2000)	and	Gardner	et	al.	

(Gardner	et	al.,	2000)	in	designing	synthetic	gene	networks	that	emulate	computational	circuits	has	

established	the	applicability	of	the	engineering	paradigm	to	biological	cells.	By	identifying	components	

with	discrete	functions	and	combining	them	using	rational,	computationally	aided,	design	principles	

these	 researchers	 have	 achieved	 an	 oscillatory	 biological	 circuit	 and	 a	 biological	 toggle	 switch	

respectively.	Key	to	their	success	is	both	the	abstraction	of	the	complexity	of	the	biological	processes	

into	 separate	 functional	 layers	 and	 the	 decoupling	 of	 the	 normal	 research	workflow	 into	 discrete	

investigative	steps.	

	 To	 reduce	 the	 complexity	 of	 engineering	 biological	 organisms,	 a	 classification	 system	 for	

biological	 components	 has	 been	 developed.	 By	 applying	 the	 tenet	 of	 abstraction	 to	 conventional	

biological	understanding	the	concept	of	biological	parts,	devices,	and	systems	has	arisen	(the	reader	

is	referred	a	summary	of	this	by	Drew	Endy	(Endy,	2005)).	Specifically,	biological	parts	are	responsible	

for	a	core	biological	function	(e.g.	a	promoter),	a	device	is	a	combination	of	biological	function	parts	

that	may	result	 in	a	directly	measurable	outcome	(e.g.	an	expression	vector),	and	a	system	utilises	

multiple	biological	devices	to	achieve	a	function	application.	Furthermore,	a	common	concept	within	

Synthetic	Biology	 is	to	abstract	everything	that	 is	not	of	 interest	to	the	 investigation	(e.g.	 the	non-

synthetic	 cell	 circuitry	 and	 behaviours)	 and	 consider	 it	 to	 be	 part	 of	 the	 expression	 ‘chassis’.	

Decoupling	 the	 chassis	 and	 the	 synthetic	 circuitry	 conventionally	 represents	 a	 core	 aim	 of	 an	

investigation	as	it	prevents	confounding	effects	on	the	synthetic	circuitry.		

	 In	engineering,	the	application	of	a	cyclical	workflow	(known	as	the	engineering	cycle,	Figure	

1)	is	accepted	as	a	technique	that	allows	for	the	iterative	improvement	of	experiment	designs.	These	

improvements	 can	 arise	 through	 a	 variety	 of	 mechanisms,	 including,	 but	 not	 limited	 to:	 the	

progressive	improvement	of	associated	technologies,	the	improvement	of	human	experience,	and	an	

increase	in	knowledge	about	the	system	(Kitney	et	al.,	2007).	Separating	and	cyclising	the	steps	within	

a	 biological	 investigation	 (as	 denoted	 in	 the	 engineering	 cycle)	 allows	 for	 the	 following	 potential	

18	|	P a g e 	
	

achievements:	a	reduction	in	the	need	for	ad	hoc	tool	and	method	development	and	an	increase	in	

the	 specialisation	 of	 researchers.	 Specialisation	 of	 expertise	 is	 considered,	 by	 convention,	 to	 lead	

directly	to	an	increase	in	the	development	of	niche	tools	and	technologies	that	in	turn,	will	iteratively	

improve	upon	the	area	of	expertise.	

	 Applying	 the	engineering	paradigm	 to	biology	has	not	only	 created	 tools	and	 technologies	

within	the	investigative	steps	highlighted	in	Figure	1,	but	is	helping	highlight	the	need	for	tools	and	

technologies	at	 the	 interface	of	 these	steps.	The	capabilities	of	core	enabling	 technologies	such	as	

DNA	synthesis	have	increased	dramatically	as	 it	attempts	to	match	the	 increasing	demands	for	the	

rapid	prototyping	of	biological	parts.	As	testament	to	this,	the	complete	synthesis	of	the	M.	mycoides	

(Gibson	et	al.,	2010)	emphasises	the	sheer	scale	of	DNA	synthesis	and	assembly	that	is	now	possible	

with	these	technologies.	The	development	of	tools	within	the	computational	step	of	the	engineering	

workflow	has	also	increased	dramatically.	As	standards	for	annotating	biological	parts	(Galdzicki	et	al.,	

2014,	Roehner	et	al.,	2014)	and	modelling	their	behaviour	(Hill	et	al.,	2008)	have	been	identified	and	

taken	up	into	the	field,	it	has	given	rise	to	powerful	bioinformatics	tools	that	greatly	decrease	the	time	

required	 for	 selecting	 and	 determining	 the	 optimal	 path	 to	 achieve	 desired	 applications.	

Conventionally,	 these	 tools	 are	 known	 as	 computer	 aided	 design	 (CAD)	 tools	 and	 they	 generally	

facilitate	 the	 modelling	 of	 a	 synthetic	 system’s	 behaviour	 by	 selecting	 the	 biological	 parts	 that	

constitute	the	system.	These	CAD	tools	rely	on	libraries	of	biological	information	such	as	collections	

of	 biological	 parts	 that	 have	 been	 tied	 to	 any	 associated	 information	 pertaining	 to	 the	 part’s	

performance	 under	 specific	 environmental	 conditions.	 Generally,	 the	 acquisition	 of	 information	

associated	with	a	part	is	known	as	characterisation.	More	specifically,	these	computational	tools	rely	

on	detailed	behaviour	profiles	or	specifications	in	order	to	model	how	these	parts	are	likely	to	behave	

in	vivo		(Hill	et	al.	2008).		

Repositories	 of	 biological	 parts	 and	 their	 coupled	 information	 (as	 required	 by	 the	 tools	

introduced	above)	have	therefore	arisen	in	turn	and	cyclically	allow	CAD	tools	to	flourish	by	increasing	

19	|	P a g e 	
	

their	 ability	 to	 predict	 the	 behaviour	 of	 devices	 a	 priori	 (Macdonald	 et	 al.	 2011).	 An	 example	 of	

biological	 parts	 (with	 associated	 behavioural	 information)	 is	 the	 BioBricksTM	 Registry	 of	 Standard	

Biological	 Parts	 (www.partsregistry.org)	which	 stores	 the	 physical	 DNA	of	 a	 biological	 part	 and	 its	

characterisation	information.	As	such,	the	BioBricksTM	Registry	represents	a	foundational	technology	

that	enables	Synthetic	Biology	and	its	tools	to	progress	and	reduce	the	need	for	ad	hoc	research.		

One	 of	 the	 more	 essential	 characteristics	 of	 an	 effective	 biological	 part	 repository	 is	 the	

requirement	that	a	biological	part	and	 its	associated	characterisation	 information	be	obtained	 in	a	

consistent	fashion	to	promote	interoperability	and	allow	both	researchers	and	CAD	tools	to	inspect	

and	 use	 the	 information	 in	 a	meaningful	 manner.	 It	 is	 at	 the	 interfaces	 between	 researcher	 and	

archivist	(the	conceptual	curator	of	a	biological	parts	repository)	that	detailed	standards	for	both	the	

biological	and	information	based	components	are	required.	For	the	previously	provided	example	of	

the	BioBricksTM	repository,	a	standard	exists	for	biological	part	submissions	whereby	parts	must	be	

flanked	with	specific	prefix	and	suffix	DNA	sequences	to	facilitate	standardised	assembly	methods.	

One	 of	 the	 standardised	 assembly	method	 used	 by	 the	 BioBricksTM	 repository	 is	 known	 as	 RFC10	

(http://parts.igem.org/Help:Standards/Assembly/RFC10)	 and	 it	 allows	 for	 rapid	 biological	 part	

assembly	with	known	scar	sequences	insulating	each	part.	The	diagram	found	in	Figure	2	provides	an	

overview	of	the	most	basic	assembly	method.	

	

20	|	P a g e 	
	

	

Figure	 1:	 The	 standard	 engineering	 cycle	 used	 in	 fields	 such	 as	 software	 engineering,	 aeronatuics	 and	 mechanical	
engineering.	

	

Figure	 2:	 The	 BioBrickTM	 assembly	 method	 (RFC10).	 Assembly	 using	 the	 above	 method	 helps	 reform	 a	 plasmid	 that	
conforms	to	the	normal	BioBrickTM	standard.	Assembly	is	performed	by	cutting	the	two	plasmids	independently	with	the	
indicated	enzymes	and	after	purification	of	the	relevant	parts	the	two	samples	can	be	ligated	into	a	unified	plasmid.	E,	X,	
S	and	P	correspond	to	restriction	enzyme	sites	for	EcoRI,	SpeI,	XbaI	and	PstI.	 	

21	|	P a g e 	
	

5.2 Characterisation	in	Synthetic	Biology	

As	 intimated	 above,	 underpinning	 the	 three	 core	 tenets	 of	 Synthetic	 Biology	 is	 the	 concept	 of	

characterisation.	 Characterisation	 is	 herein	 identified	 as	 the	 description	 of	 key	 attributes	 and	 or	

behaviours	of	the	biological	components	that	constitute	the	sample	under	investigation	within	fixed	

environmental	 parameters.	 Characterisation	 facilitates	 the	 successful	 implementation	 of	 both	 the	

engineering	 cycle	 and	 the	 core	 tenets,	 as	 it	 generates	 the	 required	 information	 about	 biological	

component	performance	and	the	effect	of	the	biological	components	on	the	overall	system.	Figure	3	

is	a	 schematic	 representation	of	 the	 information	provided	by	characterisation	assays.	Additionally,	

characterisation	is	required	to	help	ensure	a	system’s	robustness	and	predictability	as	well	as	to	define	

performance	 targets	 and	 thresholds	 for	 the	 activation	 of	 a	 system,	 as	 each	 of	 the	 components’	

behaviours	must	be	 sufficiently	defined	 to	predict	 all	 outcomes	 in	 the	 face	of	nature’s	 complexity	

(Endy,	2005,	Canton	et	al.,	2008,	Kelly	et	al.,	2009,	Arkin,	2008,	Marguet	et	al.,	2007,	Heinemann	and	

Panke,	2006).		

	 In	turn,	detailed	characterisation	information	can	help	promote	rapid	prototyping	of	complex	

biological	circuits	(where	target	application	specifications	exist),	by	using	CAD	tools	to	promote	in	silico	

modelling	of	biological	circuit	behaviour.	Using	CAD	tools	 facilitates	rapid	assessment	of	a	design’s	

viability	without	the	arduous	process	of	trial	and	error	and	optimisation	(MacDonald	et	al.,	2011).		

	 The	value	of	characterisation	data	lies	not	only	in	its	ability	to	promote	modelling	of	potential	

solutions	 to	 an	 application,	 but	 also	 serves	 as	 a	 foundation	 for	 the	 lateral	 transfer	 of	 knowledge	

between	research	projects.	Collaborative	characterisation	across	all	institutions	performing	Synthetic	

Biology	 research	would	 greatly	 reduce	 the	 amount	 of	 overlap	 in	 the	 early	 stages	 of	 research	 and	

greatly	increase	the	speed	at	which	solutions	to	application	problems	are	realised.	

	 Characterisation	 is	 a	 concept	 and	 technique	 that	 can	 be	 applied	 to	many	 of	 the	 areas	 of	

biological	investigation.	In	point	of	fact	a	great	deal	of	work	has	been	done	to	quantify	and	understand	

a	variety	of	these	areas,	such	as	the	behaviour	of	enzyme	catalytic	activity,	but	for	the	purposes	of	this	

22	|	P a g e 	
	

investigation,	 future	 references	 to	 characterisation	 refer	 specifically	 to	 the	 quantification	 and	

description	of	the	effects	of	a	biological	part’s	DNA	sequence	at	the	unit,	functional,	and	system	levels	

within	a	predetermined	environment.	

	 The	first	hurdle	in	establishing	viable	characterisation	strategies	for	the	field	has	been	defining	

the	 behaviours	 that	 need	 to	 be	 quantified.	 Previous	 work	 established	 many	 of	 the	 necessary	

measurements	for	characterisation	data	to	be	considered	sufficiently	comprehensive,	most	of	which	

can	be	found	in	the	seminal	work	by	Canton	et	al.	(Canton	et	al.,	2008).	Canton	et	al.	also	promote	the	

use	of	biological	part	datasheets	(conventionally	used	by	other	engineering	disciplines)	to	describe	

biological	part	behaviour.	Specifically,	these	datasheets	should	define	the	biological	part	as	well	as	

quantify	its	behaviour	under	described	environmental	conditions.		

	 The	 second	 hurdle	 to	 establishing	 a	 standardised	 characterisation	 toolset	 has	 been	 the	

characterisation	methodology	 itself.	Canton	et	al.	were	the	 first	group	to	define	a	characterisation	

methodology.	 Predominantly	 their	 aim	 is	 to	 absolutely	 quantify	 the	 desirable	 behaviours	 of	 the	

biological	part	in	question,	generating	the	aforementioned	datasheets.	More	recently,	in	the	study	by	

Kelly	et	al.	(Kelly	et	al.,	2009)	the	authors	hypothesise	that	reducing	inter-lab	environmental	variations	

would	 increase	 the	 versatility	of	Canton	et	al.’s	 characterisation	method.	 To	accomplish	 this,	 they	

describe	biological	 part	 activity	 in	 relative	units	 (as	opposed	 to	 absolute	units)	 by	normalising	 the	

characterisation	data	using	a	 standard	 reference	part’s	activity.	 In	 the	case	of	Kelly	et	al.	 they	are	

attempting	to	characterise	promoters	and	so	have	chosen	to	use	a	standard	reference	promoter	to	

normalise	 the	 expression	 levels.	 Kelly	 et	 al.’s	 conclusions	 emphasise	 that	 any	 data	 acquired	 by	 a	

characterisation	 platform	 should	 be	 both	 versatile	 and	 robust	 in	 its	 acquisition,	 such	 that	 cross-

experiment	variation	is	reduced	and	the	statistical	confidence	in	observed	behaviours	is	increased.		

	 Using	the	absolute	quantification	method	described	by	Canton	et	al.,	calibration	curves	for	

fluorescence	 and	 OD	 to	 reporter	 units	 are	 required	 which	 can	 be	 time	 consuming	 to	 generate;	

however,	 such	 results	 can	 be	 used	 directly	 in	mathematical	modelling.	 The	 relative	 quantification	

23	|	P a g e 	
	

method	is	considered	more	cross-experiment	friendly,	as	effects	in	the	characterisation	data	due	to	

environmental	variations	are	normalised	out.	The	relative	quantification	method	has	been	the	most	

widely	cited	and	has	been	used	in	Escherichia	coli	(Kelly	et	al.,	2009,	Canton	et	al.,	2008),	cyanobacteria	

(Huang	et	al.,	2010),	and	yeast	(Blount	et	al.,	2012),	and	 is	considered	sufficient	for	computational	

modelling	(Ellis	et	al.,	2009).	

	 The	most	common	types	of	characterisation	to	date	involve	biological	parts	that	regulate	the	

amount	 of	 target	 protein	 produced	 and	 green	 fluorescent	 protein	 (GFP)	 is	 generally	 used	 as	 the	

reporter	protein.	Characterisation	methods	not	only	attempt	 to	minimise	environmental	variation,	

but	they	also	attempt	to	reduce	the	number	of	confounding	variables	from	the	expression	host.	To	

achieve	 this,	 minimal	 expression	 plasmids	 or	 vectors	 are	 created	 for	 the	 sole	 purpose	 of	

characterisation	 that	 attempt	 to	 reduce	 context	 dependency	 of	 the	 biological	 part	 being	

characterised.	 The	 expression	 host	 (e.g.	 the	 bacteria	 responsible	 for	 producing	 the	 reporter)	 is	

selected	 using	 criteria	 that	 aim	 to	 reduce	 the	 amount	 of	 background	 interference	 the	 expression	

media	will	cause	(i.e.	no	interfering	products	or	intermediates).	

Despite	 this,	 research	 into	 characterisation	 protocols	 and	 technologies	 is	 limited	 at	 best	

(Canton	et	al.,	2008,	Kelly	et	al.,	2009,	Huang	et	al.,	2010,	Zhang	et	al.,	2007),	and	published	work	on	

Synthetic	Biology’s	applications,	exhibits	only	a	small	degree	of	component	characterisation	(Gibson	

et	al.,	2010,	Ro	et	al.,	2006,	Sinha	et	al.,	2010,	Beisel	and	Smolke,	2009,	Stricker	et	al.,	2008,	Win	and	

Smolke,	2007,	Anderson	et	al.,	2007,	Alper	et	al.,	2005).	Much	of	the	more	recent	research	does	little	

to	address	the	lack	of	foundational	developments	(either	in	component	characterisation	or	method	

standardisation),	which	are	essential	 in	realising	Synthetic	Biology’s	promise.	This	is	largely	due	the	

time	requirement	and	ambiguous	nature	of	characterisation	work,	which	is	especially	emphasised,	as	

an	example,	by	the	variety	of	E.	coli	strains	that	have	been	used	as	an	expression	medium	(Canton	et	

al.,	 2008,	 Kelly	 et	 al.,	 2009,	 Lee	 et	 al.,	 2011,	 Singh	 et	 al.,	 2012,	 Pasotti	 et	 al.,	 2012)	 for	 bacterial	

biological	part	characterisation.	

24	|	P a g e 	
	

	

Figure	3:	The	purview	of	characterisation	in	Synthetic	Biology.	Showing	how	characterisation	underlies	the	fundamental	
tenets	of	Synthetic	Biology	and	is	useful	in	all	potential	applications.	

	 	

25	|	P a g e 	
	

5.3 Creating	 Enabling	 Tools	 and	 Technologies	 for	 DNA-Based	 Biological	

Part	Characterisation	in	Synthetic	Biology	

As	 intimated	 above,	 very	 little	 characterisation	 of	 biological	 parts	 is	 being	 performed	 in	 Synthetic	

Biology,	as	it	requires	a	high	investment	of	research	hours	for	very	little	obvious	potential	gain	within	

a	 normal	 research	 environment.	 However,	 the	 potential	 gain	 increases	 significantly	when	 used	 in	

conjunction	 with	 the	 engineering	 cycle,	 as	 CAD	 tools	 can	 make	 direct	 use	 of	 the	 information	 to	

accelerate	research.	Specifically,	the	small	amount	of	potential	gain	arises	because	researchers	tend	

only	to	concern	themselves	with	their	current	on-going	project,	but	this	mind	set	does	little	to	reduce	

the	 ad	 hoc	 nature	 of	 research	 and	 provides	 minimal	 lateral	 transfer	 of	 knowledge	 to	 post	 hoc	

investigations.	To	improve	the	uptake	of	characterisation	throughout	Synthetic	Biology	research,	it	is	

essential	to	create	tools	and	technologies	that	will	reduce	the	number	of	hours	it	requires.	Similar	to	

movements	in	DNA	Synthesis,	a	reduction	in	the	cost	(here	the	cost	is	man	hours)	will	greatly	improve	

its	utility	and	therefore	uptake	across	laboratories.	The	high	time	cost	of	characterisation	work	can	be	

attributed	to	two	core	problems:	firstly	the	number	of	man	hours	required	to	characterise	a	single	

sample	is	very	high,	and	secondly	the	handling	of	the	large	volume	of	data	that	is	produced	during	

characterisation	assays.		

To	overcome	the	first	problem,	high	throughput	technologies	have	to	be	designed	specifically	

for	the	characterisation	of	biological	parts.	These	technologies	should	aim	to	reduce	the	amount	of	

user	input	required	to	perform	characterisation	by	taking	a	‘plug	and	play’	approach.	An	approach	like	

this	 would	 allow	 researchers	 to	 rapidly	 and	 autonomously	 generate	 characterisation	 data.	 The	

advantage	of	such	an	approach	is	that	researchers	would	be	capable	of	determining	if	their	biological	

parts	or	devices	are	sufficient	 in	 solving	 the	application	 that	 they	are	 targeting,	prior	 to	 rounds	of	

optimisation	and	attenuation.	

The	second	problem	can	be	solved	computationally	by	designing	a	framework	for	handling	

characterisation	data.		The	framework	could	reduce	the	need	for	manual	data	curation,	increase	the	

26	|	P a g e 	
	

speed	 at	 which	 data	 is	 analysed	 and	 even	 display	 it	 in	 a	 meaningful	 manner.	 Furthermore,	

computational	tools	would	aid	in	defining	a	common	storage	and	analysis	toolset	that	would	reduce	

the	need	for	ad	hoc	analysis	techniques	to	be	used.	

The	research	described	herein	proposed	a	solution	to	each	of	the	problems	that	serve	as	a	

bottleneck	for	the	uptake	of	characterisation	in	Synthetic	Biology	research.	The	proposed	solution	to	

the	 first	 problem	 was	 to	 design	 a	 high	 throughput	 technology	 that	 fills	 the	 gap	 in	 foundational	

characterisation	technologies,	see	section	5.4,	and	secondly	a	novel	computational	framework	for	the	

handling	of	characterisation	data,	see	section	5.5.	To	overcome	the	lack	of	enabling	technologies	for	

characterisation	 work	 a	 variety	 of	 disciplines	 need	 to	 be	 coordinated.	 Whilst	 the	 biological	

methodologies	 for	 characterisation	 are	 somewhat	 established,	 the	 methodologies	 for	 observing,	

recording	and	analysing	 the	 characterisation	process	are	 still	 extremely	 lab	dependent.	 Therefore,	

establishing	 common	 tools	 and	 technologies	 will	 serve	 to	 standardise	 these	 methodologies	 and	

hopefully	facilitate	the	uptake	of	characterisation	into	the	research	pipeline.	

	 	

27	|	P a g e 	
	

5.4 A	High	Throughput	DNA	Part	Expression	Characterisation	Platform	

5.4.1 Aims	for	the	Investigation	

The	work	undertaken	herein	represents	efforts	to	standardise,	automate	and	improve	upon	existing	

characterisation	methods	by	engineering	a	novel	foundational	platform	for	characterisation	and	rapid	

design	prototyping.	A	high	throughput,	high	detail,	and	automated	characterisation	platform	can	be	

achieved	by	adopting	a	multidisciplinary	approach	that	integrates	biological	characterisation	assays	

(Canton	et	al.,	2008,	Kelly	et	al.,	2009,	Chappell	et	al.,	2013)	within	 the	platform.	By	adopting	 this	

approach,	 solutions	 already	 present	 within	 each	 of	 the	 discrete	 disciplines	 can	 be	 combined,	

producing	a	cohesive	and	well	understood	solution	to	the	characterisation	problem.		

The	 first	 milestone	 established	 for	 the	 platform	 was	 to	 characterise	 the	 performance	 of	

individual	 biological	 parts,	 namely,	 promoters,	 ribosome	 binding	 sites	 (RBSs),	 and	 terminators.	

Promoters	 are	 of	 particular	 importance	 because	 of	 their	 ubiquitous	 presence	 in	 Synthetic	 Biology	

research	 (Danino	et	al.,	2010,	Fussenegger,	2010,	Kötter	et	al.,	2009),	 their	 large	effect	on	protein	

production	(Kensy	et	al.,	2009,	Khalil	and	Collins,	2010,	Gulati	et	al.,	2009),	their	ease	of	use	(Alper	et	

al.,	2005,	Danino	et	al.,	2010,	Fussenegger,	2010,	Kötter	et	al.,	2009,	Kensy	et	al.,	2009,	Khalil	and	

Collins,	2010,	Gulati	et	al.,	2009,	Kobayashi	et	al.,	2004,	Chappell	et	al.,	2013),	and	their	pervasiveness	

in	the	characterisation	literature	which	makes	them	an	ideal	candidate	for	platform	validation	(Canton	

et	al.,	2008,	Kelly	et	al.,	2009,	Zhang	et	al.,	2007,	Chappell	et	al.,	2013).	Promoters	are	responsible	for	

the	binding	of	the	transcription	machinery	and	are	the	predominant	control	point	for	the	production	

of	mRNA	 that	 ultimately	 leads	 to	 reporter	 production.	 The	 advantages	 of	 using	 promoters	 as	 the	

primary	 test	 set	 for	 the	 success	 of	 the	 technology	 is	 that	 they	 are	 an	 established	 standard	 for	

characterisation	methods	(Canton	et	al.,	2008,	Kelly	et	al.,	2009,	Chappell	et	al.,	2013).	

	 The	targets	for	the	platform	output	(i.e.	characterisation	data)	have	been	informed	through	

two	 seminal	 papers	 from	 the	 characterisation	 literature,	 namely,	 Canton	et	 al.’s:	 Refinement	 and	

standardization	 of	 synthetic	 biological	 parts	 and	 devices	 (Canton	 et	 al.,	 2008),	 and	 Kelly	 et	 al.’s:	

28	|	P a g e 	
	

Measuring	the	activity	of	BioBrickTM	promoters	using	an	in	vivo	reference	standard	(Kelly	et	al.,	2009).	

In	the	first	paper,	Canton	et	al.	successfully	characterise	a	biological	sender-receiver	device	using	Acyl-

Homoserine	Lactone	(AHL)	as	a	small	molecule	 inducer	(the	 input	to	the	system).	The	results	 from	

their	research	quantify	all	the	behaviours	and	parameters	(confounding	or	otherwise)	associated	with	

their	biological	device.	These	include	the	steady	state	reporter	levels	over	varied	input	concentrations,	

the	dynamic	performance	of	the	reporter	over	time	at	a	specific	input	concentration,	the	interaction	

of	 the	 reporter	with	 other	 similar	 small	molecules,	 and	 the	 performance	 of	 the	 reporter	 over	 an	

extended	 period	 of	 time.	 Subsequent	 to	 this,	 the	 authors	 successfully	 parameterize	 the	 device	

(describe	 the	 components	 of	 the	 device	 in	 mathematical	 terms)	 within	 a	 computational	 model,	

allowing	accurate	prediction	of	 the	device’s	behaviour	given	certain	environmental	 constraints.	As	

intimated	 earlier,	 a	 computational	 end	 point	 for	 characterisation	 data	 is	 becoming	 increasingly	

common	within	 the	 field	 (Stricker	 et	 al.,	 2008,	Danino	 et	 al.,	 2010,	 Fussenegger,	 2010,	 Bayer	 and	

Smolke,	2005,	Friedland	et	al.,	2009,	Beisel	et	al.,	2008,	Basu	et	al.,	2004),	for	example	the	outcomes	

from	Canton	et	al.’s	research	represent	ideal	specifications	for	a	characterisation	platform.	Therefore	

it	is	essential	that	any	data	produced	using	the	proposed	technology	be	directly	useful	to	biological	

CAD	tools.		

To	achieve	these	specifications	a	detection	system	that	is	high-resolution	and	high-throughput	

must	 be	 used,	 as	 well	 as	 methods	 and	 techniques	 that	 eliminate	 confounding	 affects	 (such	 as	

generation	 time	 and	 chassis	 interactions).	 It	 was	 decided	 that	 in-vitro	 transcription-translation	

mixtures	were	 to	 be	 used	 as	 the	 expression	medium,	 to	 further	 reduce	 environmental	 variations	

within	the	characterisation	data	as	well	as	 increase	the	speed	at	which	the	data	could	be	acquired	

(Chappell	 et	 al.,	 2013).	 Furthermore,	 microfluidic	 droplets	 were	 to	 be	 used	 to	 encapsulate	 the	

expression	medium	in	order	to	generate	large	numbers	of	repeats	(improving	the	data	quality	through	

quantity)	and	handle	multiple	characterisation	reactions	concurrently.	To	integrate	such	a	disparate	

group	of	disciplines,	detailed	specifications	were	created	for	both	the	platform	as	a	whole	and	at	each	

29	|	P a g e 	
	

of	the	interfaces	between	the	fields.	As	such,	it	was	an	early	aim	to	generate	platform	specifications	

to	enable	the	use	of	a	cyclic	workflow	for	the	creation	of	this	technology.	

5.4.2 In-Vitro	Transcription-Translation	systems	as	an	Expression	Medium	

In	2006	George	Church	and	Antony	Forster	(Forster	and	Church,	2006)	presented	a	review	proposing	

possible	applications	for	Synthetic	Biology	using	 in	vitro	chassis	homologues.	Primarily,	the	authors	

hypothesise	 that	 an	 in	 vitro	 transcription	 and	 translation	 (IVTT)	 system	 provides	 a	 more	 flexible	

platform	for	engineering	biology	as	 it	allows	for	tighter	control	of	environmental	variables	and	any	

reactions	that	may	be	occurring	in	the	background,	behind	the	reaction	of	interest.	IVTT	systems	have	

been	 conceptualised	 as	 genetic	 circuit	 ‘breadboards’	 by	 some,	 as	 they	 are	 becoming	 quickly	

recognised	for	their	fast	turnaround,	reduced	complexity	and	well-studied	nature	(Forster	et	al.	2007,		

(Hockenberry	and	Jewett,	2012).	

	 One	of	the	key	uses	for	IVTT	mixtures	has	been,	and	still	is,	within	protein	production	systems	

(Khnouf	et	al.,	2009,	Dittrich	et	al.,	2005,	He,	2008,	Jewett	et	al.,	2008,	Kara	and	James,	2009)	because	

of	their	high	protein	production	rates	and	relative	chassis	simplicity	(reducing	the	amount	of	required	

downstream	purification)	(He,	2008).	Previous	studies	show	that	IVTT	mixtures	are	restricted	by	their	

inability	to	activate	several	reaction	pathways	in	parallel;	however,	this	does	not	present	a	problem	

for	 a	 foundational	 characterisation	 chassis	 as	 it	 requires	 minimal	 network	 complexity	 (Shin	 and	

Noireaux,	2010,	Shin	and	Noireaux,	2012).	Generally	 these	studies	have	helped	establish	 that	 IVTT	

mixtures	 provide	 all	 the	 essential	 transcription	 and	 translation	machinery	 required	 for	 producing	

proteins	 (Zubay,	 1973,	 Zubay,	 1980,	 Nevin	 and	 Pratt,	 1991)	 which	 is	 essential	 for	 a	 cell-free	

characterisation	platform.		

More	 recently,	 the	 Noireaux	 lab	 and	 colleagues	 have	 produced	 an	 exhaustive	 set	 of	

investigations	covering	 IVTT’s	utility	within	the	field	of	synthetic	biology.	These	 investigations	have	

focused	 predominantly	 on	 a	 novel,	 all	 E.	 coli	 based	 transcription	 translation	 system	 coined	 TX-TL	

(Garamella	et	al.,	2016).	Noireaux	et	al.	have	shown	that	the	system	is	ideal,	not	only	for	high	volume	

30	|	P a g e 	
	

protein	 production,	 but	 also	 suitable	 for	 the	 expression	 of	 complex	 biological	 systems.	 Much	 of	

Noireaux	et	al.’s	work	was	published	after	the	conclusion	of	the	work	performed	in	this	study,	but	it	

represents	an	interesting	avenue	for	improvement	for	the	platform.	

	 The	 primary	 advantages	 of	 using	 IVTT	 as	 the	 characterisation	 chassis	 are	 reduced	

environmental	 effects,	 reduced	 cell	 cycle	 dynamics,	 and	 reduced	 metabolic	 effects	 (Forster	 and	

Church,	2006).	 In	essence	these	advantages	help	reduce	variation	between	characterisation	assays	

whilst	maintaining	versatility	in	both	the	types	of	biological	components	that	can	be	investigated,	and	

the	types	of	assays	that	can	be	performed	(Jewett	et	al.,	2008,	Kara	and	James,	2009,	Noireaux	et	al.,	

2003,	Noireaux	and	Libchaber,	2004).	Whilst	current	methods	 for	characterisation	 (as	described	 in	

Canton	et	al.	 (Canton	et	al.,	2008)	and	Kelly	et	al.’s	papers	 (Kelly	et	al.,	2009)	address	most	of	 the	

characterisation	 assay	 requirements,	 the	 data	 produced	 includes	 some	 drawbacks,	 such	 as	 a	 high	

context	dependency	(Kelly	et	al.,	2009)	and	time	requirement	(Canton	et	al.’s	2008	study	took	over	

two	years	to	complete).		

Additionally,	IVTT	as	an	expression	medium	allows	for	accurate	parameterisation	of	all	of	its	

constituents	without	all	of	the	metabolic	and	cellular	dynamics	that	are	present	in	vivo,	which	presents	

the	opportunity	to	model	the	chassis	 in	 its	entirety	(Takahashi	et	al.,	2015).	This	advantage	relates	

back	 to	 the	 concept	 of	 decoupling,	 whereby	 the	 activity	 of	 a	 functional	 part	 of	 interest	 can	 be	

separated	from	the	normal	background	signal	patterns.	This	decoupling	is	especially	important	when	

considering	the	lead	in	time	for	assaying	the	biological	part	of	interest,	which	historically,	has	been	

high	 due	 to	 the	 need	 to	work	with	 live	 cells.	 Instead,	 IVTT	mixtures	 leverage	 cell	 extracts	 whose	

behaviours	 are	 independent	 of	 transformation	 efficiencies,	 culture	 times,	 and	 general	 network	

characterisation	issues.		

One	of	the	core	standards	in	Synthetic	Biology	is	the	RFC10	BioBrickTM	assembly	format	for	

biological	 constructs	 (www.partsregistry.org).	 This	 standard	 has	 been	 shown	 to	 work	 well	 in	

conjunction	with	IVTT	in	previous	and	on-going	work	(Chappell	et	al.,	2013)	and	therefore	represents	

31	|	P a g e 	
	

the	core	technique	used	to	assemble	the	DNA	in	this	work.	 In	most	circumstances	these	represent	

improvements	 on	 one	 or	 more	 aspects	 of	 the	 original	 RFC10	 standard	 but	 in	 order	 to	 maximise	

compatibility	with	 ongoing	 and	 future	work	 this	 investigation	 has	maintained	 usage	 of	 the	 RFC10	

standard.	

	 A	platform	based	upon	IVTT	expression	enhances	versatility	and	the	ability	of	the	platform	to	

expand	into	the	variety	of	modern	 IVTT	applications	that	are	arising,	 including	mRNA	recovery	and	

metabolic	pathway	engineering	 (Kara	and	 James,	2009,	Chappell	et	al.,	2013).	For	example,	 future	

iterations	of	the	proposed	platform	could	characterise	more	complex	biological	reactions,	including	

biological	devices	and	quantifying	mRNA	production	in	conjunction	with	protein	expression	(He,	2008,	

Jewett	et	al.,	2008,	Yang	et	al.,	2009).	Previous	studies	have	already	established	the	viability	of	IVTT	

as	a	characterisation	medium	(Shin	and	Noireaux,	2010,	Shin	and	Noireaux,	2012),	not	only	for	simple	

biological	part	characterisation	but	also	for	complex	function	biological	circuits.	

	 Recent	work	by	James	Chappell	et	al.	shows	that	an	IVTT	chassis	is	viable	for	characterisation	

of	 simple	 biological	 parts	 (Chappell	 et	 al.,	 2013).	 Their	 work	 shows	 an	 effective	methodology	 for	

performing	 characterisation	 using	 IVTT	 at	 a	 rate	 that	 surpasses	 conventional	 characterisation	

methodologies.	The	work	performed	in	their	study	exemplifies	the	type	of	characterisation	assay	that	

was	targeted	for	use	within	the	high	throughput	characterisation	platform.		Furthermore	this	work,	

and	others	have	shown	the	possibility	of	using	linear	DNA	as	the	expression	backbone	rather	than	the	

more	traditional	plasmid	based	transformation	vectors	(Sun	et	al.,	2014).	

5.4.3 Microfluidics	and	Synthetic	Biology	

The	microfluidics	field	covers	the	investigation	of	chemical	reactions	on	the	nanolitre	to	picolitre	scale	

(Gulati	 et	 al.,	 2009).	 Much	 of	 the	 on-going	 research	 in	 this	 field	 is	 driven	 by	 the	 desire	 for	

miniaturisation	in	the	fields	of	biotechnology	and	medicine.	Employing	microfluidic	techniques	leads	

to	reduced	consumption	of	reagents,	tighter	control	over	reactions,	and	detailed	quantification	of	the	

analytes	 being	 investigated	 (deMello,	 2006).	 By	 leveraging	 techniques	 from	 the	 semiconductor	

32	|	P a g e 	
	

industry,	such	as	soft-lithography	as	a	fabrication	technology,	the	microfluidics	field	has	generated	a	

host	of	solutions	to	biological,	biomedical	and	biochemical	problems.		

Microfluidic	 investigations	 generally	 utilise	 poly-dimethyl	 sulphate	 (PDMS)	 ‘chips’	 to	

manipulate	low	volume	liquid	streams	for	tight	control	over	reaction	components	and	environments	

although	other	 examples	 of	 chip	 substrates	 do	occur.	 Combining	 this	 flexible	 and	 fast	 turnaround	

fabrication	 methodology	 with	 the	 ability	 to	 manipulate	 and	 control	 small	 fluid	 volumes	 imparts	

advantages	that	allow	for	high-throughput	data	acquisition	(Srisa-Art	et	al.,	2009,	Srisa-Art	et	al.,	2007,	

Wang	et	al.,	2009),	low	cost	per	reaction	(deMello,	2006,	Agresti	et	al.,	2010,	Niu	et	al.,	2009,	Zhang	

et	al.,	2006,	Huebner	et	al.,	2008,	Huebner	et	al.,	2009),	automation	(Millington	et	al.,	2010)	and	fine	

manipulation	of	the	reactants	(Gulati	et	al.,	2009,	Forster	and	Church,	2006,	Doktycz	and	Simpson,	

2007,	Griffiths	and	Tawfik,	2006,	Tawfik	and	Griffiths,	1998,	deMello,	2006).	These	advantages	make	

microfluidics	an	ideal	investigative	tool	for	medium	to	long	term	biochemical	reactions	such	as	those	

targeted	by	characterisation	assays.	

Many	 examples	 exist	 for	 the	 use	 of	microfluidic	 technologies	 in	 conjunction	 with	 IVTT	 to	

enhance	the	cell	free	synthesis	of	proteins	(Georgi	et	al.,	2016).	These	examples	utilise	the	high	power	

of	microfluidics	to	control	and	coordinate	reactions	to	produce	proteins	that	may	otherwise	be	toxic	

to	 living	 cells,	 or	 require	 non-natural	 resources	 to	 be	 consumed	 .	 Microfluidic	 technologies	 are	

increasingly	being	used	in	‘at	patient	diagnosis	solutions’	where	a	diagnosis	can	be	performed	at	the	

patient’s	bedside	rather	than	in	a	dedicated	laboratory.	These	solutions	typically	increase	the	speed	

at	which	a	diagnosis	can	be	obtained	without	sacrificing	sensitivity.	Additionally,	these	small	devices	

should	serve	to	reduce	the	overall	cost	for	assays	as	they	purport	to	reduce	the	reagent	consumption	

and	hands	on	time	requirements	(e.g.	laboratory	staff)	for	a	diagnosis	to	be	acquired	(Yang	et	al.,	2015,	

McGrath	et	al.,	2011).	

		 An	 extension	 of	 the	 microfluidics	 field	 is	 droplet	 microfluidics,	 whereby	 analytes	 are	

encapsulated	by	pumping	the	reagents	into	an	immiscible	fluid	(deMello,	2006).	The	flow	instabilities	

33	|	P a g e 	
	

between	the	two	immiscible	fluids	can	cause	spontaneous	droplet	formation.	The	formation	of	these	

droplets	conceptually	compartmentalises	the	reactions,	acting	much	like	individual	reactions	in	their	

own	 right	 (Tawfik	 and	 Griffiths,	 1998,	 Griffiths	 and	 Tawfik,	 2006).	 Thus,	 these	 droplets	 represent	

chemically	inert	micro-bio-reactors	(Tawfik	and	Griffiths,	1998,	Schaerli	and	Hollfelder,	2009,	Kong	et	

al.,	2007,	Williams	et	al.,	2006)	which	can	be	considered	as	small	cell-like	capsules	(Griffiths	and	Tawfik,	

2006,	Viskari	and	Landers,	2006).	By	considering	the	droplets	in	this	way,	the	characterisation	platform	

created	below	can	utilise	the	low	reagent	consumption,	high	droplet	homogeneity	and	large	sampled	

parameter	space	that	the	microfluidics	droplet	technology	offers	thereby	addressing	the	platform’s	

requirements.	The	exceptional	ability	of	microfluidics	to	sample	very	large	parameter	spaces	is	best	

exemplified	by	their	proposed	usages	in	high	throughput	screening	platforms	(Du	et	al.,	2016).	These	

platforms	require	quick	assessment	of	hundreds	or	more	reactions	to	confirm	the	presence	of	specific	

molecules	or	their	precursors.	These	technologies	look	set	to	shake	up	the	current	screen	market	that	

relies	on	 large	 fluid	handling	 robot	 infrastructures	 and	microtiter	plates	 (Dittrich	 and	Manz,	 2006,	

Neuzi	et	al.,	2012,	Hong	et	al.,	2009).	

By	relying	on	a	fabricated	‘chip’	structure,	the	microfluidics	technology	is	inherently	modular	

and	 this	 allows	 for	 a	 variety	 of	 detection	 techniques,	 droplet	 incubation,	 and	 existing	microfluidic	

designs	to	be	validated	and	used.	For	example,	the	characterisation	platform	could	be	coupled	with	

existing	 microfluidic	 designs	 such	 as	 on-chip	 PCR	 (Zhang	 et	 al.,	 2006,	 Williams	 et	 al.,	 2006),	

electroporation	(Wang	et	al.,	2009),	DNA	sequencing	(Paegel	et	al.,	2003),	and	DNA	assembly	(Zhou	

et	al.,	2004).	There	is	also	an	increasing	number	of	detection	methods	associated	with	microfluidics,	

each	targeted	to	different	application	specifications.	Examples	of	detection	methods	in	microfluidics	

include	 avalanche	photodiode	detectors	 (APDs),	 charge	 coupled	detectors	 (CCDs	or	 emCCDs),	 and	

electrochemical	detection	methods	(Baker	et	al.,	2009).	These	technologies	are	increasingly	combined	

with	 technologies	 to	monitor,	 assess	 and	 validate	 the	 construction	 quality	 of	microfluidic	 devices	

(Kawano	 et	 al.,	 2015).	 The	work	 done	 in	 a	 recent	 paper	 by	 Kawano	 et	 al.,	 demonstrates	 a	 novel	

detection	solution	for	assessing	both	the	fluorescence	of	samples	within	a	microfluidic	chip,	and	also	

34	|	P a g e 	
	

to	visualises	chip	details,	such	as	the	channel	walls	or	microbubble	imperfections,	without	using	prior	

(non-integrated)	 techniques	 such	 as	 scanning	 electron	 microscopy.	 A	 great	 deal	 of	 microfluidics’	

power	 as	 an	 investigative	 technology	 is	 derived	 from	 its	 synergy	 and	 integration	with	 a	 variety	of	

disparate	disciplines	involved	in	the	detection	of	small	molecules	or	reactions	and	utilising	them	in	an	

in-line	and	automated	manner	(Maceiczyk	et	al.,	2015).		

A	paper	by	Agresti	et	al.	(Agresti	et	al.,	2010)	exemplifies	the	industrialisation	potential	of	the	

microfluidics	technology.	In	this	study,	droplets	were	formed	in	a	primary	device	followed	by	detection	

and	sorting	in	a	secondary	device.	Capabilities	to	screen	and	sort	biological	constructs	for	their	levels	

of	 production,	 as	 shown	 in	 Agresti	 et	 al.’s	 research,	 allow	 for	 a	 high-throughput,	 high-resolution	

characterisation	platform	to	move	towards	a	rapid	prototyping	device	or	mutagenesis	library	selection	

device,	especially	when	combined	with	the	existing	microfluidic	modules	mentioned	above.		

5.4.4 High	Throughput	DNA-Based	Biological	Part	Characterisation	Platform	Overview	

Using	the	principles	discussed	above,	a	design	for	the	platform	was	envisaged.	This	design	called	for	

the	generation	of	encapsulated	picolitre	scale	characterisation	reactions	within	microfluidic	channel	

devices,	 which	 allowed	 for	 fine	 grained	 control	 over	 observation	 of	 the	 droplets	 and	 their	

manipulation	over	time.	The	characterisation	reactions	were	to	be	based	around	the	the	BioBrickTM	

RFC10	standard	as	Chappell	et	al.	have	already	established	the	feasibility	of	this.	Obviously	one	of	the	

major	hurdles	that	needed	to	be	overcome	is	the	interaction	between	the	characterisation	reaction	

and	the	microfluidic	device.	

Some	precedence	is	established	for	work	at	the	interface	of	IVTT	and	microfluidics.	It	has	been	

established	 that	 IVTT	 has	 previously	 been	 used	 in	 conjunction	 with	 microfluidics	 as	 a	 protein	

expression	system	(Khnouf	et	al.,	2009,	Dittrich	et	al.,	2005,	Noireaux	and	Libchaber,	2004,	Doktycz	

and	Simpson,	2007,	Griffiths	and	Tawfik,	2006,	Tawfik	and	Griffiths,	1998).	In	a	core	example	of	this	

Khnouf	 et	 al.	 (Khnouf	 et	 al.,	 2009)	 use	 un-encapsulated	 IVTT	 as	 a	 protein	 expression	 system	 in	

microchannel	arrays,	as	an	expandable	protein	production	platform.	While	the	core	aim	of	the	paper	

35	|	P a g e 	
	

is	 to	 investigate	 the	 IVTT	 expression	 system	 for	 industrialised	 protein	 production,	 lessons	 can	 be	

learned	that	inform	the	platform’s	design,	such	as	the	versatility	of	the	platform	to	expand	into	DNA	

vectors	that	are	not	based	around	the	BioBrickTM	RFC10	standard.	As	an	extension	of	this,	Griffiths	and	

Tawfik	(Tawfik	and	Griffiths,	1998,	Griffiths	and	Tawfik,	2006)	have	encapsulated	IVTT	with	a	technique	

known	as	in	vitro	compartmentalisation	(IVC),	emulating	the	compartment-like	nature	of	E.	coli	cells.	

More	relevantly,	Dittrich	et	al.’s	work	in	their	2005	paper	shows	that	proteins	can	be	quantified	using	

fluorescence	 as	 a	 reporter.	 Dittrich	 et	 al.	 attempt	 to	 quantify	 the	 fluorescence	 levels	 of	 droplets	

containing	a	single	GFP	producing	vector.	Unfortunately,	this	work	did	not	exhibit	the	reproducible	

characteristics	that	are	desirable	in	a	foundational	technology,	but	their	efforts	were	used	to	inform	

the	work	performed	in	section	6.	

	 Richard	Murray’s	 lab	 has	 recently	 demonstrated	 that	 a	 cell	 free	 approach	 for	 engineering	

biological	 systems	 allows	 rapid	 novel	 biological	 system	 development,	 and	 that	 the	 information	

obtained	within	these	ex	vivo	characterisation	assays	can	be	translated	to	in	vivo	(Niederholtmeyer	et	

al.,	2015).	In	some	of	their	most	relevant	work	Niederholtmeyer	et	al.	utilise	microfluidic	bioreactors	

to	 characterise	 the	 oscillatory	 profiles	 of	 three,	 four	 and	 five	 ring	 oscillators.	 Unique	 to	 their	

characterisation	methodology,	is	the	emulation	of	cell	cycle	behaviour	through	discontinuous	reagent	

flow.	In	contrast	to	this,	the	work	proposed	here	attempts	to	encapsulate	IVTT	mixtures	in	small	cell-

like	 compartments,	 reducing	 reagent	 volume	 and	 promoting	 reagent	 cycling	 through	 built	 in	

regenerative	mechanisms.	

A	review	by	Gulati	et	al.	(Gulati	et	al.,	2009)	considers	the	potential	of	Microfluidics	to	become	

a	 foundational	 technology	 for	 Synthetic	 Biology,	 especially	 for	 characterisation	 assays.	 Principally	

Gulati	et	al.	highlight	some	of	the	advantages	of	the	microfluidics	technology,	whilst	covering	some	of	

the	technological	gaps	that	are	present	within	Synthetic	Biology.	More	recently,	work	produced	by	the	

Hasty	 Laboratory	 at	 Caltech	 (Stricker	 et	 al.,	 2008,	 Bennett	 and	 Hasty,	 2009,	 Prindle	 et	 al.,	 2014)	

exemplify	modern	applications	of	a	microfluidic	platform	to	Synthetic	Biology.	It	should	be	noted	that	

36	|	P a g e 	
	

these	represent	implementations	that	are	only	relevant	to	their	application	of	interest	and	are	neither	

robust	nor	high	throughput	enough	to	function	as	the	basis	 for	a	high	throughput	characterisation	

platform	 where	 the	 sample	 behaviour	 being	 measured	 has	 unknown	 boundaries	 (i.e.	 the	 assay	

measurements	are	being	performed	a	priori).	More	recently,	Linshiz	et	al.,	have	demonstrated	an	end-

to-end	microfluidic	solution	that	facilitates	the	design,	construction,	testing	and	analysis	of	biological	

parts	and	devices.	Whilst	Linshiz	et	al.’s	solution	still	requires	more	conventional	lab	based	techniques	

such	as	cell	culturing,	it	is	on	the	right	track	for	abstracting	away	many	of	the	more	common	problems	

associated	with	meeting	Synthetic	Biology’s	application	targets	(Linshiz	et	al.,	2016).	

The	work	performed	in	this	investigation	was	based	upon	the	belief	that	a	synergy	between	

disciplines,	 such	as	 those	discussed	during	 the	enumeration	of	potential	detection	 technologies	 in	

microfluidics,	would	greatly	benefit	Synthetic	Biology.	The	plethora	of	Synthetic	Biology’s	applications	

and	 the	multitude	 of	 possible	 (and	 sometimes	 required)	 observations	 for	 characterisation	 assays,	

require	robust	solutions	and	high	quality	data	(Andrianantoandro	et	al.,	2006,	Arkin,	2008,	Heinemann	

and	Panke,	2006,	Khalil	and	Collins,	2010,	Gulati	et	al.,	2009,	 Jungmann	et	al.,	2008).	As	discussed	

previously,	these	reactions	can	vary	across	types	and	time,	and	require	large	numbers	in	order	to	have	

statistical	power	in	describing	the	effects	of	biological	parts	on	biological	systems.	It	therefore	seems	

intuitive	to	suggest	that	the	advantages	mentioned	above,	with	regards	to	microfluidic	technologies,	

promote	microfluidics	as	a	powerful	solution	to	the	characterisation	problem.	

In	 summary,	 the	 aim	 of	 this	 portion	 of	 the	 study	 was	 to	 create	 the	 high	 throughput	

characterisation	 platform	 by	 generating	 multiple	 characterisation	 reaction	 droplets	 within	 a	

microfluidic	device.	These	reactions	needed	to	be	both	repeats	of	a	single	reaction	type,	as	well	as	

multiple	reaction	types,	in	order	to	increase	the	throughput	of	the	platform	and	allow	multiplexing	of	

characterisation	assays.	To	achieve	this,	it	was	imperative	that	once	a	viable	droplet	manipulation	and	

data	detection	protocol	was	established,	that	effort	was	emphasised	into	the	front-end	sample	input	

section	of	the	platform.	The	work	performed	also	represented	an	extension	of	a	previous	investigation	

37	|	P a g e 	
	

into	the	feasibility	of	a	microfluidics	based	characterisation	technology.	This	work	demonstrated	a	first	

round	of	design	iterations,	some	of	which	were	used	within	the	work	detailed	below	either	in	further	

tests,	 or	 as	 springboards	 to	 further	 design	 tweaks.	Where	 possible	 and	 where	 clear	 delineations	

between	 the	 two	works	 exist,	 such	 as	 any	 prior	 design	 iterations	 that	 informed	 the	work	 below,	

distinct	work	will	be	marked	as	such.		

Over	the	course	of	this	investigation,	a	novel	microfluidic	droplet	formation	technology	was	

being	developed	 in	parallel	 (Gielen	et	al.,	2013).	Within	 their	 investigation	Gielen	et	al.,	develop	a	

robotic	technology	to	automate	the	encapsulation	of	microfluidics	droplets,	forming	small	reaction	

compartments	on	demand.	This	technology	provides	a	unique	methodology	to	encapsulate	a	 large	

number	of	reaction	types	as	well	as	produce	droplets	in	great	quantities.	When	the	work	below	was	

first	performed,	the	technology	was	still	in	its	infancy,	and	was	only	adopted	later	in	the	work.	

	 	

38	|	P a g e 	
	

5.5 Handling	of	Characterisation	Data	in	Synthetic	Biology	

5.5.1 Aims	for	the	Investigation	

Section	 5.3	 highlighted	 the	 second	 core	 limiting	 factor	 for	 the	 uptake	 of	 regular	 DNA	 part	

characterisation	 within	 a	 Synthetic	 Biology	 research	 pipeline.	 Namely,	 the	 large	 volume	 of	 data	

required	for	comprehensive	coverage	of	all	possible	behaviours	(and	the	requirement	for	this	data	to	

be	compatible	across	multiple	research	institutions),	the	variety	of	data	analysis	techniques	available	

for	 processing	 the	 data,	 and	 any	 metadata	 necessary	 to	 contextualise	 the	 biological	 part	 under	

investigation.	As	Synthetic	Biology	makes	inroads	towards	a	large	volume	and	data	driven	discipline,	

useful	corollaries	can	be	drawn	from	fields	that	have	experienced	similar	transitions	such	as	the	more	

traditional	biological	sciences,	as	well	as	medicine	(Shah	and	Tenenbaum,	2012),	and	computing	(V.	

Knyazkov	 et	 al.,	 2012).	 These	 corollaries	 tend	 to	 teach	 and	 inform	 enabling	 solutions	 that	 can	 be	

brought	across	to	Synthetic	Biology.	Three	types	of	solutions	were	identified	as	areas	for	integration	

within	 a	 data	 handling	 framework	 for	 Synthetic	 Biology	 including:	 tools	 for	 handling	 large	 data	

volumes,	 solutions	 that	 reduced	 the	 need	 for	 manually	 processing	 data,	 and	 the	 introduction	 of	

translatable	 standards	 across	 data	 handling	 layers.	 Examples	 implementations	 of	 these	 solutions	

include:	the	DICOM	database	(Mildenberger	et	al.,	2002),	the	SCOP	database	(Murzin	et	al.,	1995)	and	

the	 UniProt	 catalogue	 (Consortium,	 2013).	 The	 work	 performed	 below	 used	 the	 three	 solutions	

enumerated	above	to	derive	a	flexible	and	robust	solution	to	the	data	handling	problem	in	Synthetic	

Biology	(see	Section	5.5.5).	

5.5.2 Provisioning	for	and	Handling	DNA	Part	Characterisation	Data	Volumes	

Data	 volume	 has	 not	 been	 a	 traditional	 concern	 of	 biological	 laboratories,	 and	 under	 standard	

throughput	it	has	generally	be	considered	sufficient	to	allow	individual	researchers	to	manage	their	

data.	 With	 the	 introduction	 of	 more	 high-throughput	 technologies	 such	 as	 DNA	 sequencing,	

automated	microscopic	imaging,	and	high	speed,	high	resolution	fluorescence	detection	techniques,	

the	amount	of	data	produced	by	rigorous	experiments	has	grown	exponentially.	These	technologies	

39	|	P a g e 	
	

are	increasingly	being	used	throughout	the	biological	sciences	as	the	technologies	grow	cheaper	or	

become	more	approachable.	Even	the	predominantly	adopted	‘gold	standard’	for	characterisation	of	

a	single	biological	part	relies	on	a	large	number	of	data	points	for	it	to	be	minimally	viable.	Traditionally	

this	entails	that	for	a	single	biological	part	within	a	sample,	three	independent	replicates	(different	

bacterial	seed	colonies)	of	three	repeats	(Canton	et	al.,	2008,	Kelly	et	al.,	2009,	Chappell	et	al.,	2013)	

are	required.	Assuming	cultures	are	observed	every	30	minutes	over	a	four	hour	assay,	where	both	

the	optical	density	(OD)	and	fluorescence	of	the	sample	are	measured,	a	total	of	144	data	points	are	

required	per	sample	(this	value	does	not	include	standardising	the	recorded	data	using	a	reference	

sample).	

	 Whilst	the	volume	of	data	is	not	yet	comparable	to	the	example	databases	mentioned	above,	

establishing	storage	and	processing	methodologies	early	within	the	data	driven	field	of	biological	part	

characterisation	will	 increase	 the	uptake	of	 characterisation	 techniques,	as	 the	methodologies	will	

speed	up	the	time	needed	and	decrease	the	difficulty	 in	obtaining	useful	results.	There	are	several	

techniques	that	can	be	employed	to	help	 facilitate	better	data	handling	 including	centralising	data	

storage	moving	towards	a	database	architecture,	as	opposed	to	the	traditional	flat	file	model	used	by	

researchers	 (almost	ubiquitously)	 today,	as	well	 as	designing	any	 storage	models	with	 flexibility	 in	

mind,	in	order	to	accommodate	the	evolving	standards	that	are	typical	of	new	and	rapidly	developing	

fields	such	as	Synthetic	Biology.	

	 Centralised	data	storage	promotes	the	safe	and	organised	management	of	data	and	whilst	it	

is	not	universally	applicable,	 the	multitude	of	advantages	 in	 the	case	of	 research	data	 (and	 in	 this	

specific	 case	 DNA	 part	 characterisation	 data),	 promote	 its	 adoption	 for	 centres	 employing	 high	

throughput	 technologies.	 The	 core	 advantages	 purported	 by	 centralised	 data	 storage	 techniques	

include	common	storage	standards,	transferability	and	share-ability,	data	resilience,	and	scalability.	A	

traditional	example	of	centralised	data	storage	is	the	concept	of	a	database.	A	database	can	take	many	

forms	but	 traditionally	consists	of	SQL	 (Structured	Query	Language)	or	NoSQL	type	 formats.	These	

40	|	P a g e 	
	

formats	come	in	a	variety	of	implementation	specific	‘flavours’	but	generally	adhere	to	a	set	of	core	

concepts	that	promote	data	resilience,	storage	standards,	as	well	documented	data	access,	and	data	

operation	optimisations.	 Implementing	these	techniques	can	generally	 increase	the	organisation	of	

data	 throughout	 organisations,	 promote	 cross	 interrogation	 of	 data	 sets	 that	 would	 traditionally	

remain	separate,	as	well	as	provide	routes	for	data	audit	and	tracking	analyses	to	be	performed.	The	

additional	rigidity	associated	with	a	centralised	data	storage	infrastructure	does	not	imply	a	reduction	

in	the	flexibility	of	the	data	types	that	can	be	handled.	Instead,	flexibility	can	be	reacquired	by	careful	

design	 of	 the	 common	 storage	 formats,	 specifically	 by	 promoting	 adaptability	 in	 data	 formats,	

metadata	 content	 and	 descriptive	 information.	 Flexibility	 of	 this	 kind	 is	 inherently	 necessary	 in	

emerging	fields	as	standards	tend	to	shift,	improve	and	refine	over	time.	

Common	 storage	 formats	 generally	 promote	better	 labelling	practices	of	 data	 as	 they	 can	

require	 semi-structured	 data	 submission,	 which	 in	 turn	 can	 reduce	 data	 submission	 errors	 and	

promote	 data	 cross	 examination.	 Developing	 a	 well-documented	 and	 open	 storage	 standard	

promotes	 an	 increase	 in	 understanding	 of	 data	 structure,	 meaning	 and	 analysis	 routes.	 Having	 a	

common	storage	 infrastructure	can	also	promote	data	 sharing	and	 transfer	as,	 alongside	common	

storage	formats,	it	promotes	understanding	of	data	formats	as	well	as	documents	data	access	routes	

and	policies.	Data	resilience	is	a	core	advantage	offered	by	the	centralised	data	storage	technique,	as	

it	allows	for	redundancy	infrastructures	to	be	put	in	place	as	well	as	ensuring	that	data	is	not	lost	or	

discarded	during	laboratory	transitionary	phases	(such	as	the	leaving	of	a	key	staff	member).	Finally,	

centralised	data	storage	offers	a	wide	variety	of	scalability	options	to	improve	performance,	uptake	

and	general	utility.	These	scalability	options	are	a	direct	reflection	of	the	maturity	of	the	techniques	

as	well	as	their	common	use	throughout	modern	IT	infrastructures.		

41	|	P a g e 	
	

5.5.3 Reducing	 the	Hands-on	Nature	of	Data	Analysis	 for	Synthetic	Biology’s	DNA	Part	

Characterisation	

Biological	 and	 big	 data	 analysis	 have	 traditionally	 been	 difficult	 for	 non-specialised	 research	

individuals	to	approach,	either	because	of	the	complexity	of	the	plethora	of	statistical	tools	available,	

or	the	inherent	requirement	for	specialised	knowledge	(such	as	programming)	to	perform	the	analysis.	

This	difficulty	has	been	mitigated	through	the	creation	of	novel	analytics	toolboxes	and	platforms,	but	

these	often	fail	to	keep	up	with	rapidly	developing	fields	or	are	technology	and	technique	dependant.	

Biological	data	analysis	 is	 also	becoming	more	 computationally	 intensive	and	 increasingly	 requires	

access	 to	 dedicated	processing	or	 analysis	 environments.	 Examples	 of	 this	 complexity	 are	 present	

within	 Synthetic	 Biology	 already,	 where	 complex	 genetic	 systems	 can	 be	 simulated	 with	 non-

deterministic	 algorithms,	 in	 order	 to	 approximate	 and	 estimate	 biological	 behaviours.	 In	 the	

investigation	below,	several	computation	techniques	were	leveraged	in	order	to	counter	the	hands-

on	nature	of	current	characterisation	data	analysis	in	Synthetic	Biology.	

	 As	 stated	 earlier,	 these	 issues	 are	 more	 often	 mitigated	 through	 the	 development	 of	

specialised	software,	and	examples	of	this	can	be	seen	in	the	DNA	sequencing	field	where	companies,	

such	 as	 Illumina	 (Illumina,	 Inc.),	 have	 recently	 developed	dedicated	 cloud	based	platforms	 for	 the	

analysis	of	 sequencing	data	with	 their	BaseSpace	platform.	Another	example	 is	 the	Galaxy	project	

(https://galaxyproject.org/)	which	promotes	the	creation	and	management	of	biological	data	analysis	

pipelines	in	a	modular	manner,	by	leveraging	small	isolated	processing	or	analysis	components.	Both	

of	these	software	examples	present	modern,	flexible	architectures	for	data	analysis	and	are	emulated	

in	the	novel	software	developed	below	to	provide	an	integrated	data	storage	and	analysis	solution.	

	 The	 purpose	 of	 this	 investigation	 was	 not	 only	 to	 achieve	 a	 specific	 solution	 to	 the	

characterisation	 problem	 in	 gene	 expression,	 but	 also	 derive	 a	 novel	 platform	 that	 would	

accommodate	future	developments	in	the	field,	such	as	changes	in	standards,	analysis	techniques	and	

the	 technologies	 used.	Additionally,	 by	 taking	 inspiration	 from	 the	Galaxy	modular	 architecture,	 a	

42	|	P a g e 	
	

route	for	iterative	and	open	development	for	data	processing	or	analysis	modules	becomes	apparent,	

which	 would	 encourage	 the	 collaborative	 development	 of	 tools,	 techniques	 and	 standards	 with	

regards	to	data	in	Synthetic	Biology.	

5.5.4 Leveraging	 Standards	 to	 Improve	 Characterisation	 Data	 Handling	 in	 Synthetic	

Biology	

Engineering	disciplines	have	almost	always	identified	standards	as	a	common	necessity	in	increasing	

the	understanding	of	systems,	maximising	their	scope	of	use	(by	ensuring	non-specialists	can	access	

the	 knowledge),	 promoting	workflow	 standardisation	 and	 increasing	 the	 cross	 pollination	of	 ideas	

through	the	cross	examination	of	common	principles	(in	this	case	it	is	the	cross	interrogation	of	the	

data	 that	 provides	 this).	 Synthetic	 Biology	 has	 recognised	 the	 need	 for	 standardisation	 at	 the	

methodological	level,	but	still	suffers	at	the	data	storage	level.	

	 Examples	of	common	storage	formats	do	exist	for	sets	of	specific	data	types.	Two	such	storage	

methods	were	mentioned	briefly	before,	namely	the	Digital	Imaging	and	Communications	in	Medicine	

standard	for	medical	imaging	(DICOM)	and	the	Synthetic	Biology	Open	Language	(SBOL).	The	DICOM	

standard	was	an	evolution	of	a	previous	standard	(ACR/NEMA),	which	was	first	used	in	1993	(Bidgood	

and	Horii,	1992).	Since	then	the	standard	has	not	only	grown	to	encompass	interpretation	and	display	

standards	for	medical	images,	but	also	to	design	services	for	their	use	such	as	data	transmission	and	

data	 redundancy	and	storage.	The	DICOM	standard	was	 so	 successful	 in	 its	uptake	across	medical	

infrastructure	 that	 it	 has	 informed	 the	 development	 of	 a	 Synthetic	 Biology	 analogue	 (DICOM-SB).	

DICOM-SB	serves	to	provide	an	extensible,	re-usable	model	for	Synthetic	Biology’s	data,	whilst	also	

providing	servers	for	data	exchange	(Sainz	de	Murieta	et	al.,	2016).	DICOM-SB	may	become	the	de	

facto	 standard	 for	data	 storage	 in	 Synthetic	Biology,	but	was	only	 recently	 finished.	 The	Synthetic	

Biology	Open	Language	(which	purportedly	can	be	used	 in	conjunction	with	the	DICOM-SB	storage	

and	handling	standard)	can	be	used	to	describe	the	sequence	associated	information,	similar	to	that	

of	more	conventional	storage	formats	such	as	GenBank	(Benson	et	al.,	2005).	The	most	recent	version	

43	|	P a g e 	
	

of	which	allows	 for	a	wide	 range	of	 components	and	dynamic	 interactions	 to	be	described.	These	

dynamic	 interactions	 can	 be	 directly	 represented	 by	 associating	 SBOL	 files	 and	 Systems	 Biology	

Markup	Language	(SBML)	files.	As	these	standards	become	more	and	more	accepted,	as	well	as	more	

and	more	mature,	their	integration	into	common	infrastructures	will	become	more	important.	These	

common	 storage	 formats	 also	 extend	 directly	 into	 high	 throughput	 experimental	 results	 from	

microarrays	 and	 high-throughput	 sequencing	 as	 exemplified	 in	 the	 ArrayExpress	 repository	

(Kolesnikov	et	al.,	2015).	ArrayExpress	offers	an	international	data	repository	service	for	storing	high-

throughput	 functional	 genomics	 experiments	 to	 promote	 reuse	 and	 storage	 redundancy.	 The	

ArrayExpress	adheres	to	core	established	data	standards	for	storing	microarray	and	sequencing	data	

(MIAME	 and	MINSEQE	 respectively).	 ArrayExpress	 also	 provides	 a	 common	 portal	 for	 experiment	

archiving	 whilst	 brokering	 the	 actual	 data	 storage	 to	 storage	 delegates	 such	 as	 the	 European	

Nucleotide	Archive.		

	 Another	example	of	the	data	types	that	need	to	be	stored	in	biological	experiments	are	the	

metadata	 information	 that	describe	 the	 types	of	biological	measurements,	 their	 context	 and	 their	

methodologies.	Most	recently,	a	 large	conglomeration	of	biological	standards	has	arisen	under	the	

BioSharing	 umbrella.	 BioSharing	 provide	 a	 curated	 web	 based	 interface	 for	 search	 registries	 on	

standards,	 databases	 and	 policies	 within	 the	 biological	 sciences.	 These	 standards	 include	 the	

aforementioned	 MIAME	 and	 MINSEQE	 standards	 but	 also	 include	 the	 notable	 MIBBI	 standard	

(Minimum	Information	for	Biological	and	Biomedical	Investigations).	MIBBI	provides	a	set	of	checklists	

that	aim	to	define	the	minimum	information	set	necessary	to	describe	a	biological	investigation.	

The	 difficulty	 in	 establishing	 data	 analysis	 standards	 directly	 prevents	 the	 uptake	 of	

characterisation	within	 the	 Synthetic	 Biology	 research	 pipeline,	 as	 it	 requires	 a	 considerable	 time	

investment	in	order	to	independently	research	the	most	robust	and	performant	methodologies.	This	

problem	 is	best	exemplified	by	 the	variety	of	 statistical	analyses	and	data	visualisation	 techniques	

used	within	the	previously	discussed	canonical	characterisation	work	(Canton	et	al.,	2008,	Kelly	et	al.,	

44	|	P a g e 	
	

2009,	Chappell	et	al.,	2013),	which	either	uses	confidence	intervals	or	standard	deviation	to	calculate	

the	error	 in	 sample	 results.	 Furthermore,	 the	 lack	of	 consensus	 regarding	 the	 required	 contextual	

information	 for	 characterisation	 data	 can	 also	 slow	 the	 uptake	 of	 characterisation.	 Some	 of	 the	

difficulty	 in	 establishing	 standardised	 data	 analyses	 is	 the	 perceived	 need	 for	 Synthetic	 Biology’s	

characterisation	work	to	produce	analogues	to	the	engineering	datasheets	as	described	in	Canton	et	

al.’s	2008	characterisation	paper.	Whilst	this	movement	is	commendable	in	furthering	the	application	

of	engineering	to	biology,	such	a	rigid	output	does	little	to	reflect	the	inherent	complexity	of	biological	

systems	 and	 their	 possible	 applications.	 It	 is	 difficult	 to	 identify	 what	 contextual	 information	 is	

required	 when	 the	 possible	 usages	 of	 biological	 parts	 are	 so	 wide	 and	 varied.	 Both	 the	 lack	 of	

established	 analysis	 standards,	 and	 the	 required	 contextual	 information	 further	 confound	 the	

difficulty	 in	 producing	 viable	 characterisation	 data	 that	 meets	 Synthetic	 Biology’s	 implied	

characterisation	standards	(Canton	et	al.,	2008).		

5.5.5 Data	Processing,	Analysis	and	Display	–	A	De	Novo	Data	Handling	Software	Suite	for	

Synthetic	Biology	

In	 the	 work	 below,	 a	 comprehensive	 data	 handling	 framework	 was	 designed	 and	 created.	 The	

software	 was	 built	 with	 the	 Java	 programming	 language	 which	 is	 known	 for	 its	 cross-platform	

compatibility	as	well	as	its	wide	array	of	software	libraries	to	build	upon.	This	software	solution	was	

engineered	with	the	primary	target	of	handling	gene	expression	characterisation	data,	but	also	with	

sufficient	flexibility	so	as	to	allow	other	data	types,	analysis	modules,	and	displays,	to	be	dynamically	

plugged	in	to	the	system.	Beyond	this,	the	software	was	designed	to	help	centralise,	coordinate	and	

control	data	storage	and	analysis	by	adopting	a	client	server	model	that	helps	decouple	the	various	

system	logics	that	underpin	the	software.	The	client	portion	of	the	software	was	designed	to	provide	

common	visualisation	tools,	data	loading	modules	and	network	components	and	the	server	side	of	

the	 software	was	designed	 to	provide	multithreaded	network	 infrastructure,	multithreaded	plugin	

execution	infrastructures,	as	well	as	all	of	the	database	abstraction	infrastructures	which	specifically	

utilised	the	JDBC	driver	to	interact	with	an	H2SQL	database.		

45	|	P a g e 	
	

This	 dynamic	 polymorphic	 and	 plugin-able	 design	 helped	maximising	 the	 versatility	 of	 the	

software	by	allowing	it	to	be	adapted	to	new	data	analysis	techniques,	standards	and	methodologies,	

whilst	maintaining	 stability	 in	 its	 storage	 solutions,	 thereby	providing	 a	 consistent	 and	 centralised	

information	source	for	all	users.	As	such,	the	platform	was	designed	to	handle	multiple	information	

sources,	 facilitate	 batch	 loading	 of	 data,	 perform	 consistent	 data	 analysis	 that	 are	 contextually	

relevant,	and	present	any	available	results	in	a	meaningful	manner.		

It	 was	 also	 important	 for	 the	 software	 to	 maximise	 its	 utility	 across	 large	 and	 complex	

organisational	 structures	 whilst	 requiring	 minimal	 infrastructure	 changes.	 To	 achieve,	 this	 the	

software	was	designed	 to	work	under	a	 client/server	model	which	 completely	decouples	 the	data	

storage	and	analysis	from	the	data	input	and	display.	This	model	was	a	direct	implementation	of	the	

centralisation	techniques	described	above.	The	software	was	designed	to	be	wholly	self-serving,	not	

relying	on	web	engines	and	other	software	installations.	The	latter	of	these	has	long	term	implications	

for	 the	 software’s	 utility.	 Namely,	 whilst	 independence	 and	 ease	 of	 setup	 were	 maximised	 (by	

removing	 dependencies	 on	 other	 software),	 the	 ability	 for	 additional	 intelligence	 to	 be	 placed	

between	the	client	and	server	was	reduced	(implying	that	performance	increasing	techniques	such	as	

load	balancing	and	distributed	computing	are	not	directly	available).	This	may	appear	to	be	a	 long	

term	 drawback	 for	 the	 software	 with	 regards	 to	 big	 data	 analysis	 (which	 often	 has	 higher	

computational	 demands	 and	 therefore	 benefits	 greatly	 from	 small	 performance	 enhancements),	

however	the	problem	can	actually	be	mitigated	by	utilising	the	plugin	architecture	described	above,	

to	delegate	computationally	intensive	tasks	to	more	suitable	infrastructures	and	then	re-integrating	

any	results	produced	from	the	analysis.		

Finally,	the	software	aims	to	provide	a	platform	that	can	quickly	take	up	a	storage	standard,	

or	 even	 accommodate	 multiple	 standards,	 by	 providing	 flexible	 and	 non-constrictive	 metadata	

storage.	One	of	the	key	guiding	principles	was	that	any	storage	infrastructure	put	in	place	would	not	

define	 a	 new	 standard	 in	 itself,	 which	 often	 times	 tends	 to	 pollute	 and	 confound	 progress	 for	 a	

46	|	P a g e 	
	

standard’s	uptake.	Instead	it	was	a	core	aim	for	the	software	produced	in	the	work	below	to	allow	the	

quick	uptake	of	situationally	relevant	data	standards	when	specifically	called	for,	but	to	generally	be	

agnostic	 in	 the	 technology	 and	 experiment	 types,	 in	 order	 to	 provide	maximum	 versatility	 in	 the	

software	implementation	as	well	as	to	ensure	the	future	utility	of	the	software.		

	 	

47	|	P a g e 	
	

6 The	 Microfluidic	 In-Vitro	 Characterisation	 Platform	 Results	 and	

Discussion	

6.1 Platform	Design	and	Testing	Strategy	

As	 outlined	 in	 section	5.4,	 the	 overarching	 platform	 strategy	was	 to	 utilise	 IVTT	 as	 an	 expression	

medium	for	DNA	constructs,	whilst	encapsulated	 in	a	droplet	 surrounded	by	an	oil	phase	within	a	

microfluidic	device.	Beyond	this,	automated	data	analysis	was	to	be	established	allowing	for	increased	

speed	and	a	reduction	in	the	ad	hoc	nature	of	data	processing.	In	theory	this	combination	of	disciplines	

achieves:	

1) The	high	throughput	demands	of	the	platform	by	exploiting	microfluidics’	ability	to	produce	

high	 numbers	 of	 reactions	 encapsulated	 in	 droplets	 (Srisa-Art	 et	 al.,	 2007,	 Srisa-Art	 et	 al.,	

2009,	Wang	et	al.,	2009)	

2) The	 accurate	 characterisation	 demands	 of	 the	 platform	 by	 employing	 IVTT’s	 ability	 to	

represent	a	biological	system’s	behaviour	under	controlled	conditions	(Chappell	et	al.,	2013)	

3) A	 standardised	analysis	methodology,	 reducing	 the	ad	hoc	 nature	of	 characterisation	data	

analysis	

4) High-throughput	 data	 acquisition	 and	 contextualisation	 with	 automated	 data	 handling	

(including	statistical	confidence	inference)	(Canton	et	al.,	2008)	

To	achieve	a	high-throughput	microfluidic	 in	vitro	characterisation	platform,	multiple	 initial	

constraints	were	outlined	for	the	platform	during	the	design	process,	each	relating	to	the	key	aims	of	

the	 platform.	 These	 initial	 constraints	 informed	 the	 design	 by	 limiting	 the	 number	 and	 types	 of	

techniques	and	experimental	methodologies	that	were	suitable	for	use.	From	these	constraints	a	set	

of	explicit	platform	specifications,	for	both	the	scope	and	the	direction	of	the	platform,	were	derived	

(these	are	summarised	in	Figure	4).	

	

48	|	P a g e 	
	

	

Figure	4:	Illustrates	the	overall	platform	schema.	Different	sections	of	the	platform	design	are	broken	into	modules	to	
allow	for	faster	iteration	cycling.	These	modules	are	marked	numerically	according	to	when	they	affect	a	normal	platform	
workflow.	

	

6.1.1 Design	constraints	

The	initial	set	of	platform	design	constraints	was	derived	from	the	requirement	that	any	data	acquired	

must	be	directly	comparable	to	previous	in	vitro	characterisation	studies	performed	by	Chappell	et	al.	

(Chappell	 et	 al.,	 2013)	 as	 their	 study	 represents	 a	 complete	 comparison	 of	 in	 vitro	 vs.	 in	 vivo	

characterisation	 techniques.	 Considering	 this,	 all	 data	 acquired	 needed	 to	 summarise	 a	 dynamic	

profile	 of	 GFP	 production	 over	 time,	 under	 controlled	 environmental	 conditions,	 and	 be	 directly	

attributable	to	a	single	reaction	type	that	entered	the	platform.	Reactions	studied	by	the	platform	

must	conform	to	the	characterisation	adage	of	only	containing	a	single	distinct	change	in	the	reaction	

mixture	 (usually	 the	 DNA	 template)	 for	 each	 non-repeat	 sample	 being	 investigated.	 The	 design	

constraints	derived	from	this	are	summarised	below:	

• All	reactions	must	be	tracked	and	recorded	over	a	minimum	duration	of	four	hours,	or	a	time	

that	 directly	 corresponds	 to	 a	 representative	 timeframe	 of	 GFP	 production	 within	 the	

expression	medium	

• A	 minimum	 of	 two	 distinct	 sample	 reactions	 must	 be	 studied	 concurrently	 in	 order	 to	

standardise	 the	 data	 sets,	 specifically	 the	 sample	 of	 interest	 and	 the	 reference	 sample.	

49	|	P a g e 	
	

Multiple	reactions	are	highly	preferable	in	order	to	maximise	the	environmental	similarity	and	

to	compete	with	existing	characterisation	techniques	

To	 improve	 upon	 existing	 characterisation	 techniques	 and	 take	 full	 advantage	 of	 droplet	

microfluidics’	innate	benefits,	the	platform	also	needed	to	either	exceed	the	number	of	concurrent	

reactions	 investigated	 during	 an	 experimental	 run,	 or	 to	 exceed	 the	 statistical	 confidence	 in	 any	

experimental	 results	by	 increasing	 the	number	of	 reactant	 repeats	when	compared	 to	 the	current	

characterisation	methods.	The	platform	should	require	similar	or	less	manual	involvement	once	the	

characterisation	has	begun,	as	current	characterisation	techniques	require	no	user	intervention	once	

the	reaction	has	started	(Canton	et	al.,	2008,	Kelly	et	al.,	2009,	Chappell	et	al.,	2013).	Considering	this,	

the	following	design	constraints	were	produced:	

• Reduced	 reagent	 consumption	 in	 comparison	 to	 conventional	 analytic	 methodologies	

(deMello,	2006)	

• High	 numbers	 of	 samples	 (to	 allow	 characterisation	 multiplexing)	 and	 their	 repeats	 (to	

increase	the	statistical	confidence	in	observed	characterisation	data)	(Srisa-Art	et	al.,	2007,	

Srisa-Art	et	al.,	2009)	

• Consistent	droplet	 formation	 to	ensure	 that	droplets	 are	 congruent	and	 therefore	directly	

comparable	from	a	fluorescence	standpoint	

• Detailed	 time-course	 datasets	 equalling	 or	 exceeding	 current	 time-course	 observation	

durations	

• High	levels	of	automation	and	stability	to	prevent	the	need	for	user	intervention	

As	described	by	Chappell	et	al.	(Chappell	et	al.,	2013)	and	Kelly	et	al.	(Kelly	et	al.,	2009)	control	

over	environmental	factors	is	essential	for	the	characterisation	process	because	of	their	high	impact	

upon	data	acquired	throughout	all	characterisation	techniques	(Canton	et	al.,	2008,	Kelly	et	al.,	2009,	

Chappell	et	al.,	2013).	As	such,	a	set	of	constraints	regarding	environmental	variation	was	also	created:	

50	|	P a g e 	
	

• Equal	or	improved	control	(in	comparison	to	in	in-lab	techniques)	over	environmental	factors	

affecting	the	samples	under	investigation	

• Temperature	of	all	reactants	specifically	must	be	controllable	as	this	can	vary	the	duration	of	

the	GFP	production	lifecycle	in	IVTT	greatly	(Chappell	et	al.,	2013)	

• Preventative	measures	must	be	taken	to	reduce	or	remove	the	sample	evaporation	present	

within	current	characterisation	techniques	(an	issue	that	was	found	by	(Chappell	et	al.,	2013))	

in	order	to	maintain	correct	sample	volume	estimation	

• Accurate	 determination	 of	 reaction	 initiation	 in	 order	 to	 match	 the	 detailed	 result	 sets	

produced	by	current	techniques	

A	well-defined	data	analysis	methodology	allows	for	increased	value	in	cross-comparison	data	

as	 greater	 assurances	 would	 be	 present	 on	 whether	 the	 data	 was	 handled	 in	 the	 same	manner.	

Inferred	statistical	confidence	levels	would	also	have	greater	value	as	all	data-sets	would	have	been	

treated	in	the	same	way.	Therefore	a	set	of	design	constraints	pertaining	to	the	data	analysis	were	

also	derived:	

• All	data	must	be	analysed	in	accordance	with	the	techniques	outlined	by	Kelly	et	al.	(Kelly	et	

al.,	2009)	(i.e.	using	an	internal	reference	standard	to	minimise	the	impact	of	environmental	

variation)	

• Representations	 of	 variation	 and	 standard	 deviation	 should	 be	 displayed	 in	 a	 consistent	

manner	ensuring	their	cross-compatibility	

• The	propagation	of	error	should	be	consistent	throughout	each	analysis	step	

• Inferred	 statistical	 coefficients	 (such	 as	 R2	 coefficients)	 should	 be	 calculated	 in	 the	 same	

manner	using	all	available	data	

• Differing	 data	 sources	 must	 result	 in	 a	 similar	 stored	 data	 pattern	 to	 ensure	 the	 cross-

compatibility	of	datasets	

	

51	|	P a g e 	
	

6.1.2 Platform	Iterations	and	Modularity	

An	obvious	but	important	consideration	when	designing	this	platform	were	the	interactions	between	

each	of	the	disciplines	(Synthetic	Biology,	Microfluidics	and	Engineering)	used	during	its	construction	

and	 operation,	 and	 how	 to	 ensure	 that	 any	 unpredictability	 derived	 from	 their	 interaction	 was	

minimised.	To	better	identify,	isolate	and	improve	upon	any	issues	that	arose	in	the	testing	process,	

an	iterative	testing	process	was	adopted.	The	iterative	testing	process	directly	follows	the	engineering	

cycle	and	cyclically	designs	and	tests	possible	solutions	to	the	problem,	thus	over	the	course	of	the	

entire	investigation	(including	work	performed	previously)	five	core	design	iterations	were	designed,	

developed	and	tested.		

The	overall	guiding	principle	throughout	the	iterative	platform	testing	process	was	to	simplify	

and	reduce	the	number	of	points	of	failure	throughout	the	system	across	all	disciplines.	The	outcome	

of	some	of	these	minimisations	is	described	further	in	section	6.4.	Any	desirable	complexity	removed	

during	the	minimisation	process	could	later	be	re-added	to	the	platform	once	a	successful	proof	of	

concept	had	been	obtained.	In	order	to	allow	such	a	‘minimisation	mind-set’	to	work	alongside	the	

design	and	testing	of	such	a	complex	platform,	the	platform	schema	was	broken	down	into	separate	

modular	 sections.	 Each	 module	 pertains	 to	 a	 specific	 task	 required	 by	 the	 platform	 to	 operate	

according	to	the	above	constraints	and	to	their	implied	specifications.		

Including	modularity	 into	 the	 initial	 platform	 design	 allows	 for	 faster	 identification	 of	 any	

points	of	 failure	 in	 the	platform.	Furthermore,	 the	modules	allow	 for	 faster	 swapping	of	alternate	

solutions	without	having	to	redesign	the	entire	platform.	This	technique	has	proved	powerful	across	

the	fields	of	engineering,	computing	and	even	within	Synthetic	Biology,	and	as	such	was	adopted	early	

as	a	paradigm	for	the	creation	of	the	characterisation	platform.	When	used	in	conjunction	with	the	

engineering	cycle	a	powerful	and	agile	workflow	was	enacted.		

Each	of	the	numbered	modules	within	the	platform	schema	(Figure	4)	represents	a	point	of	

investigation	for	this	study,	and	varying	any	of	these	allows	different	emergent	behaviours	to	arise	

52	|	P a g e 	
	

within	the	platform.	Each	of	these	behaviours	had	different	consequences	with	regard	to	achieving	

the	initial	aims	for	the	platform.	Individual	points	of	investigation	are	discussed	in	dedicated	sections	

below,	however	many	of	these	points	of	investigation	were	studied	in	parallel	or	in	a	combinatorial	

manner.	 To	 summarise	 these	 investigations	 in	 a	 concise	 manner	 five	 key	 platform	 iterations	 are	

described	in	section	6.4	that	represent	a	distillation	of	all	of	the	concurrent	work	performed	on	the	in-

vitro	 microfluidic	 characterisation	 platform.	 These	 platform	 iterations	 attempt	 to	 summarise	 the	

various	 issues	 and	 data	 sets	 that	were	 acquired	 throughout	 the	 lifecycle	 of	 this	 investigation	 and	

should	be	viewed	as	stepping	stones	towards	the	current	platform	solution.	

An	 overview	 of	 each	 of	 the	 platform	 iterations,	 a	 generalised	 indication	 of	 their	modular	

content	and	an	indication	of	the	core	lessons	learnt	from	each	of	the	iterations	can	be	found	below	in	

Table	1.	

Table	1:	A	summary	of	the	most	salient	points	tested	and	observed	from	each	platform	design	iteration.	

Iteration	Number	 Key	Modules	 Key	Information	

1	 Serpentine	Channel	 On-chip	continuous	flow	designs	likely	to	fail	due	to	
long	channel	requirements	

2	 Modular	Chips	 Many	 chip	 interfaces	 create	 significant	 points	 of	
failure	

3	 Trapping	Design	 Cup	 type	 designs	 cause	 large	 amounts	 of	 droplet	
shearing	

4	 Parking	Design	 Droplet	 formation	 using	 flow	 focussing	 geometries	
and	IVTT	mixture	is	not	consistent	enough	for	a	high	
throughput	technology	

5	 Chip-less	 Bidirectional	flow	causes	unpredictable	merging	and	
is	 not	 robust	 enough	 for	 a	 high	 throughput	
technology		

	

6.1.3 Design	Specifications	and	Platform	Schema	

From	the	design	constraints	(section	6.1.1),	an	initial	set	of	performance	specifications	were	created	

which	 directly	 informed	 the	 platform	 schema	 displayed	 in	 Figure	 4.	 Six	 potential	 modules	 of	

investigation	are	labelled	within	this	figure.	

53	|	P a g e 	
	

Inputs	into	the	characterisation	platform	represent	the	first	potential	module	for	investigation	

(Figure	 4	Module	 1).	 Ideally	 the	 platform	 is	 capable	 of	 characterising	multiple	 expression	 vectors	

concurrently,	with	minimal	environmental	influence	upon	the	results;	however,	the	number	of	inputs	

into	the	platform	is	linked	to	the	number	of	samples	that	can	be	characterised	at	the	same	time,	and	

therefore	alternative	input	multiplexing	solutions	need	to	be	investigated.	The	specification	of	using	

IVTT	 as	 an	 expression	 medium	 represented	 an	 effort	 to	 reduce	 the	 environmental	 impact	 upon	

characterisation	data	(Chappell	et	al.,	2013).	However,	environmental	variation	was	also	attenuated	

through	 several	 other	 complementary	 methodologies.	 Input	 sample	 evaporation	 is	 reduced	 or	

eliminated	through	proper	fluid	handling	and	the	innate	properties	of	microfluidic	encapsulation	in	an	

oil	phase	(deMello,	2006),	whilst	temperature	is	maintained	throughout	the	platform	by	ensuring	that	

the	oil	phase	and	reaction-phases	are	kept	under	constant	heating	conditions.	

The	second	module	in	the	platform	is	droplet	formation	(Figure	4	Module	2);	many	techniques	

exist	 for	 forming	 droplets	 in	microfluidics.	 Key	 examples	 include	 the	 T-Junction	 channel	 geometry	

(Song	et	al.,	2006),	flow	focussing	channel	geometry	(Song	et	al.,	2006)	and	a	novel	compartment-on-

demand	 robot	 (Gielen	et	 al.,	 2013).	 Each	of	 these	 techniques	was	used	 to	 investigate	 the	optimal	

droplet	formation	strategy	in	order	to	achieve	the	high-throughput	droplet	formation	specifications	

discussed	 above.	 Key	 points	 of	 droplet	 formation	 that	were	 under	 investigation	 included:	 droplet	

formation	homology,	droplet	formation	frequency	and	droplet	contents.	These	points	represent	core	

discriminants	 for	 a	 working	 platform	 vs.	 a	 sub-optimal	 platform	 (optimality	 is	 from	 the	 user’s	

perspective,	whereby	a	sub-optimal	platform	represents	a	technology	which	is	unlikely	to	be	used	in	

comparison	to	current	gold	standard	characterisation	techniques,	see	section	5.2).	

With	regards	to	the	droplet	manipulation	module	(Figure	4	Module	3)	a	notable	requirement	

was	to	establish	a	first-in	first-out	(FIFO)	system	for	droplets	so	that	any	data	acquired	for	a	specific	

encapsulated	 reaction	 could	be	directly	 attributed	 to	 the	 inputs	 for	 that	encapsulation.	Previously	

described	techniques	for	protein	expression	in	IVTT	such	as	(Agresti	et	al.,	2010,	Griffiths	and	Tawfik,	

54	|	P a g e 	
	

2006),	are	not	applicable	 to	 the	platform	because	 their	 incubation	methods	do	not	guarantee	 this	

FIFO.	 Maintaining	 a	 FIFO	 droplet	 relationship	 directly	 affects	 the	 aforementioned	 specifications	

regarding	the	types	of	data	that	the	platform	is	required	to	produce,	because	if	droplet	ordering	is	not	

maintained	 then	 droplet	 identity	 is	 difficult	 to	 establish.	 If	 a	 droplet’s	 identity	 is	 unknown,	 its	

expression	profile	 cannot	be	directly	 associated	with	 an	expression	 vector	 and	 therefore	 the	data	

becomes	useless.	Previous	work	using	encapsulated	PCR	reactions	(Zhang	et	al.,	2006)	showed	that	

droplet	 identity	 could	 be	 preserved	 whilst	 manipulating	 a	 high	 number	 of	 droplets;	 however,	 of	

concern	was	the	incubation	time	required	for	the	reaction	to	occur	as	well	as	the	ability	to	detect	the	

progress	of	 reactions	 throughout	 their	 lifecycle	 across	 a	high	number	of	droplets.	 The	difficulty	 in	

maintaining	 FIFO	 droplet	 ordering	 is	 preventing	 any	 droplet	 shearing	 or	 coalescence	 within	 the	

microfluidic	chips.	The	more	complex	the	design	or	manipulation,	the	more	likely	this	is.	Many	groups	

have	got	around	this	requirement	by	sorting	the	droplets	after	the	fact	using	a	form	of	barcoding,	or	

being	agnostic	to	the	original	droplet	contents	(Eastburn	et	al.,	2015).	

Detection	of	reactions	within	microfluidic	chips	(Figure	4	Module	4)	encompasses	(but	is	not	

limited	to)	microscope	based	detection	techniques.	As	such	there	is	a	wealth	of	methods	and	literature	

to	 draw	 upon.	 Predominantly	 the	 platform	 requires	 accurate	 fluorescence	 detection	 with	 a	 good	

periodicity	for	obtaining	observations	(sampling	frequency).	Crucially,	it	is	also	necessary	to	be	able	to	

discern	 droplet	 boundaries	 when	 the	 observation	 is	 under	 way,	 so	 as	 to	maintain	 the	 previously	

discussed	FIFO	droplet	ordering.	Failure	to	identify	droplet	boundaries	would	result	in	the	previously	

discussed	droplet	identity	issues.	All	detection	techniques	investigated	suffer	(to	different	degrees),	

from	issues	when	the	contents	of	a	droplet	are	not	homogeneous	(either	due	to	a	physical	process	or	

because	of	bad	mixing	of	the	droplet	contents).	Droplet	in-homogeneity	was	potentially	an	issue	as	

some	 of	 the	 information	 regarding	 the	 droplet	 contents	 is	 lost	 when	 it	 is	 outside	 the	 area	 of	

observation.	The	two	key	observation	techniques	used	 in	the	study	are	detailed	 in	section	8.3	and	

their	advantages	and	disadvantages	are	discussed	in	section	6.4.	

55	|	P a g e 	
	

Module	 5	 (Figure	 4)	 alludes	 to	 the	 different	 modes	 of	 operation	 that	 can	 be	 used	 in	

microfluidics,	and	with	regards	to	the	platform	one	of	three	modes	was	used:	

• Continuous	flow	was	the	one	of	the	modes	of	operation,	whereby	the	oil	phase	within	the	

microfluidic	channels	is	always	flowing	and	droplets	never	come	to	a	rest.		

• Stop-flow	was	another	mode,	where	droplets	can	be	stopped	within	the	platform	to	allow	for	

incubation.		

• Cyclic-flow	is	a	mode	where	droplets	are	cycled	back-and-forth	across	the	point	of	detection.	

Data	analysis	represents	the	last	independent	module	shown	in	Figure	4	(Module	6)	but	it	is	

just	as	important	when	designing	a	realised	high-throughput	platform.	To	date	a	variety	of	commonly	

used	technologies	with	automated	data	handling	exists	within	laboratories,	and	for	a	technology	to	

compete	at	this	level	the	platform	must	offer	the	same	degree	of	usability.		An	‘automated	droplet	

identification	 and	 fluorescence	 evaluation’	 toolset	 was	 created	 to	 achieve	 this	 and	 is	 detailed	 in	

section	 6.5.2	 and	 section	 6.5.3.	 The	 data	 analysis	 performed	 attempts	 to	mitigate	 environmental	

variation	using	the	techniques	described	by	(Kelly	et	al.,	2009),	whereby	finalised	datasets	have	their	

environmental	variation	normalised	by	directly	referencing	an	internal	and	established	standard.	

6.1.4 Testing	Strategy	

The	primary	 testing	strategy	underlying	each	of	 the	 five	 iterations	of	 the	platform	conformed	to	a	

simple	 stepwise	 methodology.	 Firstly	 chip	 functionality	 was	 assessed	 by	 testing	 the	 system	 with	

purified	 GFP,	 which	 also	 allowed	 for	 fluorescence	 calibration	 of	 the	 detectors.	 Secondly,	 a	 single	

reactant	 run	 assessed	 whether	 or	 not	 GFP,	 expressed	 by	 a	 J23100	 expression	 vector	 in	 IVTT	

(assembled	as	per	section	6.2.1),	was	produced	and	detected	inside	of	a	reaction	droplet.	Thirdly,	the	

multi-sample	behaviour	of	the	platform	was	assessed	by	using	a	five	reaction	run	containing	different	

expression	vectors	(the	corresponding	constitutive	promoters	are	listed	in	Table	2)	which	represented	

the	 range	 of	 end-point	 GFP	 concentrations	 likely	 to	 be	 observed	within	 the	 platform.	 Finally,	 the	

56	|	P a g e 	
	

platform	was	to	be	tested	using	the	entire	promoter	 library	should	the	platform	prove	capable	(as	

indicated	in	Table	10	(section	10.1)).	

Table	2:	List	standard	promoters	used	in	this	investigation.	Generally	used	within	an	expression	vector	to	determine	the	
platforms	ability	to	characterise	a	wide	range	of	GFP	fluorescence	levels.	*	Calculated	using	BBa_J23100	as	a	reference,	
values	obtained	from	(www.partsregistry.org)	

Promoter	Name	(as	per	BioBrickTM	Registry)	 Relative	Expression	Level*	

BBa_J23100	 1	

BBa_J23104	 0.72	

BBa_J23108	 0.51	

BBa_J23105	 0.24	

BBa_J23113	 0.01	

	

	 	

57	|	P a g e 	
	

6.2 Biological	Precursors	for	Platform	Operation	

6.2.1 Expression	Vector	Design	

The	expression	vector	was	designed	using	biological	parts	available	on	the	BioBrickTM	Registry,	which	

has	been	previously	used	within	the	discipline	of	characterisation	in	Synthetic	Biology	(Chappell	et	al.,	

2013).	 The	 core	 components	 of	 the	 expression	 vector	 are	 listed	 in	 section	 8.1.1	 Table	 8,	 and	 an	

example	of	 the	 archetype	expression	 vector	 can	be	 found	 in	 Figure	56.	 The	RBS	of	 choice	 for	 the	

archetypal	expression	vector	was	BioBrickTM	part	B0034	which	represents	a	well	characterised	and	

relatively	standard	RBS	within	the	registry,	and	as	such	was	considered	a	good	candidate	for	assessing	

the	viability	of	the	platform.	The	core	expression	target,	namely	the	GFP	encoding	gene,	corresponds	

to	the	widely	cited	GFPmut3b	variant	which	has	shown	high	fluorescence	levels	and	has	a	fast	protein	

folding	time	(Iizuka	et	al.,	2011).	The	terminator	(BioBrickTM	part	B0015)	for	the	expression	sequence	

was	selected	because	it	is	in	fact	a	double	terminator,	which	prevents	as	much	read-through	(i.e.	non-

termination	 of	 the	 mRNA	 production	 process)	 of	 the	 gene	 as	 possible.	 The	 plasmid	 backbone	

(BioBrickTM	part	pSB1A2)	was	selected	as	a	whole	from	the	registry	as	it	has	a	minimal	sequence	length	

(2079bp)	 and	 contains	 a	 high	 copy	 number	 replication	 origin	 (pUC19-derived	 pMB1),	 leading	 to	

approximately	 100-300	 plasmids	 per	 cell	 (this	 increases	 the	 yield	 of	 a	 DNA	 purification	 step).	

Expression	 vector	 pSB1A2	 also	 contains	 an	 ampicillin	 resistance	 gene	 to	 allow	 for	 plasmid	 uptake	

selection	during	the	assembly	and	purification	stages	described	in	section	8.1.	This	expression	vector	

represents	a	minimal	DNA	plasmid	for	GFP	production	and	has	been	used	in	the	characterisation	work	

performed	by	(Chappell	et	al.,	2013).	

As	mentioned	 in	 section	8.1.1,	 two	sources	were	used	 for	obtaining	constitutive	promoter	

sequences.	The	sequences	obtained	from	the	BioBrickTM	Registry	represent	a	standard	constitutive	

promoter	library	that	is	used	regularly	within	the	Synthetic	Biology	field	(Kelly	et	al.,	2009)	where	each	

promoter	sequence	has	detailed	characterisation	data	associated	with	it.	The	constitutive	promoter	

sequences	obtained	from	the	BioFab	Registry,	represent	a	set	of	randomly	generated	sequences	and	

58	|	P a g e 	
	

any	 characterisation	 data	 associated	 with	 them	 was	 generated	 through	 the	 semi-automated	

characterisation	 processes	 used	 by	 the	 BioFab	 Registry	 (http://biofab.synberc.org/).	 A	 target	

promoter	set	encompassing	these	two	collections	allows	the	platform	to	be	tested	against	detailed	

and	well-accepted	characterisation	data	as	well	as	automated	high-throughput	characterisation	data	

(obtained	from	the	BioBrickTM	Registry	and	the	BioFab	Registry	respectively).	To	rapidly	generate	the	

necessary	primer	sequences	to	obtain	these	promoters	a	short	script	was	created	 in	MATLAB.	The	

source	for	this	code	can	be	found	in	Figure	60.	As	seen	within	this	figure,	forward	primers	are	prefixed	

with	 the	 sequence	 AATTCGCGGCCGCTTCTAGAG	 and	 suffixed	 with	 TA	 whilst	 reverse	 primers	 are	

prefixed	 with	 GCGCCGGCGAAGATCTC	 and	 suffixed	 with	 ATGATC.	 These	 sequences	 generated	

overhangs	 corresponding	 to	 the	 digestions	 performed	 on	 the	 standardised	 backbone	 so	 that	 the	

annealed	 primers	 could	 be	 ligated	 directly	 into	 the	 backbone.	 Ultimately	 only	 four	 constitutive	

promoter	designs	were	used	throughout	the	testing	of	this	work	and	their	specific	names	are	listed	in	

Table	2.			

6.2.2 IVTT	Use	within	the	Platform	

IVTT	reactions	were	initialised	in	one	of	three	ways	based	on	the	iteration	of	the	platform.	One	method	

initialised	reactions	by	splitting	the	DNA	component	and	the	IVTT	component	so	that	when	mixed	(on-

chip	before	droplet	formation)	a	definite	time	for	reaction	onset	was	obtained.	The	second	method,	

also	 initiating	 reactions	on-chip	 (allowing	accurate	 reaction	 initiation	quantification),	 split	 the	 IVTT	

sample	across	two	separate	syringes	constituting	pre-mix	in	one	and	cell	extract	in	the	other,	DNA	was	

then	added	to	the	pre-mix	sample.	Finally,	the	reaction	could	be	initialised	off-chip	(by	mixing	the	IVTT	

sample	 and	 the	 DNA	 sample	 in	 a	 syringe)	 and	 then	 piped	 into	 the	 microfluidic	 devices	 directly.	

Initialising	reactions	in	this	manner	prevents	droplets	from	having	identical	reaction	durations	when	

they	are	observed	(the	time	that	has	passed	within	the	droplet	since	the	reaction	was	initiated).	The	

concentration	of	expression	vector	mixed	with	the	IVTT	solution	was	informed	by	previous	work	which	

directly	 demonstrated	 the	 optimal	 concentration	 outside	 of	microfluidic	 droplets	 (Chappell	 et	 al.,	

2013).	

59	|	P a g e 	
	

	 To	confirm	that	the	presence	of	oil	had	little	effect	on	the	measurable	fluorescence	produced	

by	a	reaction	containing	IVTT	and	a	GFP	expression	vector,	a	simple	experiment	was	performed.	The	

experiment	consisted	of	a	side-by-side	comparison	of	GFP	production	from	a	reaction	containing	oil	

and	one	without.	The	results	are	shown	in	Figure	5.	Whilst	there	is	evidence	of	the	oil’s	impact	on	the	

fluorescence	readings,	the	general	profile	remains	the	same.	On-chip	the	effect	of	the	oil	will	be	less	

pronounced	as	the	amount	of	oil	between	the	objective	and	the	sample	will	be	exceedingly	small.	

	 Figure	7	depicts	a	test	that	was	performed	late	in	the	iteration	cycle	to	determine	whether	or	

not	the	dilution	of	a	portion	of	the	IVTT	mixture	would	have	a	demonstrable	effect	on	fluorescence	

levels	over	times.	This	was	performed	when	determining	the	impact	of	droplet	formation	geometries	

as	 well	 as	 their	 modes	 of	 operation	 (i.e.	 whether	 or	 not	 reactions	 could	 be	 initiated	 on	 chip	 by	

separating	the	IVTT	components).	These	considerations	are	better	discussed	in	Section	6.4.3.	

	

	

	

	

	

	

60	|	P a g e 	
	

	

Figure	5:	Diagram	depicting	the	effect	of	oil	on	GFP	fluorescence.	The	graph	plots	observed	raw	fluorescence	against	the	
time	of	the	assay.	Dark	Blue:	Purified	GFP	at	1μg/μl.	Red:	Purified	GFP	at	250ng/μl.	Yellow:	IVTT	and	GFP	expression	vector	
with	the	J23101	promoter.	Purple:	Identical	to	Yellow	except	with	5μl	of	FC-40	oil.	Light	Blue:	IVTT	mixture	only	

	

	

	

Figure	6:	Production	of	GFP	under	different	conditions	over	time.	Green	is	pure	GFP	at	a	dilution	of	250ng/μl.	Red	contains	
a	GFP	Expression	Vector	with	J23101	and	IVTT	with	the	pre-mix	portion	diluted	by	1	in	2.	Blue	is	the	same	as	green	except	
the	cell-free	portion	has	been	diluted	by	1	in	2.	Yellow	is	water.					

	

	 	

61	|	P a g e 	
	

6.3 Microfluidic	Precursors	for	Platform	Operation	

6.3.1 Overview	

Throughout	the	course	of	the	investigation	a	slew	of	variations	in	chip	fabrication,	mode	of	operation	

and	 oil	 types	were	 tested	 in	 order	 to	 overcome	 small	 shortcomings	 in	 chips.	 These	 variants	were	

applied	in	an	ad	hoc.	manner,	as	needed,	to	attempt	to	improve	the	performance	of	some	designs.	

The	principles	and	techniques	used	are	given	below	and	a	summary	of	any	and	all	 techniques	that	

were	used	within	each	variation	can	be	found	in	its	relevant	section.	

6.3.2 Surfactant	Variants	

As	 discussed	 in	 section	 8.2.4	 three	 combinations	 of	 oil	 and	 surfactant	 were	 used	 throughout	 the	

course	of	this	investigation.	As	a	general	rule	the	combination	of	FC-40	oil	and	RainDanceTM	surfactant	

performed	best	with	regards	to	overall	chip	longevity	and	reduction	in	droplet	merging,	however,	this	

combination	was	not	available	for	the	duration	of	the	study	as	the	RainDanceTM	surfactant	became	

unavailable	 (either	 commercially	 or	 through	 a	Materials	 Transfer	 Agreement)	 due	 to	 the	 original	

providers	 (http://raindancetech.com/science/)	 removing	 it	 from	 the	 market	 to	 use	 with	 their	

proprietary	technologies.	To	overcome	this,	some	work	was	done	to	synthesise	the	surfactant	in	house	

but	the	cost	became	prohibitive.		

	 As	a	substitute	the	majority	of	later	work	was	performed	using	the	FC-40	and	1H,1H,2H,2H-

Perfluoro-1-octanol	 combination,	 which	 performed	 acceptably	 in	 most	 cases	 at	 preventing	

degradation	of	the	microfluidic	devices	but	was	not	as	effective	at	preventing	droplet	merging.	

	 The	fluorinated	oils	and	their	corresponding	surfactants	appear	to	perform	consistently	better	

within	the	platform	than	their	mineral	oil	counterparts.	This	is	consistent	with	the	current	trend	within	

the	microfluidic	 literature	and	 is	 likely	due	to	FC-40’s	higher	 immiscibility	with	organic	compounds	

(Holtze	et	al.,	2008,	Theberge	et	al.,	2010).	

62	|	P a g e 	
	

6.3.3 Treatment	Variants	

Section	8.2.3	discusses	a	subsequent	treatment	step	in	the	fabrication	of	the	microfluidic	devices	that	

was	possible	(the	application	of	Duxback)	and	was	used	when	severe	accumulation	of	droplet	debris	

along	the	channel	walls	was	observed.	As	a	general	rule	treatment	was	applied	to	each	of	the	platform	

iterations	as	a	secondary	investigation	to	assess	whether	or	not	the	platform’s	performance	improved.	

6.3.4 Syringes,	Tubing	and	Syringe	Pumps	

A	variety	of	syringes	were	used	to	act	as	either	inputs	or	outputs	to	the	platform.	Generally	Hamilton	

syringes	 (Hamilton	Company)	with	volumes	 from	50	–	500μl	were	used.	Either	 fixed	or	disposable	

needles	were	used	depending	on	the	tubing	required	for	the	platform.	

	 The	tubing	used	depended	on	the	type	of	chip	that	was	currently	being	tested.	Tubing	was	

obtained	from	Cole-Parmer	(www.colepalmer.co.uk)	and	had	inner	diameters	raging	from	100μm	to	

500μm.	These	choices	were	based	on	the	type	of	droplet	manipulation	being	performed,	the	types	of	

detection	used	and	the	types	of	interface	between	the	chip	and	the	tubing.	

	 Standard	syringe	pumps	capable	of	pumping	small	volumes	at	low	flow	rates	in	both	infuse	

and	withdraw	modes	were	used.	

	 Syringe	to	tubing	interfaces	were	generally	direct	insertion	of	the	tubing	into	the	syringes	(or	

vice	versa)	and	sealed	either	by	wax	or	by	melting	the	external	tubing	respectively.	These	techniques	

are	 flawed	 as	 the	 connection	 stability	 can	 vary	 greatly	 between	 experiments.	 Primarily	 these	

techniques	are	employed	purely	for	their	speed	and	flexibility.	

	 Tubing	 to	 chip	 interfaces	 were	 either	 direct	 insertion	 into	 chip	 micro	 capillary	 tubing	

(corresponding	 to	chip	 fabrication	type	1	 from	section	8.2.2)	or	direct	 insertion	 into	 the	chip	 itself	

(either	perpendicular	to	or	parallel	to	the	channels	within	the	chip,	corresponding	to	chip	fabrication	

type	2	from	section	8.2.2).	

	 	

63	|	P a g e 	
	

6.4 Platform	Iterations	

6.4.1 Overview	

As	discussed	previously,	the	next	sections	describe	each	of	the	platform	designs	that	were	tested	as	

well	as	listing	any	variants.	Variants,	where	pertinent	are	described	in	a	table,	providing	a	qualitative	

outcome	description.		

6.4.2 Platform	Iteration	1:	Long	Chip	Design	

Platform	Iteration	1	was	designed	in	previous	work	but	is	listed	here	to	demonstrate	the	full	cycle	of	

platform	iterations	performed.	Notably,	this	design	was	also	tested	with	two	detectors,	the	latter	of	

which	was	performed	during	this	investigation.	This	iteration	of	the	platform	used	an	entirely	on-chip	

set	of	geometries	for	droplet	manipulation,	including:	reaction	initiation,	droplet	formation,	droplet	

incubation	and	droplet	observation.	Whilst	this	appears	to	be	counter-intuitive	with	respect	to	the	

‘minimisation	mind-set’	discussed	in	section	6.1.2,	 it	should	be	noted	that	each	portion	of	the	chip	

was	designed	separately	and	 in	a	modular	manner	 so	 that	 the	geometry	designs	could	be	 re-used	

throughout	multiple	chip	 iterations.	Three	variants	of	 the	chip	were	created,	each	with	a	different	

channel	width	(30μm,	50μm,	and	100μm),	allowing	determination	of	the	optimum	channel	geometry.	

Initial	tests	of	the	system	were	to	verify	the	chip	design’s	operability;	as	such	the	chip	would	be	tested	

with	 purified	 GFP	 and	 an	 initial	 IVTT	 reaction	 containing	 the	 standard	 constitutive	 expression	

promoter	as	discussed	in	section	6.1.4.		

	 The	chips	were	fabricated	as	per	section	8.2.2	and	as	such	allowed	direct	connection	of	any	

inputs	and	outputs	to	any	tubing.	This	type	of	fabrication	was	selected	because	it	was	considered	the	

most	robust	and	ensured	a	long	chip	life	time	which	was	important	for	the	reaction	incubation	step.		

	 500μl	 input	 syringes	were	 used	 in	 conjunction	with	 100μm	 inner	 diameter	 tubing	 for	 the	

inputs	into	the	chip	and	a	single	short	stretch	of	tubing	was	used	as	the	output.	Initially	this	output	

tubing	was	connected	directly	to	a	waste	reservoir	but	later	it	was	also	connected	to	a	syringe	set	in	

64	|	P a g e 	
	

withdraw	 (suction)	mode.	 Flow	 rates	of	 approximately	1μl	 per	minute	were	used	 for	 the	 reactant	

inputs,	the	oil	phase	was	set	to	approximately	2μl	per	minute	and	when	applicable	the	output	syringe	

was	set	to	withdraw	fluid	at	approximately	3μl	per	minute.	Tubing	was	connected	to	the	syringes	by	

directly	inserting	the	needle	into	the	tubing	and	securing	with	some	common	wax.		

As	shown	in	Figure	7a,	the	chip	contained	a	triple	input	that	could	be	manipulated	to	allow	

different	numbers	of	inputs	into	the	chip	by	plugging	the	inputs	with	sealed	tubing.	When	testing	the	

platform	with	purified	GFP	a	single	input	into	the	chip	could	be	used;	whilst	testing	with	the	basic	IVTT	

reaction	two	inputs	could	be	used	to	allow	on	chip	reaction	initialisation	as	per	section	8.1.11.		

Droplets	were	formed	by	using	a	relatively	standard	T-junction	channel	schema	(Figure	7b)	

whereby	the	reaction	mixture	is	entered	into	a	continuously	flowing	oil	phase	at	a	perpendicular	angle.	

Droplet	formation	using	a	T-Junction	design	represents	a	trade-off	for	ease	of	fabrication	vs.	long	term	

degradation	due	to	droplet	debris	accumulation.	Later	platform	iterations	used	the	more	stable	flow	

focussing	channel	geometries	for	droplet	formation.	An	excellent	discussion	on	the	various	droplet	

formation	 channel	 geometries	 can	 be	 found	 in	 Song	 et	 al.’s	 paper	 on	 ‘Reaction	 in	 Droplets	 in	

Microfluidic	Channels’	(Song	et	al.,	2006).	

	 Short	 stretches	 of	 highly	 convoluted	 channel	 were	 also	 used	 after	 the	 droplet	 formation	

geometries	 (Figure	7c)	as	 these	promote	chaotic	advection	 (Song	et	al.,	2006)	within	 the	droplets.	

Chaotic	advection	is	 important	as	a	tool	for	mixing	the	reactants	within	the	droplets	ensuring	their	

uniformity	and	allowing	for	accurate	determination	of	reaction	initiation	(Song	et	al.,	2006).	Droplet	

incubation	in	this	iteration	is	achieved	through	an	extremely	long	serpentine	channel	Figure	7d,	which	

consists	of	extended	stretches	of	channel	travelling	across	the	chip	and	joined	together	by	short	‘U’	

bends.	For	the	50μm	width	channel	design	the	length	of	the	continuous	channel	was	approximately	

20m	with	a	footprint	equalling	a	microscope	coverslip.	This	extreme	length	in	combination	with	low	

flow	rates	of	the	oil	phase	allowed	extended	incubation	times	to	be	achieved	on	chip.		

65	|	P a g e 	
	

	 Detection	of	the	droplets	was	achieved	by	recording	the	droplet	fluorescence	at	a	variety	of	

points	 along	 the	 serpentine	 channel	 as	 the	droplets	 arrived	at	 that	point.	Detection	was	achieved	

through	a	confocal	microscope	 in	combination	with	an	APD	as	described	 in	section	8.3.1.	Droplets	

were	to	be	observed	at	a	variety	of	points	along	the	channel,	 roughly	corresponding	to	10	minute	

incubation	durations.	This	allowed	the	generation	of	a	time	series	whilst	capturing	data	from	all	of	the	

droplets	(by	ensuring	that	the	next	data	set	began	recording	in	the	next	observation	location	along	

the	channel).	The	positioning	of	the	microscope	was	manually	adjusted,	based	on	the	droplet	travel	

distance,	in	order	to	obtain	these	observations.		

Multiple	oil	and	surfactant	combinations	were	tested	with	this	chip	design	and	are	listed	in	

section	8.2.4.	The	 IVTT	 reaction	was	 initialised	using	 the	 first	 IVTT	 reaction	 technique	described	 in	

section	8.1.11.	Purified	GFP	(section	8.1.10)	was	also	tested	in	parallel	at	a	concentration	of	1μg	per	

μl.	

	 The	runtime	operation	of	the	chip	involved	first	ensuring	that	it	was	completely	saturated	with	

oil	phase	to	reduce	as	much	back	pressure	(the	pressure	exerted	on	the	liquid	phase,	working	against	

the	pressure	incurred	from	the	input	syringes)	from	the	presence	of	air	as	possible.	The	chips	were	

allowed	to	form	a	 limited	number	of	droplets	(the	number	varied	per	test	but	ranged	from	~10	to	

~100)	after	which	all	of	the	inputs	except	for	the	oil	phase	were	shut	off.	This	allowed	for	a	continuous	

flow	paradigm	where	the	droplets	were	constantly	moving	through	the	chip’s	channels.	

	 Initial	 results	 for	 this	 platform	 iteration	 were	 not	 encouraging.	 Due	 to	 the	 length	 of	 the	

channel	within	the	microfluidic	device	a	great	deal	of	back	pressure	built	up	eventually	preventing	any	

droplet	 movement	 within	 the	 channels.	 Attempts	 to	 ameliorate	 this	 pressure	 included	 adding	 a	

second	syringe	withdrawing	fluid	on	the	output	allowing	the	device	to	completely	fill	with	oil	before	

forming	droplets.	However,	the	devices	ultimately	failed	catastrophically	usually	by	breaching	sections	

between	the	serpentine	channels	or	between	the	PDMS	and	the	microscope	slide.	This	back-pressure	

also	led	to	inconsistent	droplet	formation	and	droplet	sizes	such	that	the	device	design	was	rendered	

66	|	P a g e 	
	

inappropriate	to	achieve	the	 initial	specifications.	All	 three	of	the	channel	widths	fabricated	 in	this	

iteration	suffered	the	same	issues,	with	the	100μm	channel	surviving	the	longest.	It	was	also	quickly	

realised	that	even	with	an	on-chip	channel	length	of	20	meters	the	duration	of	droplet	travel	from	one	

end	of	the	device	to	the	other	would	not	suffice	in	covering	the	initial	specification	of	a	4	hour	reaction	

duration	(with	actual	durations	ranging	from	approximately	30	minutes	to	2	hours).	Table	3	contains	

a	summarised	overview	of	some	of	the	key	iteration	variants	that	were	tested.	

Table	3:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	1.	These	attempts	were	sometimes	
informed	by	later	work	which	lead	to	iterations	being	revisited.	

Variant	 Key	Observations	

Original	 Droplets	 progress	 some	 distance	 before	 slowing	 to	 a	 stop.	 Long	
term	operation	resulted	in	consistent	device	failure	

Withdraw	syringe	on	output	 As	above,	with	an	increased	duration	until	failure	
Duxback	Treatment	 No	noticeable	change	on	either	of	the	above	modes	of	operation	
Sizes	 100	 μm	 channel	 survived	 the	 longest	 with	 30	 μm	 rarely	 even	

producing	droplets	in	a	stable	manner	
Oil	pre-fill	 Oil	alone	could	not	travel	the	entire	length	of	the	chip	in	any	device	

variant	
	

	

Figure	7:	Salient	design	motifs	used	in	the	construction	of	platform	iterations	1’s	microfluidic	chip.	Design	a)	The	triple	
input	geometry	that	allows	on	chip	initialisation	of	reactions	with	additional	room	for	marker	reactions.	Port	usages	from	
bottom	left	clockwise	are	as	follows:	GFP	only,	IVTT	reaction	mixture	part	1,	IVTT	reaction	mixture	part	2	and	finally	the	
oil	b)	The	T-Junction	geometry	used	for	droplet	formation.	c)	The	mixing	channel	designed	to	promote	chaotic	advection	
within	the	droplets.	d)	A	portion	of	the	long	serpentine	like	channel	used	for	droplet	incubation.	

b)	

c)	

d)	

a)	

67	|	P a g e 	
	

6.4.3 Platform	Iteration	2:	Modular	Chip	Design	

Platform	Iteration	2	took	a	more	modular	approach	by	separating	the	droplet	forming	and	droplet	

detection	 devices	 of	 the	 microfluidic	 geometries	 and	 linking	 them	 with	 tubing.	 Theoretically	 this	

allowed	for	long	incubation	times	to	occur	between	the	chips	(within	tubing	of	a	length	corresponding	

to	the	 incubation	duration).	Overall	 this	set	of	designs	provided	greater	 flexibility	and	versatility	 in	

comparison	to	the	previous	iteration	as	multiple	runtime	types	could	be	tested.	Iteration	2	was	also	

designed	 and	 tested	 in	 previous	 work,	 but	 was	 revisited	 in	 this	 investigation	 in	 order	 to	 inform	

Iterations	 4	 and	 5.	 This	 revisiting	 included	 testing	 the	 already	 fabricated	 devices	 with	 different	

observation	mechanisms	(as	detailed	below).	

Chip	 fabrication,	 oils,	 surfactants,	 tubing	 and	 syringes	 were	 almost	 identical	 to	 those	

employed	 in	 iteration	 1	 of	 the	 platform.	 The	 only	 difference	was	 that	 chips	were	 treated	 (as	 per	

section	8.2.3)	 from	the	outset	 in	order	 to	 improve	droplet	 formation	stability	and	to	minimise	 the	

accumulation	of	droplet	debris	that	had	been	observed	during	platform	iteration	1.	

	 Chip	inputs	were	identical	to	those	used	in	Iteration	1	(Figure	7),	i.e.	employing	a	triple	input	

design	 that	 could	be	modified	as	per	 the	 required	number	of	 inputs	using	 sealed	 tubing.	Reaction	

initiation	was	 again	performed	on	 chip	by	merging	 two	 streams,	 the	 first	 containing	 IVTT	 and	 the	

second	containing	the	GFP	expression	vector	of	interest.	Droplet	formation	was	performed	using	a	T-

Junction	like	geometry	(Figure	9A).	The	inputs	into	the	detection	device	were	slightly	different	to	those	

used	in	the	previous	iteration.	As	can	be	seen	in	Figure	9	(2	and	3)	no	input	filters	are	used	(these	input	

filters	normally	help	reduce	impurities	in	the	input	solutions	that	would	be	detrimental	to	normal	chip	

operation)	as	these	would	trap	droplets	within	the	inputs	and	prevent	them	from	continuing	through	

the	chip	channels.	

The	core	difference	between	this	design	and	iteration	1	is	that	droplets	are	incubated	off-chip	

in	the	tubing	that	links	the	devices.	This	design	improved	upon	the	previous	iteration	in	two	core	ways.	

Firstly,	 distinct	 observation	 points	 could	 be	 created	 by	 chaining	 detection	devices	 (Figure	 9B)	 and	

68	|	P a g e 	
	

secondly,	 backpressure	 could	 be	 reduced	 within	 the	 channels	 by	 stopping	 the	 oil	 phase	 during	

incubation	steps	(generally	corresponding	to	when	the	droplets	are	within	the	tubing	linking	devices)	

thus	 greatly	 reducing	 the	 length	of	 the	 channel	 (on	 and	off	 chip)	 required	 to	 achieve	 a	 four	 hour	

incubation	period.	Droplet	content	homogeneity	was	ensured	by	including	mixing	geometries	before	

and	after	the	droplets	entered	the	tubing	for	incubation.	This	allowed	droplets	to	be	re-mixed	prior	to	

detection,	ensuring	that	accurate	sampling	of	droplet	fluorescence	occurred.		

Detection	of	droplet	fluorescence	was	performed	using	the	APD	confocal	setup	as	described	

in	 section	 8.3.1.	 To	 promote	 better	 sampling	 of	 the	 droplets	 an	 alternative	 detection	 device	was	

designed	(Figure	9C)	that	contained	sections	of	channel	that	squeezed	the	droplets	(Figure	9C	-	1).	

These	squeeze	points	represented	where	the	point	of	detection	(i.e.	the	microscope	objective)	would	

be	 located.	 Principally	 this	 squeeze	 point	 increased	 the	 volume	 of	 droplet	 sampled	 by	 the	 APD	

confocal	setup,	thereby	improving	the	confidence	in	the	data’s	representation	of	the	reaction	state.	

When	 this	 iteration	 was	 revisited,	 the	 fluorescence	 microscope	 was	 used	 to	 assess	 whether	 the	

detection	portion	of	the	designs	could	be	used	instead	of	iteration	4’s	designs.		

With	 respect	 to	 runtime	 operation,	 the	 off-chip	 incubation	 step	 allows	 for	 oil	 flow	 to	 be	

stopped	 and	 incubation	 to	 occur	 without	 extending	 the	 channel	 length.	 Predominantly	 this	

methodology	allows	for	the	chaining	of	multiple	microfluidic	detection	devices	using	linking	tubing	to	

achieve	 the	 same	 incubation	 specification	 as	 Iteration	 1	 (Figure	 10),	 however,	 should	 droplet	

incubation	within	 tubing	 prove	 to	 be	 successful,	 an	 alternative	 runtime	 operation	mode	 could	 be	

employed.	This	alternative	would	be	to	incubate	the	droplets	in	the	tubing	linking	the	formation	and	

detection	 devices,	 passing	 them	 across	 the	 objective,	 and	 then	 reversing	 the	 flow,	 allowing	 the	

droplets	 to	 be	 incubated	 again	 in	 the	 same	 stretch	 of	 tubing.	 This	 would	 greatly	 decrease	 the	

complexity	 (the	 number	 of	 devices)	 of	 this	 iteration	 as	 well	 as	 potentially	 eliminate	 any	 of	 the	

previously	observed	backpressure	issues.	

69	|	P a g e 	
	

When	 device	 chaining	 was	 first	 tested,	 several	 key	 issues	 became	 apparent.	 Firstly	 the	

backpressure	in	the	channel	was	still	present,	leading	to	inconsistent	droplet	formation	and	extreme	

difficulty	when	filling	the	device	with	oil.	Chained	detection	devices	also	led	to	instability	as	either	the	

stage	or	 the	device	had	 to	be	moved	 to	 the	point	of	observation,	which	directly	 resulted	 in	 some	

droplets	 merging	 within	 the	 tubing	 or	 the	 chain	 failing	 completely	 and	 becoming	 disconnected.	

Reducing	 the	number	of	 chained	devices	 increased	 the	stability	of	 the	 flow	and	droplet	 formation	

consistency	improved	to	a	degree.	Upon	incubating	droplets	and	pushing	them	to	the	first	detection	

device	it	became	apparent	that	droplets	were	aggregating	in	the	input	well	of	the	detection	device	

and	coalescing	such	that	the	FIFO	droplet	ordering	could	not	be	guaranteed.		

Despite	this,	it	was	decided	to	perform	a	further	set	of	experiments	using	a	single	detection	

device	setup	to	form	droplets	and	allow	incubation.	Any	aggregate	or	single	droplets	could	then	be	

pushed	into	the	squeeze	section	in	order	to	observe	a	time	course	of	GFP	expression	as	a	proof	of	

concept.	After	allowing	an	aggregate	droplet	to	sit	within	the	point	of	detection	over	a	long	period	of	

time	 (corresponding	 to	 approximately	 an	 hour	 and	 detecting	 the	 droplet’s	 fluorescence	 every	 5	

minutes)	it	was	discovered	that	little-to-no	fluorescence	was	being	observed.	To	confirm	the	observed	

results	above	a	series	of	reactions	were	setup	in	microplate	format	to	mimic	the	reaction	initiation	

steps	performed	in	Iterations	1	+	2.	Essentially	this	was	to	test	whether	the	dilution	of	the	IVTT	mixture	

that	 occurs	 through	 the	mixing	 of	 two	 inputs	within	 the	microfluidic	 device	 prevented	 or	 at	 least	

severely	slowed	down	GFP	production.	Figure	6	shows	the	outcome	of	this	test.	As	theorised,	a	one	in	

two	dilution	of	the	cell-extract	portion	of	the	IVTT	led	to	little	or	no	observable	GFP	fluorescence	over	

time.	

When	re-visited,	this	iteration	was	tested	using	GFP	alone	in	order	to	assess	whether	or	not	

part	of	the	design	could	be	reused.	Whilst	individual	GFP	droplets	were	possible	to	observe	at	early	

time	 points,	 repeated	 passes	 of	 the	 droplets	 through	 the	 input	 or	 output	 ports	 quickly	 lead	 to	

70	|	P a g e 	
	

uncontrolled	droplet	coalescence	and	loss	of	droplet	identity.	A	set	of	images	taken	during	the	early	

time	points	of	this	test	can	be	found	in	Figure	8.	

Table	4:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	2.	These	attempts	were	sometimes	
informed	by	later	work	which	lead	to	iterations	being	revisited.	

Variant	 Key	Observations	

Original	 Backpressure	 issues	 were	 still	 present,	 chip	 module	 interfaces	
were	likely	points	of	failure	

Single	detector	chip	 No	 backpressure	 issues,	 but	 droplet	 coalescence	 and	 loss	 of	
identity	was	observed	at	the	input	and	output	ports	as	well	as	no	
fluorescence	production	

Sizes	 100	μm	channel	proved	to	be	the	most	stable	and	encountered	a	
small	 enough	 resistance	 at	 squeeze	 points	 unlike	 its	 smaller	
counterparts	

Revist	 This	 iteration	was	 later	 revisited	when	 the	 lack	 of	 fluorescence	
production	was	overcome	using	other	input	mechanisms	but	the	
droplet	ordering	issues	could	not	be	overcome	

Revist	+	Raindance	surfactant	 Uncontrolled	droplet	 coalescence	was	 reduced	unless	 the	ports	
became	blocked.	FIFO	issues	could	not	be	overcome	here.	

	

	

	

Figure	 8:	 An	 example	 of	 a	 GFP	 droplet	 being	 observed	 as	 it	 passed	 through	 standard	
100µm	channel.	The	GFP	concentration	was	1µg/µl	and	the	 image	was	acquired	at	40x	
magnification.	

	

	 	

71	|	P a g e 	
	

	

Figure	9:	Platform	iteration	2	chip	designs.	A)	Droplet	Formation	Module	in	which	the	ports	were	used	in	the	same	manner	
as	Iteration	1,	B)	Droplet	Detection	Module	1,	C)	Droplet	Detection	Module	2	with	indicated	Squeeze	point	(1).	(2)	The	
original	filter	inputs.	(3)	The	inputs	connection	without	filters.	(4)	The	output	connections.	

	

	

	

Figure	 10:	 Diagram	 depicting	 the	 chaining	 of	 platform	 iteration	 2’s	 detection	 chips.	 This	 allows	 high	 numbers	 of	
observation	points	without	long	internal	microfluidic	channels.	

	 	

A)	 B)	 C)	

(1)	

(2)	 (3)	 (3)	(2)	

(2)	

(2)	

0					-			1000	

(4)	 (4)	
(4)	

72	|	P a g e 	
	

6.4.4 Platform	Iteration	3:	Trapping	Chip	Design	

Platform	 iteration	 3	 took	 a	 different	 approach	 to	 droplet	 incubation	 in	 order	 to	 overcome	 the	

backpressure	issues	observed	in	both	platform	iteration	1	and	2.	The	microfluidic	chip	was	designed	

to	store	droplets	in	specific	microfluidic	geometries	rather	than	passing	them	across	a	fixed	point	of	

observation.	As	a	result	the	detection	methodology	was	more	similar	to	that	of	iteration	1	whereby	

the	point	of	observation	would	change,	however,	rather	than	representing	the	moment	of	observation	

along	a	time	course	assay,	each	observation	would	now	represent	a	single	droplet	at	that	moment.	

	 	To	increase	the	turnaround	of	chip	design	and	construction	a	new	fabrication	technique	was	

adopted.	This	fabrication	technique	(section	8.2.2	Type	2)	reduced	the	stability	of	the	finished	product	

but	greatly	increased	the	speed	at	which	new	chips	could	be	tested.	As	noted	in	section	8.2.2	(Type	2)	

several	additional	fabrication	techniques	could	be	applied	to	vary	the	finished	product.	The	greatest	

speed	 was	 achieved	 by	 bonding	 the	 device	 directly	 to	 a	 thin	 layer	 of	 PDMS	 and	 therefore	 this	

technique	was	used	predominantly	to	perform	initial	tests	on	a	platform	design.	If	the	device	proved	

to	work	under	the	most	basic	of	conditions	device	 fabrication	was	altered	to	bonding	directly	 to	a	

microscope	coverslip.	

To	overcome	the	reaction	initiation	issues	identified	in	iteration	2,	IVTT	and	GFP	expression	

vector	DNA	were	now	pre-mixed	in	the	syringes	beforehand.	This	means	that	only	oil	and	the	pre-

mixed	 reactions	 were	 inputs	 into	 the	 platform,	 greatly	 reducing	 the	 overall	 complexity	 of	 the	

experimental	methodology.	

Droplet	formation	was	performed	using	a	modified	T-Junction	geometry	(Figure	11a)	to	help	

alleviate	some	of	the	perceived	inconsistencies	in	droplet	size	and	quality.	The	new	geometry	allowed	

for	better	fluid	pressure	equalisation	between	each	of	the	inputs	using	hydrodynamic	focussing	(Song	

et	al.,	2006)	and	a	more	focussed	droplet	budding	area.	

Droplet	 incubation	 was	 achieved	 by	 reproducing	 the	 cup-like	 geometries	 as	 previously	

described	by	Niu	et	al.	(Niu	et	al.,	2009)	in	which	droplets	would	be	stored	progressively	as	they	are	

73	|	P a g e 	
	

formed	(Figure	11b).	Droplet	progression	through	the	cup	geometries	is	achieved	through	a	build-up	

of	pressure	on	the	captured	droplet	from	the	droplet	following	it.		

Detection	of	droplet	fluorescence	was	again	achieved	through	the	APD	confocal	microscope	

setup,	however	this	device	iteration	lacked	the	squeeze	points	designed	in	platform	iteration	2.	The	

removal	 of	 the	 squeeze	 geometry	 from	 this	 design	 arose	 from	 the	 lack	 of	 droplet	movement;	 as	

droplets	 are	 kept	 stationary	 within	 the	 cup-like	 geometries	 squeeze	 points	 were	 not	 feasible.	

Detection	 of	 each	 droplet	 involved	moving	 the	microscope	 stage	 to	 each	 droplet’s	 corresponding	

location.		

Despite	the	droplets	remaining	stationary	within	the	device	the	oil	phase	of	the	platform	could	

remain	 flowing;	 however	 droplet	 formation	 was	 limited	 to	 the	 number	 of	 cup-like	 geometries	

available	 and	 so	 the	 reaction	phase	of	 the	platform	would	have	 to	be	 stopped	 to	prevent	 further	

droplets	 from	 forming,	 therefore	pushing	all	of	 the	droplets	 into	 their	next	 cup.	Thus	 the	 runtime	

operation	of	the	platform	was	similar	to	that	of	a	stop-flow	mode	of	operation.		

Issues	with	 this	 device	design	 arose	quickly	 as	 rather	 than	droplets	pushing	 the	preceding	

droplet	out	of	the	cup-like	geometry,	either	droplet	merging	or	shearing	of	the	droplet	through	the	

pillars	occurred.	This	behaviour	meant	that	the	cup-like	geometries	were	never	filled	with	droplets.	At	

most,	only	a	run	of	five	cups	could	be	filled	before	complete	device	failure.	Both	of	these	scenarios	

indicate	a	failure	in	the	iteration	as	FIFO	and	therefore	droplet	identity	cannot	be	maintained.	Other	

trade-offs	 were	 also	 present	within	 this	 design	 such	 as	 the	 inherent	 limitation	 on	 the	 number	 of	

droplets	 that	 could	 be	 formed	 (limited	 by	 the	 number	 of	 droplet	 cups	 available	 for	 occupation).

	 Reaction	initiation	within	the	syringe	also	represents	a	serious	concern	for	the	platform	as	it	

has	 several	drawbacks.	These	 include	an	 increase	 in	 the	amount	of	 IVTT	used	per	characterisation	

assay	and	a	greater	difficulty	in	reaction	multiplexing.	Finally	the	amount	of	time	that	a	reaction	has	

been	allowed	to	proceed	is	convoluted	by	the	reaction	being	initiated	off-chip	(and	not	at	the	moment	

74	|	P a g e 	
	

of	droplet	formation)	and	by	the	moment	of	observation	which	is	greatly	affected	by	the	need	to	move	

the	microscope	stage.		

Table	5:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	3.	These	attempts	were	sometimes	
informed	by	later	work	which	lead	to	iterations	being	revisited.	

Variant	 Key	Observations	

Original	 No	 backpressure	 issues	 observed,	 but	 droplet	 shearing	 and	
coalescing	occurring	at	the	traps	

Raindance	surfactant	 Reduced	but	did	not	eliminate	the	coalescence	of	droplets	at	the	
trapping	 geometries.	 It	 also	 improved	 stability	 of	 droplet	
formation	to	a	small	degree	but	was	still	inefficient	at	producing	
homogenous	droplets	

Duxback	 This	 variant	 used	 surface	 treatment	 to	 increase	 the	
hydrophobicity	 of	 the	 chip	 surface.	 In	 theory	 this	 should	 have	
increased	 the	proclivity	of	droplets	 to	 remain	 together	 and	not	
accrue	within	the	geometries,	but	it	had	very	little	effect	on	the	
iterations	performance	

	

	

	

Figure	11:	Platform	iteration	3's	microfluidic	chip	designs.	This	device	uses	improved	droplet	formation	geometries	at	(a).	
Also	present	are	droplet	 capture	geometries	at	 (b).	 The	 input	ports	 for	 the	device	are	as	 follows	 (clockwise	 from	 the	
bottom	left	port):	pressure	release	tuning,	oil	phase,	IVTT	reaction,	GFP,	unused	(plugged).	

	 	

a)	 b)	

75	|	P a g e 	
	

6.4.5 Platform	Iteration	4:	Parking	Chip	Design	

Platform	iteration	4	discarded	the	concept	of	droplet	trapping	and	instead	attempted	to	slow	droplets	

and	then	‘park’	them	in	a	linear	order	before	the	point	of	detection.	Droplets	could	then	be	passed	

through	 the	point	of	observation	at	which	point	 they	encounter	a	 secondary	 ‘parking	 zone’	which	

again	attempts	to	preserve	droplet	ordering.	The	device	shown	in	Figure	12	was	designed	specifically	

to	 allow	 accurate	 characterisation	 of	 a	 single	 reaction	 sample;	 once	 this	 is	 established	 higher	

throughput	and	multiplexing	amendments	could	be	investigated.	A	second	version	of	this	device	was	

designed	without	the	flow	focussing	geometries;	this	design	was	intended	to	be	used	with	a	newly	

developed	compartment-on-demand	robotic	front	end	for	droplet	formation	(Gielen	et	al.,	2013).	

	 Chip	fabrication	Type	2	was	used	to	create	initial	device	prototypes.	Modifications	were	made	

to	this	fabrication	step	during	the	later	stages	of	platform	iteration	4	testing,	whereby	the	PDMS	chip	

portion	was	plasma	bonded	directly	to	coverslips	as	opposed	to	a	thin	layer	of	PDMS.	The	reasoning	

behind	this	change	was	to	allow	the	confocal	microscope’s	objective	lens	to	better	focus	on	the	centre	

of	the	microfluidic	channel,	improving	the	sampling	of	the	droplet’s	contents.	

	 Reaction	initiation	was	again	initiated	off-chip	in	the	input	syringe,	however	the	geometries	

used	for	droplet	manipulation	(‘parking’)	potentially	allowed	for	another	method	of	reaction	initiation	

that	could	be	further	investigated	if	iteration	4	of	the	platform	proved	to	be	functional.	

	 Droplet	formation	was	performed	using	a	flow	focussing	geometry	(Figure	12B)	 in	order	to	

improve	 its	 consistency.	 The	 flow	 focussing	 geometries	 employ	 a	 four	 way	 junction	 with	 sample	

entering	 the	 junction	 from	 the	 top	 and	 oil	 entering	 the	 junction	 from	 both	 of	 the	 sides	 (leaving	

droplets	to	exit	at	the	bottom	channel).	This	technique	has	been	shown	to	improve	droplet	formation	

under	certain	circumstances	as	well	as	reduce	the	‘wetting’	of	the	channel	walls	(Srisa-Art	et	al.,	2007)	

(which	 occurs	 often	 in	 T-junction	 geometries	 along	 the	 channel	 wall	 opposite	 the	 solution	 input	

channel).	

76	|	P a g e 	
	

	 As	 shown	 in	 Figure	 12C	 the	 channel	 on	 both	 sides	 of	 the	 point	 of	 observation	 have	 been	

couched	with	a	pillar	like	geometry.	This	geometry	allows	oil	to	pass	freely	around	droplets	between	

the	pillars,	which	cause	droplets	to	‘park’	between	the	pillars.	The	pillar	geometries	would	also	not	

result	 in	 the	droplet	shearing	that	was	observed	during	 iteration	3,	as	no	pillars	are	directly	 in	 the	

droplets’	path.	Once	the	pillar	geometry	is	full	of	droplets	and	a	new	one	attempts	to	enter	the	pillared	

zone,	the	droplet	closest	to	the	exit	of	the	pillars	will	be	pushed	through	the	point	of	observation.	This	

device’s	geometries	were	based	around	those	used	 in	Niu	et	al.’s	paper	on	Electro-Coalescence	of	

Digitally	Controlled	Droplets	 (Niu	et	al.,	 2009)	which	utilised	 similar	droplets	but	also	 imparted	an	

electric	field	to	cause	droplet	coalescence.	The	premise	behind	this	choice	of	geometry	was	to	allow	

later	iterations	of	the	platform	to	control	droplet	coalescence	in	order	to	facilitate	multiplexing	within	

the	platform	by	separating	the	IVTT	and	expression	vector	solutions	into	discrete	droplets.	This	would	

allow	multiple	samples	to	be	input	into	the	device	and	reaction	initiation	to	be	controlled	on-chip.	

	 Droplet	 detection	 was	 again	 performed	 using	 the	 APD	 confocal	 microscope	 setup	 in	

combination	with	squeeze	point	droplet	geometries	for	better	sampling	of	droplet	contents.	The	re-

introduction	of	the	squeeze	points	is	a	reflection	of	the	device’s	runtime	operation	mode.	

	 Device	runtime	operation	would	essentially	follow	a	stop-flow	methodology	whereby	droplets	

were	allowed	to	fill	the	parking	zones	but	the	oil	phase	would	be	stopped	before	the	first	droplet	in	

the	pillar	geometry	moved	to	pass	through	the	point	of	observation.	This	would	allow	for	extended	

periods	of	incubation	within	the	pillar	geometries	before	each	observation.		

	 The	flow	focussing	geometries	used	in	this	device	design	improved	the	stability	of	the	device	

as	little-to-no	accumulation	of	droplet	debris	was	observed	during	droplet	formation.	However,	once	

used,	the	device	still	needed	to	be	thoroughly	cleaned	before	it	could	be	re-used.	Droplet	formation	

was	still	inconsistent	with	a	wide	range	of	droplet	sizes	being	observed	with	an	incoherent	periodicity	

in	their	formation.	This	is	likely	due	to	the	highly	viscous	nature	of	IVTT	which	would	rather	aggregate	

as	opposed	to	separate.	The	pillar	geometries	of	the	device	functioned	well	in	slowing	the	droplets	

77	|	P a g e 	
	

down	 but	 leaving	 them	 parked	 in	 such	 close	 contact	 quickly	 resulted	 in	 unpredictable	 droplet	

coalescence,	again	this	is	likely	due	to	IVTT’s	viscosity.		

Despite	 these	 observations	 it	 was	 decided	 to	 attempt	 to	 characterise	 a	 time	 course	

fluorescence	production	profile	 for	the	BBa_J23100	sample	mentioned	 in	section	6.1.4.	To	achieve	

this,	droplets	were	continuously	formed	and	recorded	as	they	passed	across	the	point	of	observation.	

The	assay	lasted	for	approximately	an	hour	before	the	droplet	formation	geometry	had	degraded	to	

the	 point	where	 droplets	were	 no	 longer	 being	 formed.	 Figure	 13	 shows	 the	 results	 of	 this	 assay	

whereby	data	points	represent	averages	of	the	droplets	that	had	passed	the	objective	within	thirty	

seconds.	An	increasing	trend	can	be	seen	in	fluorescence	over	time	indicating	that	when	some	of	the	

more	fundamental	issues	in	the	platform	are	addressed	a	viable	characterisation	technique	may	be	

realised.	 The	 variability	 in	 the	 data	 is	 extremely	 high	 across	 the	 time	 profile	 and	 is	 due	 to	 the	

inconsistencies	in	the	morphologies	of	the	droplets	being	observed	(as	a	result	of	the	deteriorating	

droplet	 formation	and	 the	 inconsistent	droplet	merging	occurring	 at	 the	parking	 geometries).	 The	

inconsistency	in	the	data	quality	is	also	representative	of	a	fundamental	flaw	in	this	(and	the	previous)	

iteration	of	 the	platform:	 the	APD	confocal	microscope	samples	an	extremely	small	volume	of	 the	

droplets.	 This	 small	 sampling	 volume	 is	 an	 artefact	 of	 confocal	 microscopy	 which	 uses	 point	

illumination	and	a	pinhole	 to	eliminate	out	of	 focus	signals	 (Minsky,	1988).	The	additional	module	

(designed	 for	 use	with	 the	 compartment-on-demand	 robot)	 was	 not	 used	 in	 this	 iteration	 as	 the	

fundamental	detection	issues	had	to	be	addressed	first.	The	low	increase	in	fluorescence	is	likely	due	

to	the	cold	reaction	and	lack	of	mixing	occurring	within	the	syringe.	

Table	6:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	4.	These	attempts	were	sometimes	
informed	by	later	work	which	lead	to	iterations	being	revisited.	

Variant	 Key	Observations	

Original	 Inhomogeneous	 droplet	 formation	 and	 occasional	 droplet	
coalescence	

Raindance	surfactant	 Little	to	no	droplet	coalescence	
	 	

78	|	P a g e 	
	

Figure	12:	Salient	design	motifs	used	 in	platform	iteration	4’s	microfluidic	device	design	A)	The	Standard	Device	as	a	
whole.	B)	Flow	Focussing	Geometry,	oil	is	input	from	the	left	most	port	and	the	other	ports	are	used	from	top	to	bottom	
as:	IVTT	mixture,	GFP,	nothing	(plugged)	C)	Droplet	Parking	Geometry.	D)	Version	of	Iteration	4’s	device	design	without	
a	droplet	formation	region.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	

79	|	P a g e 	
	

	

Figure	13:	Graph	to	show	the	production	of	fluorescence	against	droplets	number.	Results	are	obtained	from	continuously	
produced	 droplets	 that	 contain	 IVTT	 and	 BBa_J23100	 expression	 vector	 which	 implies	 that	 each	 sampled	 droplet	
corresponds	to	a	50μs	snapshot	of	a	time	course	dataset.	The	two	expression	profiles	were	obtained	over	the	course	of	
separate	runs	to	prevent	droplet	coalescence.	

	

6.4.6 Platform	Iteration	5:	Chip-less	Design	

Platform	 iteration	 5	 attempted	 to	 greatly	 reduce	 the	 complexity	 of	 the	 platform	by	 removing	 the	

microfluidic	 chip	 altogether	 and	 work	 with	 the	 newly	 developed	 compartment-on-demand	

microfluidic	 robot	 (henceforth	 called	 the	 droplet	 robot).	 This	 reduced	 some	of	 the	 stability	 issues	

associated	with	previous	iterations	as	there	are	no	tubing	to	chip	interfaces	present.	These	interfaces	

were	constantly	problematic	throughout	previous	iterations	as	they	represented	points	of	failure	that	

were	always	subject	to	small	environmental	fluctuations	such	as	placement	and	the	quality	of	seals.	A	

diagram	representing	this	iteration’s	overall	design	can	be	found	in	Figure	14.	

80	|	P a g e 	
	

	 Device	 fabrication	was	performed	by	adhering	the	tubing	directly	 to	microscope	coverslips	

using	a	small	amount	of	PDMS.	This	reduced	the	scattering	of	light	from	the	cylindrical	surface	of	the	

tubing	and	prevented	movement	during	observation.	

	 		Reactions	were	initiated	inside	PCR	tubes	which	in	turn	were	placed	on	the	droplet	robot’s	

carousel.	Droplet	formation	occurred	by	passing	the	tubing	end	between	the	oil	and	surface	interface	

(deMello,	2006).	The	robot	used	in	this	iteration	was	an	early	prototype	of	that	published	by	Niu	et	al.	

(Gielen	et	al.,	2013)	and	therefore	could	be	tweaked	in	a	variety	of	ways	to	improve	droplet	formation	

consistency.	

	 Droplets	were	then	‘sucked’	towards	the	point	of	observation	using	a	syringe	set	to	withdraw	

mode	(rates	varied	between	2	–	5μl	per	second).	Incubation	of	the	reactions	was	achieved	by	stopping	

droplets	prior	to	the	point	of	observation	(as	per	iteration	4).	The	tubing	used	to	form	and	incubate	

the	droplets	had	an	inner	diameter	of	100μm	corresponding	to	the	channel	width	diameters	used	in	

previous	assays.	

	 Detection	 of	 droplet	 fluorescence	 was	 performed	 using	 the	 wide-field	 fluorescence	

microscope	as	described	 in	section	8.3.2.	 Images	were	captured	at	500μs	 intervals	as	 the	droplets	

passed	by	the	point	of	observation	in	order	to	ensure	that	droplet	identity	could	be	established	within	

the	image	set.	The	move	to	wide-field	detection	methods	was	to	improve	the	overall	amount	of	the	

droplet	 sampled	 during	 observation,	 thereby	 ensuring	 that	 no	 sampling	 inconsistencies	 were	

embedded	in	the	datasets.	

	 Platform	runtime	operation	 followed	a	cyclic	approach	whereby	droplets	would	be	passed	

across	 the	 point	 of	 observation	 for	 fluorescence	 detection.	 After	 detection,	 droplets	 would	 be	

returned	to	their	original	position	(by	placing	the	oil	phase	syringe	 in	 infuse	mode)	and	allowed	to	

incubate	for	10	minutes.	The	process	would	then	be	repeated	to	obtain	a	full	time	course	dataset.	

81	|	P a g e 	
	

	 This	 platform	 iteration	 improved	 the	 stability	 and	 consistency	 by	 removing	 much	 of	 the	

complexity	 previously	 present.	 A	 large	 amount	 of	 time	 was	 invested	 in	 calibrating	 the	 prototype	

version	of	the	robot	to	form	droplets	from	the	highly	viscous	IVTT.	These	calibrations	included	creating	

custom	sample	selection	heads	(Figure	14)	to	facilitate	the	type	of	tubing	used	in	this	assay,	as	well	as	

custom	software	(see	section	8.2.5	–	full	source	available	in	the	supplementary	materials)	to	allow	the	

droplet	 robot	 to	 function	without	 the	proprietary	 LabVIEW	software	 (National	 Instruments	Corp.).	

After	droplets	were	successfully	formed	a	time	course	assay	verifying	the	production	of	fluorescence	

from	droplets,	encapsulating	the	expression	vector	containing	BBa_J23100,	was	performed.	Figure	15	

shows	the	outcome	of	this	assay	as	analysed	according	to	section	6.5.3.	Whilst	the	outcome	of	this	

assay	included	viable	fluorescence	data,	droplet	merging	still	occurred	within	the	tubing	and	can	likely	

be	attributed	to	either	surfactant	insufficiencies	(at	this	point	in	time	the	RainDanceTM	surfactant	was	

unavailable)	or	the	flow	instabilities	created	by	changing	droplet	directions.	

	 Despite	this,	efforts	were	made	to	investigate	how	a	five	reaction	sample	run	would	function	

with	 the	 current	 platform	 iteration.	 Whilst	 some	 image	 data	 was	 collected,	 a	 variety	 of	 issues	

prevented	the	information	from	achieving	the	overall	platform	aims.	Firstly,	the	merging	of	droplets	

inferred	that	droplet	identity	could	no	longer	be	ascertained,	in	turn	preventing	any	acquired	image	

data	being	associated	with	a	particular	 reaction	sample.	This	 issue	was	 further	confounded	by	 the	

droplet	robot	inconsistently	forming	droplets	indicating	that	the	original	repeat	number	per	sample	

could	not	be	established.	Secondly,	the	platform	iteration	began	to	fail	over	time	from	backpressure	

issues	(the	tubing	length	used	in	this	assay	was	approximately	1.5m	and	could	not	be	reduced	with	

this	 version	 of	 the	 droplet	 robot).	 These	 backpressure	 issues	 presented	 in	 either	 flow	 failure	

throughout	the	system	or	seal	failure	at	the	oil	phase	syringe.		

	 Figure	 16	 shows	 data	 that	was	 acquired	 in	 a	mixed	 promoter	 run.	Originally	 each	 sample	

contained	10	droplets	separated	by	a	marker	droplet	with	a	large	spacing	either	side.	Whilst	droplet	

merging	 occurred	within	 each	 sample	 type	 the	 spacing	 and	markers	 between	 sample	 allowed	 for	

82	|	P a g e 	
	

sufficient	 separation	 to	 occur	 to	 prevent	 identity	 loss.	 This	 demonstrates	 some	 of	 the	 potential	

multiplexing	ability	of	the	compartment	on	demand	robot	although	with	a	loss	of	statistical	confidence	

as	there	are	now	no	reaction	repeats.	

Table	7:	A	table	detailing	some	of	the	key	variants	attempt	within	platform	iteration	5.	These	attempts	were	sometimes	
informed	by	later	work	which	lead	to	iterations	being	revisited.	

Variant	 Key	Observations	

Original	 Backpressure	issues	
Raindance	 surfactant	 +	
Duxback	

Reduced	backpressure,	observed	droplet	merging	over	the	cyclic	
flow	

	

	

	

	

	

	

Figure	14:	Schematic	of	platform	iteration	5’s	overall	design.	Operation	is	performed	by	withdrawing	oil	/	samples	from	
the	robot	until	the	desired	amount	of	droplets	are	formed	and	then	cycling	the	droplets	across	the	point	of	observation	

83	|	P a g e 	
	

	

Figure	15:	Graph	showing	the	production	of	fluorescence	over	time.	Fluorescence	is	recorded	as	pixel	intensity.	Droplets	
containing	expression	vector	BBa_J23100.	Error	bars	are	the	standard	deviation	of	the	averaging	operations	of	the	
droplets.	The	number	of	droplets	used	per	observation	point	to	calculate	the	average	fluorescence	is	5	

	

	

Figure	16:	Graph	showing	the	production	of	fluorescence	over	time	for	a	variety	of	promoters.	Due	to	droplet	merging,	
only	a	single	representative	and	clearly	identifiable	sample	was	used	to	determine	the	sample’s	fluorescence.	The	
background	levels	were	measured	in	a	droplet	containing	IVTT	and	tracer	dye	but	no	expression	vector.	

	 	

84	|	P a g e 	
	

6.5 Droplet	Data	Analysis	

6.5.1 Overview	

Two	key	types	of	data	were	produced	over	the	course	of	the	microfluidic	experiments,	either	from	the	

APD	or	from	the	fluorescence	microscope.	These	data	sets	can	be	quite	complex	to	extract	meaningful	

information	 from,	 especially	 given	 the	 dynamic	 and	 heterogeneous	 nature	 of	 the	 samples.	

Microfluidic	droplets	are	not	only	(usually)	mobile,	but	their	shapes	and	sizes	can	be	non-uniform	in	

these	prototype	devices.	The	next	 two	sections	detail	 the	 full	data	extraction	processes	 that	were	

created	to	handle	these	data	types.	A	note	for	all	readers,	commentary	detailing	the	operations	of	a	

MATLAB	script	can	be	found	in	green.	

6.5.2 Data	Analysis	for	Microfluidic	Droplets	Detected	Using	an	APD	

In	all	cases	the	APD	was	set	to	record	photon	counts	every	50μs.	Any	data	analysis	script	would	have	

to	 identify	 where	 the	 droplets	 were	 located	 in	 this	 dataset	 and	 to	 average	 the	 intensity	 for	 the	

identified	 droplet.	 A	 threshold	would	 also	 be	 required	 to	 remove	 noise	 from	 the	 system	 as	 small	

particles	 and	 imperfect	 chips	 would	 result	 in	 background	 fluorescence.	 To	 achieve	 this,	 the	 data	

analysis	was	broken	down	into	a	series	of	steps:	

1) Load	data	from	native	format	into	a	MATLAB	compliant	format	

2) Use	a	standard	low	pass	filter	to	remove	base	noise	in	the	data		

3) Data	trimming	

4) Threshold	the	data	for	meaningful	information	

5) Remove	anomalous	troughs	from	the	data	that	are	likely	to	affect	droplet	identification	

6) Remove	anomalous	peaks	from	the	data	that	are	likely	to	affect	droplet	identification	

7) Identify	droplets	candidates	within	the	data	set		

8) Retrieve	core	results	from	data	candidates	

85	|	P a g e 	
	

Each	of	these	steps	is	further	detailed	below	with	sample	scripts	for	how	they	were	performed	

and	 an	 example	 data	 set	 (taken	 from	 actual	 raw	 data)	 with	 depictions	 of	 how	 the	 data	 set	 is	

manipulated.	

6.5.2.1 APD	Data	Loading	

The	script	responsible	for	step	1	attempts	to	load	raw	APD	data	(in	.dat	format)	from	its	normal	file	

form	 into	 the	MATLAB	environment.	 It	 is	 relatively	 simple	 in	MATLAB	as	many	 raw	data	 types	are	

handled	automatically.	The	data	output	from	the	APD	is	a	line	separated	(i.e.	new	data	is	on	a	new	

line	in	the	file)	numeric	format	to	3	decimal	places	(although	photon	count	is	always	an	integer).	To	

handle	this	file	appropriately	‘dlmread’	was	used	(a	native	MATLAB	function)	to	read	the	files	and	infer	

their	delimiter	(what	separates	the	data)	automatically.	The	script	and	an	example	of	loaded	data	are	

shown	in	Figure	18.	Time	values	for	each	observation	are	calculated	by	multiplying	the	number	of	the	

observation	by	50	(corresponding	to	50μs,	the	sampling	frequency	of	the	APD).		

	

Figure	17:	A	function	for	loading	data	produced	by	the	APD	into	a	MATLAB	working	environment	

%% Function for droplet data loading	
% Function for loading droplet data into a single column of data with the	
% corresponding time values in the second column	
function [output] = LoadDropletData()	
 % Get file	
 [fileName, path] = uigetfile('*.dat');	
 if isequal(fileName, 0)	
 error('No file was selected')	
 end	
 	
 % Read the file and build the dataset	
 file = fullfile(path, fileName);	
 data = dlmread(file);	
 time = (1 : size(data, 1))’ * 50;	
 	
 % Output the dataset	
 output(:, 1) = data;	
 output(:, 2) = time;	
end	

86	|	P a g e 	
	

	

Figure	18:	Example	data	for	raw	APD	data	having	loading	into	a	MATLAB	native	format	corresponding	to	step	1.	

	

6.5.2.2 Filtering	the	APD	Data	

Filtering	 the	 data	 allows	 us	 to	 transform	 the	 source	 by	 looking	 for	 a	 signal	 that	 corresponds	 to	

frequencies	lower	that	a	certain	cut-off.	 In	actuality,	this	allows	us	to	remove	noisy,	highly	variable	

data	in	favour	of	the	slower	more	episodic	signal	that	represents	the	passing	of	droplets	across	the	

objective.	Filtering	the	APD	data	corresponds	to	step	2	in	the	above	list.	An	example	of	the	processed	

data	is	shown	in	Figure	19,	the	input	for	which	was	the	outputs	obtained	from	the	previous	step.	The	

filter	properties	were	generated	using	MATLABs	Signal	Processing	ToolboxTM	(required	for	this	portion	

of	 the	 script)	 but	 are	 generally	 tuned	 to	 ignore	 (or	 reduce)	 highly	 variable	 fluctuations	 that	 are	

representative	of	noise	within	the	detection	system.		

	

	

	 	

87	|	P a g e 	
	

	

	

Figure	19:	Above	shows	a	script	to	perform	low	band	pass	filtering	on	APD	data	(step	2).		The	script	is	divided	into	two	
sections	 with	 the	 first	 managing	 the	 data	 and	 the	 second	 applying	 the	 filter.	 The	 script	 thresholds	 were	 generated	
automatically	by	MATLAB’s	Signal	Processing	Toolbox.	Below	shows	example	data	after	the	application	of	a	low-pass	filter.	
The	source	for	this	data	was	the	inputs	displayed	in	step	1.	

%% Function for applying a low band pass filter to droplet data	
% Expected input is the output from LoadDropletData	
% Note this function requires the signal processing toolbox	
function [outputData] = FilterDropletData(inputData)	
 % Handle unknown data types	
 if ~ismatrix(inputData) || size(inputData, 2) ~= 2 || ~isnumeric(inputData(1, 1))	
 error('Unknown input data');	
 end	
 	
 % Only apply filter to the data not to the time	
 actualData = inputData(:, 1);	
 	
 % Apply the filter (detailed below)	
 resultantData = filter(LowPassFilter, actualData);	
 	
 % Ensure all data is positive	
 resultantData = (resultantData + abs(resultantData)) / 2;	
 	
 outputData(:, 1) = resultantData;	
 outputData(:, 2) = inputData(:, 2);	
end	
 	
%LOWPASSFILTER Returns a discrete-time filter object	
% M-File generated by MATLAB(R) 7.0 and the Signal Processing Toolbox 6.2.	
% Generated on: 28-Jun-2009 16:59:16	
% Equiripple Lowpass filter designed using the FIRPM function.	
% All frequency values are in Hz.	
function [Hd] = LowPassFilter	
 Fs = 20000; % Sampling Frequency	
 Fpass = 300; % Passband Frequency	
 Fstop = 400; % Stopband Frequency	
 Dpass = 0.057501127785; % Passband Ripple	
 Dstop = 0.0001; % Stopband Attenuation	
 dens = 20; % Density Factor	
 	
 % Calculate the order from the parameters using FIRPMORD.	
 [N, Fo, Ao, W] = firpmord([Fpass, Fstop]/(Fs/2), [1 0], [Dpass, Dstop]);	
 	
 % Calculate the coefficients using the FIRPM function.	
 b = firpm(N, Fo, Ao, W, {dens});	
 Hd = dfilt.dffir(b);	
end	

88	|	P a g e 	
	

6.5.2.3 APD	Data	Trimming	

Trimming	 the	 data	 (step	 3)	 to	 remove	 any	 extraneous	 information	 that	 would	 affect	 droplet	

identification	is	essential.	Data	sections	that	need	to	be	trimmed	include	background	oil	or	any	marked	

droplets	used.	Figure	20	shows	the	script	and	an	example	data	set	(the	input	of	which	was	the	results	

from	the	last	step).	This	step	is	user	curated	and	requires	visual	feedback	therefore	a	short	graphical	

user	interface	handling	script	is	used	before	the	data	is	trimmed	to	identify	its	location.	This	script	can	

be	found	in	section	10.2	with	an	example	of	the	process	shown	in	Figure	61.	The	reason	this	step	is	

applied	after	the	low	band	pass	filter	step	is	to	allow	better	identification	of	the	regions	of	data	to	be	

trimmed.	

	

	

	

	

	

	

	

	

	

	

	

Figure	20:	Above	shows	a	script	responsible	for	enacting	step	3	of	APD	Data	Processing.		Whilst	below	displays	example	
data	for	the	trimming	of	data,	corresponding	to	step	3.	This	example	uses	the	data	from	the	previous	step	and	displays	
the	outcome	after	it	has	been	processedAPD	Data	Thresholding	

%% Function for trimming droplet data
function [outputData] = TrimDropletData(inputData, headFrom, headTo, tailFrom, tailTo)
 % Handle unknown data types
 if ~ismatrix(inputData) || size(inputData, 2) ~= 2 || ~isnumeric(inputData(1, 1))
 error('Unknown input data');
 end

 outputData = inputData;

 if tailFrom ~= length(inputData)
 outputData(tailFrom : tailTo, :) = [];
 end

 if headTo ~= 1
 outputData(headFrom : headTo, :) = [];
 end
end

89	|	P a g e 	
	

The	4th	step	is	to	apply	a	threshold	to	all	of	the	data.	This	removes	any	background	photon	counts	that	

were	observed	from	the	oil	phase	and	any	impurities	within	it.	The	example	shown	in	Figure	21	has	a	

threshold	of	5	photons	per	observation	applied	to	it	(this	was	a	general	threshold	used	throughout	

this	study	except	for	when	analysing	non	fluorescent	data).	It	can	be	seen	that	much	of	the	background	

noise	between	the	pronounced	peaks	has	been	removed,	which	greatly	eases	droplet	identification.	

	

Figure	21:	Script	and	example	data	for	the	application	of	a	threshold	to	the	data,	corresponding	to	step	4.	Above	is	the	
script	 responsible	 for	 applying	 the	 threshold.	 Below	 is	 the	 sample	 data	 used	 in	 the	 previous	 step	 after	 it	 has	 had	 a	
threshold	applied.	

%% Function for applying a threshold to droplet data	
% Apply a threshold to the dataset using the provided photon count. Any	
% values below this threshold will be set to 0 as they are considered noise	
% Data provided should be in the same form as the output from droplet	
% filtering	
function [outputData] = ThresholdDropletData(inputData, threshold)	
 % Handle unknown data types	
 if ~ismatrix(inputData) || size(inputData, 2) ~= 2 || ~isnumeric(inputData(1, 1))	
 error('Unknown input data');	
 end	
 	
 % Check the input	
 if ~isnumeric(threshold) && threshold <= 0	
 error('Invalid threshold value')	
 end	
 	
 % Apply the threshold	
 inputData(inputData(:, 1) < threshold) = 0;	
 outputData = inputData;	
end	

90	|	P a g e 	
	

6.5.2.5 Erroneous	Trough	Identification	in	APD	Droplet	Data	

Step	5	is	to	identifies	stretches	within	the	dataset	that	contain	no	data	and	are	below	a	given	threshold	

in	length	(i.e.	if	a	threshold	of	5	is	applied,	then	stretches	of	5	data	points	or	less	are	identified).	This	

script	 (Figure	 23)	 essentially	 identifies	 erroneous	 troughs	 in	 the	 dataset	 that	 may	 arise	 from	

heterogeneity	in	the	droplets’	morphologies.	A	threshold	of	5	was	generally	used	and	corresponds	to	

250μs	of	time	passing.	Such	a	short	timespan	between	droplets	is	extremely	unlikely	and	therefore	

can	be	attributed	to	the	aforementioned	heterogeneity.	These	troughs	are	important	to	identify	as	

they	will	 affect	 droplet	 identification.	 An	 example	 data	 set	 (having	 also	 been	processed	 using	 the	

previous	steps)	can	be	found	in	Figure	22.		

	

Figure	22:	Example	data	set	for	the	removal	of	erroneous	troughs	that	may	hinder	droplet	identification.	The	data	used	
was	from	the	previous	step	and	corresponds	to	the	actions	performed	in	step	4.	

	

	

91	|	P a g e 	
	

	

	

Figure	23:	Script	for	anomalous	trough	removal	in	APD	data	corresponding	to	step	5.	

	

	

%% Function to remove anomalous troughs from the data	
% Checks for troughs within the data of a given tolerance (i.e. if a trough	
% is wider than the tolerance it is considered real not anomalous). Data	
% input type expected is the results of ThresholdDropletData	
% Note: this should be used with a very stringent tolerance as the wider	
% the trough, the less valid the replacement photon count becomes	
function [outputData] = RemoveAnomalousTroughs(inputData, tolerance)	
 % Handle unknown data types	
 if ~ismatrix(inputData) || size(inputData, 2) ~= 2 || ~isnumeric(inputData(1, 1))	
 error('Unknown input data');	
 end	
 	
 % Check the input	
 if ~isnumeric(tolerance) && tolerance <= 0	
 error('Invalid threshold value')	
 end	
 	
 % Preallocate	
 outputData = inputData;	
 binaries = zeros(size(inputData(:, 1), 1), 1);	
 firstTurningPoint = 1;	
 	
 % Identify zero elements of the input data	
 indices = inputData(:, 1) == 0;	
 binaries(indices) = 1;	
 	
 % Look for turning points	
 turningPoints = diff(binaries);	
 turningPointIndices = find(turningPoints ~= 0);	
 lastTurningPoint = length(turningPointIndices);	
 	
 % Identify if there is data present at the dataset start (head)	
 if turningPoints(turningPointIndices(1)) == -1	
 % Ignore this as it does not count as a trough	
 firstTurningPoint = 2;	
 end	
 	
 % Identify reshape parameters and ignore any troughs at the end of the	
 % data (tail)	
 turningPointPairValue = lastTurningPoint - (firstTurningPoint - 1);	
 if mod(turningPointPairValue, 2) ~= 0	
 if turningPoints(turningPointIndices(lastTurningPoint)) == 1	
 lastTurningPoint = lastTurningPoint - 1;	
 turningPointPairValue = lastTurningPoint - (firstTurningPoint - 1);	
 end	
 end	
 	
 % Remove anomalous Troughs	
 turningPointPairNumber = turningPointPairValue / 2;	
 troughIndices = reshape(...	
 turningPointIndices(firstTurningPoint : lastTurningPoint, 1), ...	
 2, ...	
 turningPointPairNumber)';	
 for i = 1 : turningPointPairNumber	
 if troughIndices(i, 2) - troughIndices(i, 1) <= tolerance	
 outputData(troughIndices(i, 1) + 1 : troughIndices(i, 2), 1) = ...	
 mean([inputData(troughIndices(i, 1)), inputData(troughIndices(i, 2) + 1)]);	
 end	
 end	
end	

92	|	P a g e 	
	

6.5.2.6 Remove	Anomalous	Peaks	in	Droplet	Data	from	the	APD	

Step	6	is	similar	to	step	5	as	 it	 improves	the	likelihood	of	droplet	detection	except	that	anomalous	

peaks	 are	 removed	 (Script:	 Figure	25,	 example	data:	 Figure	24).	 This	 is	 likely	 to	occur	when	 small	

particles	that	are	highly	reflective	pass	across	the	point	of	observation.	A	threshold	of	10	is	generally	

used	here	(corresponding	to	500μs	of	data),	again	this	threshold	choice	 is	based	on	droplets	being	

larger	than	this	timeframe.	

	

Figure	24:	An	example	data	set	showing	anomalous	peak	detection	corresponding	to	step	6.	 	The	source	data	 for	 this	
example	plot	was	the	output	of	the	demonstration	data	from	step	5	

	

93	|	P a g e 	
	

	

Figure	25:	Script	for	anomalous	peak	removal.	The	script	identifies	extremely	short	regions	of	non-zero	data	by	looking	
for	turning	points	(where	the	direction	of	change	in	fluorescence	equals	0).	These	turning	points,	thanks	to	our	previous	
filtering,	can	be	used	to	find	sharp,	erroneous	peaks.	This	script	is	used	in	step	6.	

%% Function to remove anomalous peaks from the data
% Checks for peaks in the data less than or equal to a given tolerance
% Anything identified is set to 0. Data input type expected is the output
% from RemoveAnomalousTroughs
%
% This function helps remove peaks from dust or impurities in the oil phase
% of the microfluidic device. Tolerance choices should be based below the
% predicted droplet width. Confidence in this function can only be assured
% if the droplet formation step is consistent.
%
% Note: This function will ignore non-zero data at the tail and head of the
% data sets even if they are below the tolerance width. This behaviour is
% maintained throughout the later functions.
function [outputData] = RemoveAnomalousPeaks(inputData, tolerance)
 % Handle unknown data types
 if ~ismatrix(inputData) || size(inputData, 2) ~= 2 || ~isnumeric(inputData(1, 1))
 error('Unknown input data');
 end

 % Check the input
 if ~isnumeric(tolerance) && tolerance <= 0
 error('Invalid threshold value')
 end

 % Preallocate
 outputData = inputData;
 binaries = zeros(size(inputData(:, 1), 1), 1);
 firstTurningPoint = 1;

 % Identify non-zero elements of the input data
 indices = inputData(:, 1) ~= 0;
 binaries(indices) = 1;

 % Look for turning points
 turningPoints = diff(binaries);
 turningPointIndices = find(turningPoints ~= 0);
 lastTurningPoint = length(turningPointIndices);

 % Identify if there is data present at the dataset start (head)
 if turningPoints(turningPointIndices(1)) == -1
 % Ignore this as it does not count as a trough
 firstTurningPoint = 2;
 end

 % Identify reshape parameters and ignore any peaks at the end of the
 % data (tail)
 turningPointPairValue = lastTurningPoint - (firstTurningPoint - 1);
 if mod(turningPointPairValue, 2) ~= 0
 if turningPoints(turningPointIndices(lastTurningPoint)) == 1
 lastTurningPoint = lastTurningPoint - 1;
 turningPointPairValue = lastTurningPoint - (firstTurningPoint - 1);
 end
 end

 % Remove anomalous peaks
 turningPointPairNumber = turningPointPairValue / 2;
 peakIndices = reshape(...
 turningPointIndices(firstTurningPoint : lastTurningPoint, 1), ...
 2, ...
 turningPointPairNumber)';
 for i = 1 : turningPointPairNumber
 if peakIndices(i, 2) - peakIndices(i, 1) <= tolerance
 outputData(peakIndices(i, 1) + 1 : peakIndices(i, 2), 1) = 0;
 end
 end
end

94	|	P a g e 	
	

6.5.2.7 Droplet	Identification	in	Processed	APD	Droplet	Data	

The	7th	step	(correspond	to	Figure	26)	in	the	droplet	data	processing	pipeline	identifies	the	leading	

and	tail	ends	of	droplets	using	the	script	found	in	Figure	27	and	step	8	(Figure	28)	uses	these	indicators	

to	calculate	pertinent	droplet	properties.	

	

Figure	26:	Example	dataset	showing	the	identification	of	droplet	boundaries	where	the	leading	edge	is	marked	in	blue	and	
the	tailing	edge	in	red.		The	source	for	this	image	was	the	output	data	from	the	previous	step,	please	note	that	for	clarity	
this	has	been	magnified	to	only	cover	a	few	droplets,	whilst	the	actual	dataset	used	included	many.	

	

95	|	P a g e 	
	

	

Figure	27:	Script	to	find	the	edges	of	droplets	(droplet	boundaries).	This	corresponds	to	step	7.	

	

	

	

%% Function to identify droplets within the provided data
% Data input type expected is the output from RemoveAnomalousPeaks
% Data output is as follows:
% OutputData:
% column 1 == start index of droplets
% column 2 == end index of droplets
%
% InputData:
% Same as inputData :)
%
% Note: This function will ignore non-zero data at the tail and head of the
% data sets even if they are below the tolerance width. This behaviour is
% maintained throughout the later functions. If droplets are present at
% these locations the user is advised to merge the datasets containing the
% rest of the data or manually add a zero data point at the head and tail
% end of the data
function [dropletIndices, inputData] = IdentifyDroplets(inputData)
 % Handle unknown data types
 if ~ismatrix(inputData) || size(inputData, 2) ~= 2 || ~isnumeric(inputData(1, 1))
 error('Unknown input data');
 end

 % Preallocate
 binaries = zeros(size(inputData(:, 1), 1), 1);
 firstTurningPoint = 1;

 % Identify zero elements of the input data
 indices = inputData(:, 1) ~= 0;
 binaries(indices) = 1;

 % Look for turning points
 turningPoints = diff(binaries);
 turningPointIndices = find(turningPoints ~= 0);
 lastTurningPoint = length(turningPointIndices);

 % Identify if there is data present at the dataset start (head)
 if turningPoints(turningPointIndices(1)) == -1
 % Ignore this as it does not count as a trough
 firstTurningPoint = 2;
 end

 % Identify reshape parameters and ignore any peaks at the end of the
 % data (tail)
 turningPointPairValue = lastTurningPoint - (firstTurningPoint - 1);
 if mod(turningPointPairValue, 2) ~= 0
 if turningPoints(turningPointIndices(lastTurningPoint)) == 1
 lastTurningPoint = lastTurningPoint - 1;
 turningPointPairValue = lastTurningPoint - (firstTurningPoint - 1);
 end
 end

 % Save Peaks Locations
 turningPointPairNumber = turningPointPairValue / 2;
 dropletIndices = reshape(...
 turningPointIndices(firstTurningPoint : lastTurningPoint, 1), ...
 2, ...
 turningPointPairNumber)';
 dropletIndices(:, 2) = dropletIndices(:, 2) + 1;
end

96	|	P a g e 	
	

6.5.2.8 Extracting	Droplet	Properties	from	Droplets	Identified	in	APD	Data	

The	final	step	(step	8)	serves	to	extract	useful	information	from	the	regions	of	data	labelled	as	‘within’	

a	droplet.	To	do	this	the	average	droplet	photon	count,	the	average	photon	count’s	variance	and	an	

average	time	for	the	droplet’s	observation	are	calculated.	Using	this	 information,	droplet	 identities	

can	then	be	de-convoluted	(i.e.	identify	which	droplets	contain	what	samples)	and	then	processed	in	

the	same	manner	as	section	8.4.3.The	script	described	in	Figure	29	performs	this	step	and	an	example	

data,	having	been	processed,	is	found	in	Figure	28.	

	

Figure	28:	Script	and	example	data	showing	the	identification	of	droplets	and	their	average	photon	count.	Above	is	the	
script	and	below	is	the	example	data	with	average	photon	count	indicated	by	blue	circles.	

97	|	P a g e 	
	

	

Figure	29:	The	GatherDropletData	script,	corresponding	to	the	final	step	in	the	APD	Droplet	Data	processing	pipeline.	

	 	

%% Function to identify droplet properties.
% This function identifies the average photon count and time of observation
% for the droplet as well as the variance in the droplet photon count
%
% Data is output in the following manner:
% column 1 == average photon count of the droplet
% column 2 == variance in the photon count of the droplet
% column 3 == average time for droplet observation
% column 4 == width of the droplet in number of observations
%
% Note: Data input expected is the output from IdentifyDroplets
function [outputData] = GatherDropletData(inputData, dropletIndices)
 % Handle unknown data types
 if ~ismatrix(inputData) || size(inputData, 2) ~= 2 || ~isnumeric(inputData(1, 1))
 error('Unknown input data');
 end

 % Handle indices matrix
 if ~ismatrix(dropletIndices) || size(dropletIndices, 2) ~= 2 || ~isnumeric(dropletIndices(1,
1))
 error('Unknown droplet indices input data');
 end

 % Pre-allocate output data
 outputData = zeros(size(dropletIndices, 1), 4);

 % Build output data
 for i = 1 : size(dropletIndices, 1)
 dropletData = inputData(dropletIndices(i, 1) : dropletIndices(i, 2), 1);
 dropletTimes = inputData(dropletIndices(i, 1) : dropletIndices(i, 2), 2);

 outputData(i, 1) = mean(dropletData);
 outputData(i, 2) = var(dropletData);
 outputData(i, 3) = mean(dropletTimes);
 outputData(i, 4) = length(dropletTimes);
 end
end

98	|	P a g e 	
	

6.5.3 Data	Analysis	for	Microfluidic	Droplets	Detected	Using	a	Fluorescence	Microscope	

The	analysis	of	 image	data	required	some	pre-processing	(as	described	in	section	8.4.2)	in	order	to	

obtain	 images	 in	an	acceptable	format	(.tiff	 image	format).	The	 images	are	then	processed	using	a	

MATLAB	script.	The	final	script	for	image	analysis	can	be	found	in	Figure	30.	This	script	requires	the	

Image	Processing	ToolboxTM	that	can	acquired	separately	to	the	core	MATLAB	framework.	Figure	31	

shows	snapshots	of	the	underlying	image	analysis	pipeline,	the	data	within	the	figure	is	a	subset	of	

the	data	used	to	produce	the	data	shown	in	Figure	15	and	Figure	16.	

	 Firstly,	images	were	loaded	into	MATLAB	itself.	All	images	for	an	entire	time	point	were	loaded	

at	once	which	allowed	computational	identification	of	the	optimum	images	to	use	for	analysis.	This	

principle	is	crucial	in	the	automated	analysis	of	images	as	the	shutter	speed	and	image	capture	steps	

of	 data	 acquisition	 are	 not	 aware	 of	 the	 contents	 of	 the	 image	 prior	 to	 capture.	 As	 such,	 the	

fluorescence	microscopes	low	sampling	frequency	may	capture	many	empty	image	frames	as	well	as	

droplets	that	cross	between	images.	

	 To	overcome	the	limitations	of	the	image	capture,	a	derivation	of	a	freely	available	script	by	

Mark	 Brookes	 (http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html)	 was	 created	 to	

identify	 images	 that	 contain	droplets	or	 to	 identify	 images	 that	 contain	 the	 largest	 representative	

portion	 of	 droplets	 should	 the	 droplets	 cross	 multiple	 images.	 The	 script	 derives	 an	 average	

fluorescence	per	image	and	considers	these	as	a	fluorescence	time	series.	The	fluorescence	time	series	

has	a	threshold	applied	to	it	in	order	to	reduce	random	perturbation	effects	in	background	light	levels	

(normally	with	a	value	corresponding	to	an	average	pixel	intensity	of	16	which	corresponded	to	the	

background	 light	 during	 acquisition).	 The	 peaks	 within	 this	 time	 series	 are	 identified	 and	 back	

correlated	to	the	image	source,	an	example	of	this	peak	finding	is	shown	in	Figure	31	(Top).	

	 Once	 the	 images	 containing	 the	 target	 information	 were	 identified	 the	 images	 were	

transformed	to	black	and	white	for	better	determination	of	the	droplet	boundaries	within	the	image	

Figure	31	(Left).	This	function	uses	a	threshold	value	for	cutting	off	irrelevant	light	signals;	to	prevent	

99	|	P a g e 	
	

loss	of	 low	fluorescence	data	a	very	 low	threshold	was	used	at	 this	step	(0.0007).	A	 low	threshold	

value	 increases	 the	 computational	 work	 needed	 to	 analyse	 the	 data	 at	 a	 later	 stage	 and	 is	 likely	

inefficient	at	its	current	value.	This	threshold	value	was	chosen	because	a	wide	range	of	fluorescence	

is	likely	across	all	of	the	constitutive	promoters	that	were	to	be	studied.		

Regions	of	fluorescence	within	each	image	were	identified	Figure	31	(Right)	and	then	using	

the	area	of	these	regions	the	droplets	within	each	image	were	calculated.	To	achieve	this,	the	largest	

area	belonging	to	a	region	of	fluorescence	was	indicated	as	a	potential	droplet.	An	arbitrary	droplet	

minimum	 area	 was	 used	 to	 reduce	 false	 positives	 (corresponding	 to	 10000	 data	 points).	 This	

assumption	removed	all	extraneous	regions	in	test	cases,	however,	such	a	cut-off	also	allows	for	small	

droplets	being	ignored.	Droplets	as	small	as	those	identified	by	this	cut-off	are	assumed	to	either	be	

erroneous	(i.e.	droplet	debris	within	the	channel)	or	not	of	interest	because	they	would	not	accurately	

represent	the	entire	droplet	contents	(i.e.	the	majority	of	the	droplet	has	passed	the	objective	at	the	

time	of	observation).	

Fluorescence	intensity	information	was	then	derived	from	the	original	image	data	(i.e.	prior	

to	 black	 and	 white	 transformation)	 using	 the	 image	 region	 identified	 in	 the	 previous	 steps.	 This	

intensity	 information	was	averaged	across	 the	area	of	 the	droplet	and	 the	 standard	deviation	was	

calculated.		

	 	

100	|	P a g e 	
	

%% Function to load an image set corresponding to a set of droplets
% This function loads and processes a set of images in tiff format that
% corresponds to a single set of observations.

function [dropletProperties] = IdentifyDroplets()
 % Identify files that correspond to the period of observation
 dirPath = uigetdir;
 files = dir(dirPath);
 fileNumber = size(files, 1);

 % Preallocate
 viableImages = 0;
 imagesProperties = cell(1, 3);

 % Loop through provided files to load the data and generate the average
 % fluorescence per image
 for i = 1 : fileNumber
 % Check its a file we can understand
 filePath = strcat(dirPath, filesep, files(i).name);
 [~, name, ext] = fileparts(filePath);
 if ~strcmp(ext, '.tiff')
 continue;
 end

 % Load the image data
 imageData = imread(filePath);

 % Calculate the average intensity for the image
 imageAverageIntensity = mean2(imageData);

 % Store this image data
 viableImages = viableImages + 1;
 imagesProperties{viableImages, 1} = imageData;
 imagesProperties{viableImages, 2} = imageAverageIntensity;
 imagesProperties{viableImages, 3} = name;
 end

 % Threshold fluorescence
 thresholdData = [imagesProperties{:, 2}]';
 thresholdData(thresholdData <= 16) = 0;

 % Identify images of interest
 imageIndices = PeakFind([imagesProperties{:, 2}]);
 peakNumber = length(imageIndices);

 % Preallocate
 identifiedDropletNumber = 0;
 dropletProperties = cell(1, 4);

 % Loop through peak locations
 for i = 1 : peakNumber
 % Get this image’s information
 imageProperties = imagesProperties(imagesIndixes(i, 1));
 imageData = imageProperties{1, 1};

 % Transform the image into black and white
 bwImageData = im2bw(imageData, 0.007);

 % Generate the region properties based on the black and white image
 imageRegionProperties = regionprops(bwImageData, 'all');
 imageAreas = [imageRegionProperties.Area];

 % Identify the largest
 maxAreaIndex = find(imageAreas == max(imageAreas), 1);

 % Get region properties
 regionProperties = imageRegionProperties(maxAreaIndex, 1);
 regionPixelIndices = [regionProperties.PixelIdxList];

 % Check if the region is too small to be a viable droplet
 if (length(regionPixelIndices) < 10000)
 continue;
 end

101	|	P a g e 	
	

 % Acquire the parameters of interest
 identifiedDropletNumber = identifiedDropletNumber + 1;
 regionData = imageData(regionPixelIndices);
 dropletProperties(identifiedDropletNumber, 1) = ...
 imagesProperties(imageIndices(i, 1), 3);
 dropletProperties(identifiedDropletNumber, 2) = {regionData};
 dropletProperties(identifiedDropletNumber, 3) = {mean(regionData)};
 dropletProperties(identifiedDropletNumber, 4) = {std2(regionData)};
 end
end

% Function to identify peaks in a 2d dataset
% This function was derived from the findp function by Mike Brooks 2005
% available online at:
% http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
function [imageLocations] = PeakFind(sourceData)
 imageNumber = length(sourceData);

 % Look for turning points
 turningPoints = diff(sourceData);
 upTurningPoints = find(turningPoints > 0, 1);
 downTurningPoints = find(turningPoints < 0, 1);

 % Check that there is a peak
 if ~isempty(upTurningPoints) && ~isempty(downTurningPoints)
 % Identify the previous rises
 risesAcceleration = upTurningPoints;
 risesAcceleration(2 : end, 1) = diff(upTurningPoints);
 pastRises = ones(imageNumber, 1);
 pastRises(turningPoints + 1, 1) = 1 - risesAcceleration;
 pastRises(1, 1) = 0;
 lastRises = cumsum(pastRises);

 % Identify the previous falls
 fallsAcceleration = downTurningPoints;
 fallsAcceleration(2 : end, 1) = diff(downTurningPoints);
 pastFalls = ones(imageNumber, 1);
 pastFalls(downTurningPoints + 1, 1) = 1 - fallsAcceleration;
 pastFalls(1, 1) = 0;
 lastFalls = cumsim(pastFalls);

 % Identify future rises
 futureRises = ones(imageNumber, 2);
 futureRises = futureRises - 2;
 futureRises([1; upTurningPoints + 1]) = ...
 [risesAcceleration - 1; imageNumber - upTurningPoints(end) - 1];
 nextRises = cumsum(futureRises);

 % Identify future falls
 futureFalls = ones(imageNumber, 2);
 futureFalls = futureFalls - 2;
 futureFalls([1; downTurningPoints + 1]) = ...
 [fallsAcceleration - 1; imageNumber - downTurningPoints(end) - 1];
 nextFalls = cumsum(futureFalls);

 % Identify peaks locations
 imageLocations = find(...
 (lastRises < nextRises) ... % Identify between rises
 & (nextFalls < lastFalls) ... % Identify between falls
 & (floor((nextFalls - lastRises) / 2) == 0)); % Is a peak

 else
 imageLocations = [];
 end
end
Figure	30:	Script	for	processing	images	produced	by	the	fluorescence	microscope.	See	the	annotations	in	green	for	a	more	
detailed	breakdown	of	how	the	script	works	in	each	section.	

	 	

102	|	P a g e 	
	

	

	

Figure	31:	Depiction	of	the	image	analysis	process.	Top:	Shows	the	average	fluorescence	per	image	across	a	short	capture	
window.	The	peaks	have	been	successfully	identified	(blue).	Left:	shows	the	image	corresponding	to	the	first	peak	after	
being	transformed	to	black	and	white.	Right:	shows	the	identified	pixels	in	the	image	from	the	left	that	correspond	to	the	
perceived	droplet.	Each	of	these	images	were	generating	using	a	section	of	the	script	above.	

	 	

103	|	P a g e 	
	

6.6 Outcome	Summary	

Over	the	course	of	the	platform	iterations	a	great	deal	of	progress	has	been	made	in	establishing	a	

high	 throughput	 in-vitro	 characterisation	 platform	 for	 Synthetic	 Biology	 by	 identifying	 the	

fundamental	challenges	associated	with	a	microfluidic	orientated	design.	Until	platform	iteration	5	it	

had	been	difficult	to	identify	a	platform	design	that	was	capable	of	characterising	a	single	expression	

vector,	 let	alone	one	capable	of	achieving	the	high	throughput	aims	of	this	investigation.	However,	

each	of	the	iterations	served	to	identify	flaws	in	the	underlying	methodology	and	slowly	increase	the	

stability	of	the	platform.		

	 The	data	analysis	pipelines	 for	droplet	microfluidics,	as	described	above,	were	successfully	

used	to	extract	meaningful	data	sets	from	both	APD	data	and	fluorescence	microscope	images.	They	

have	shown	demonstrable	success	in	processing	the	source	data	into	meaningful	information	for	use	

throughout	 the	 iterations	produced	above.	Given	 the	availability	of	MATLAB,	 the	signal	processing	

toolbox,	and	the	image	analysis	toolbox,	these	scripts	should	be	transferable	to	any	modern	(v.11+)	

MATLAB	environment.	Given	the	amount	of	post	processing	necessary	to	use	the	data	in	a	modern	

assay,	it	was	considered	unnecessary	to	package	the	scripts	into	a	single	executable.	

	 The	 success	 in	 the	 iterative	 process	 in	 this	 investigation	 can	 only	 be	 attributed	 to	 the	

fundamental	design	principle	of	modularity	that	was	employed	from	the	outset.	Including	this	design	

principle	from	the	moment	of	the	platform’s	inception	allowed	the	identified	‘modules’	(Figure	4)	to	

be	 hot-swapped	 without	 re-designing	 the	 entire	 platform,	 and	 thereby	 increased	 the	 platform	

prototypes’	turnover	rate.	This	modularity	also	greatly	improved	the	ability	to	identify	the	points	of	

failure	within	a	design	and	use	the	existing	research	to	select	alternative	solutions.		

Interestingly,	the	iterations	proposed	in	this	study	are	not	the	only	solutions	to	each	problem	

encountered.	 Adam	Abate’s	 lab	 has	 had	 great	 success	 in	 improving	 droplet	 formation	 stability	 by	

employing	a	valve	based	tuneable	 flow	focusing	geometry	 (Romero	and	Abate,	2012).	This	kind	of	

104	|	P a g e 	
	

geometry	may	have	had	better	success	than	those	trialled	in	iteration	4	and	may	have	led	to	a	different	

solution	being	investigated	for	Iteration	5.	

	 Another	key	take	point	to	consider	is	that	no	fluid	simulations	of	the	microfluidic	devices	were	

performed	in	this	study.	Software	exists	that	can	help	predict	the	behaviours	of	the	devices	within	the	

channels.	 One	 of	 the	 more	 common	 examples	 of	 this	 kind	 of	 software	 is	 known	 as	 COMSOL	

Multiphysics	(COMSOL	Inc.).	COMSOL	is	a	Multiphysics	simulator	that	includes	a	microfluidics	module	

for	simulating	microfluidics	devices.	 	Primarily	the	software	was	not	used	due	to	the	mixed	type	of	

devices	being	employed	throughout	the	investigation,	as	well	as	the	most	common	failure	point	of	all	

the	devices	being	the	chip	build	quality,	but	it	would	certainly	have	helped	in	identifying	some	of	the	

back	pressure	issues	observed	in	Iteration	1.	

	 Whilst	basic	fluorescence	quantification	for	an	expression	vector	was	achieved	across	multiple	

droplets	 (Figure	15),	 high	 throughput	 in-vitro	 characterisation	 (within	 the	 constraints	of	 our	 initial	

platform	aims)	was	not.	As	also	noted,	through	a	manual	curation	of	the	source	data,	it	was	possible	

to	profile	multiple	 expression	 vectors	 in	 the	 same	 reaction	 run	 (Figure	 16),	 albeit	with	no	droplet	

repeats	 to	provide	any	 statistical	 confidence	 in	 the	 levels.	To	achieve	 the	 level	of	 characterisation	

outlined	in	section	6.1.3	it	is	necessary	to	have	a	minimum	of	two	expression	vectors’	fluorescence	

being	 quantified	 concurrently	 with	 more	 than	 one	 droplet	 being	 recorded	 per	 vector	 type.	 The	

characterisation	 of	 fluorescence	 production	 from	 the	 target	 expression	 vector	 and	 the	 standard	

expression	vector	(BBa_J23100)	is	necessary	to	normalise	environmental	variations	in	the	assay.	Due	

to	 the	 inability	 to	 discern	 droplet	 identity	 consistently	 in	 the	 latest	 iteration	 of	 the	 platform,	

concurrent	quantification	of	droplet	fluorescence	cannot	be	achieved.		

	 Many	 of	 the	 issues	 identified	 throughout	 the	 course	 of	 the	 platform	 iterations	 can	 be	

attributed	 to	 the	 immaturity	 of	 the	microfluidics	 field	with	 regards	 to	 automated	 and	 repeatable	

hands-off	technologies	at	picolitre	volumes	(deMello,	2006).	Despite	microfluidics’	ability	to	allow	an	

inordinate	level	of	control	over	samples	and	produce	excellent	data	quality	using	a	variety	of	detection	

105	|	P a g e 	
	

techniques,	microfluidics	solutions	still	require	a	great	deal	of	maintenance	and	adjustment	from	a	

user’s	stand	point.		

	 This	statement	is	best	exemplified	by	the	backpressure	issues	that	have	arisen	throughout	the	

platform	 iterations.	 Hands-off,	 automated,	 solutions	 to	 the	 platform	 design,	 using	 the	 currently	

available	technologies,	require	tubing	lengths	and	inner	diameters	that	are	not	conducive	to	either	

long	term	use	or	consistent	droplet	formation.	In	essence,	this	negates	the	initial	platform	aims	as	the	

platform	cannot	currently	represent	a	standalone	technology	for	characterisation	in	synthetic	biology.	

	 Another	small	but	no	 less	 important	 issue	with	the	platform	was	 identified	throughout	the	

iterative	process:	the	control	of	reaction	initiation	and	its	impact	on	multiplexing	within	the	platform.	

As	discovered	in	platform	iteration	2	(Figure	6)	the	initial	technique	used	for	reaction	initiation	failed	

to	result	in	detectable	levels	of	fluorescence	production.	To	solve	this,	the	technique	of	in-syringe	or	

in-tube	 (off-chip)	 reaction	 initiation	 was	 adopted.	 This	 technique	 eventually	 yielded	 detectable	

fluorescence	levels	but	removed	much	of	the	multiplexing	capability	desirable	in	the	platform.	Off-

chip	reaction	initiation	also	complicates	data	analysis,	as	ascribing	reaction	duration	values	to	droplets	

detected	at	points	of	observation	is	no	longer	consistent	over	a	droplet	set.	This	concept	is	important	

because	when	droplets	are	imaged	they	will	represent	different	reaction	durations.	This	is	different	

to	on-chip	reaction	initiation	because	reaction	initiation	would	occur	with	a	delay	corresponding	to	

the	droplet’s	position	in	the	chip	channels	allowing	the	reaction	duration	of	each	droplet	in	a	droplet	

set	 to	 be	 identical	 (i.e.	 all	 droplets	would	 therefore	 be	 at	 the	 same	 stage	 of	 reaction	 progression	

despite	being	sampled	at	different	times).	

	 Despite	 these	 two	 core	 issues,	much	 of	 the	 fundamental	work	 associated	with	 creating	 a	

functional	platform	has	been	achieved,	and	solutions	to	these	two	issues	have	been	identified.	The	

availability	 of	 solutions	 to	 these	 two	 core	 problems	 indicates	 that	 a	 realised	 version	 of	 the	

characterisation	platform	is	within	reach.	To	overcome	the	issue	of	backpressure	new	versions	of	the	

droplet	 robot	 (Gielen	 et	 al.,	 2013)	 are	 capable	 of	 forming	 droplets	 within	 the	 footprint	 of	 a	

106	|	P a g e 	
	

microscope’s	stage	which	would	greatly	reduce	the	length	of	tubing	required.	The	newer	versions	of	

the	droplet	robot	also	facilitate	better	control	over	droplet	formation	and	morphology	with	increased	

flexibility	in	the	inner	diameter	of	the	tubing	being	used.	Both	of	these	imply	that	greater	control	can	

be	had	over	droplets	which	could	theoretically	reduce	droplet	merging	and	therefore	expedite	the	

process	of	accurate	droplet	identification	by	maintaining	the	FIFO	droplet	ordering.	Multiplexing	of	

reactions	within	the	platform	is	also	possible	using	the	microfluidic	geometries	described	in	iteration	

4	Figure	12).	By	alternating	droplets	of	IVTT	and	expression	vector	and	forming	these	droplets	with	

different	 volumes,	 controlled	 droplet	 coalescence	 could	 re-allow	 on-chip	 reaction	 initiation.	 Such	

volumetric	control	over	droplet	formation	can	be	achieved	with	the	droplet	robot	by	adjusting	the	

residence	 time	of	 the	 sample	 selection	head	within	 the	 reaction	phase	 (i.e.	 larger	droplets	 can	be	

formed	by	allowing	more	IVTT	to	be	withdrawn	to	form	a	droplet	compared	to	the	expression	vector).	

By	 once	 again	 separating	 the	 IVTT	 and	 expression	 vector	 components	 of	 the	 characterisation	

reactions,	multiple	 samples	could	once	again	be	characterised	 in	a	 single	assay	using	only	a	 single	

sample	of	IVTT.	This	reinforces	one	of	the	key	advantages	of	microfluidics	as	a	tool	for	manipulating	

biological	 reactions;	 the	 principle	 of	 reduced	 reagent	 consumption.	 Should	 the	 amount	 of	 IVTT	

required	 to	 assay	 15	 concurrent	 expression	 vectors	 be	 reduced	 to	 a	 single	 pot,	 the	 platform’s	

attractiveness	as	an	in-lab	technology	would	increase	greatly	as	the	cost	of	commercial	IVTT	can	be	

quite	prohibitive	to	routine	characterisation.		

	 Fundamentally,	 in-vitro	 characterisation	 has	 been	 shown	 to	 compare	 well	 to	 in-vivo	

characterisation	under	basic	conditions	 (Chappell	et	al.,	2013)	and	 its	utility	as	a	rapid	prototyping	

technique	 for	 expression	 vectors,	 before	 detailed	 experimental	 work	 is	 performed,	 is	 extremely	

appealing,	but	the	issues	when	characterising	complex	biological	circuits	(Chappell	et	al.,	2013)	cannot	

be	overlooked.	Using	microfluidics	 as	 a	 characterisation	 tool	 in	 synthetic	biology	actually	presents	

options	for	dealing	with	characterisation	of	complex	devices.	As	shown	in	Villar	et	al.’s	paper	(Villar	et	

al.,	2011),	droplets	can	be	allowed	to	communicate	through	small	molecules	that	can	freely	diffuse	

into	the	oil	phase	within	the	chips.	Taking	advantage	of	this,	smaller	less-complex	components	of	the	

107	|	P a g e 	
	

overall	device	could	be	encapsulated	in	a	serial	manner	and	designed	to	communicate	through	the	oil	

phase,	therefore	mimicking	the	device	complexity	that	was	previously	an	issue	for	characterisation.	

This	would	allow	device	components	to	be	characterised	individually	as	well	as	the	characterisation	

of	overall	device	behaviour	by	monitoring	reporters	in	the	final	droplet.	

	 	

108	|	P a g e 	
	

7 Data	 -	 Processing,	 Analysis	 and	 Display	 Software	 Results	 and	

Discussion	

7.1 Overview	

To	overcome	many	of	the	issues	described	in	section	5.5,	a	data	handling	framework	called	Data	–	

Processing,	Analysis	and	Display	(DPAD)	was	developed	that	is	specifically	designed	to	handle	the	large	

variety	 of	 data	 sources	 and	 characterisation	 assay	 types	 present	 within	 biological	 part	

characterisation.	 Specifically,	 the	 DPAD	 software	 is	 designed	 to	 provide	 a	 highly	 flexible,	 network	

ready	 data	 storage	 and	 analysis	 framework.	 In	 brief,	 the	 software	 was	 designed	 to	 run	 in	 an	

organisational	environment,	be	it	large	or	small,	and	allow	individual	research	to	save	data	from	their	

workstations	to	a	centralised	location.	This	centralised	location	then	stores,	processes	and	analyses	

the	data	as	specified	by	the	researcher.		

	 To	 achieve	 a	 viable	 framework	 for	 handling	 characterisation	 data,	 the	 conventional	 data	

handling	procedure	must	be	broken	down	into	a	series	of	discrete	operations,	as	shown	in	Figure	32,	

which	represents	the	core	work	flow	for	the	software.	By	decoupling	the	data	handling	procedure	into	

these	operations,	data	can	be	handled	and	stored	in	a	step-wise	manner	to	ensure	that	the	outcome	

of	each	data	manipulation	operation	can	be	saved	for	validation	later.	The	steps	shown	in	Figure	32	

directly	 inform	the	software’s	operation	and	affect	the	 implementation	of	both	the	plugin	and	the	

database	topologies	(described	in	section	7.2.3	and	section	7.2.2	respectively).	The	first	operation	in	

the	data	handling	procedure	is	the	loading	the	data	into	a	format	that	is	understood	by	the	software.	

This	 is	 followed	 by	 the	 processing	 of	 data	 to	 generate	 a	 profile	 for	 a	 single	 sample,	with	 a	 single	

observation	 type	 over	 time.	 The	 next	 step	 allows	 the	 amalgamation	 of	 sample	 data	 to	 produce	

meaningful	characterisation	data.	Finally,	the	data	is	displayed	according	to	the	characterisation	type	

being	performed.	These	operations	directly	correlate	to	the	types	of	plugins	available	within	the	DPAD	

software	framework	where	plugins	for	the	loading/processing,	analysis,	and	display	can	be	created	

independently	of	one	another.		

109	|	P a g e 	
	

	 To	maintain	 flexibility	 in	 the	 types	of	data	processing	and	analysis	 that	 can	be	performed,	

specifically	in	our	case	characterisation,	and	increase	the	overall	utility	of	the	platform,	a	variety	of	

data	input	types	must	be	handled.	It	is	for	this	reason	that	each	of	the	operations	has	been	deferred	

to	plugins	so	that	the	software	framework	can	be	expanded	dynamically	by	the	researchers	according	

to	their	needs.	The	need	for	this	flexibility	becomes	apparent	when	looking	at	the	data	sources	used	

across	the	evolution	of	characterisation	in	Synthetic	Biology.	Early	attempts	used	microplate	readers	

as	the	single	source	of	data	(Kelly	et	al.,	2009)	whilst	current	implementations	pair	this	information	

with	data	from	flow	cytometers.	This	is	also	apparent	in	the	characterisation	platform	produced	above	

(see	section	6),	which	utilised	either	APD	data	or	image	data	to	characterise	the	microfluidic	droplets.	

The	 overall	 utility	 and	 efficiency	 of	 the	 software	 is	 increased	 by	 its	 ability	 to	 handle	 data	

batches,	i.e.	the	amount	of	data	that	can	be	handled	by	plugins	is	only	limited	by	the	implementation	

of	the	plugins	themselves.	The	final	solution	to	the	DPAD	software	breaks	down	the	implementation	

into	 three	 core	 building	 block	 architectures	 that	 abstract	 many	 of	 the	 important	 functional	

components	of	the	software	away	from	the	core	runtime	environment.	Namely:	the	flexibility	of	the	

platform	is	predicated	on	a	plugin	architecture	that	allows	the	framework	to	be	dynamically	expanded,	

as	the	needs	of	researchers	and	their	equipment	types	grow	over	time.	The	software	is	also	based	

around	a	core	database	architecture	that	allows	for	versatile	sample	data	storage	as	well	as	rapid	and	

flexible	sample	context	annotation.	Finally,	the	network	based	architecture	of	the	platform	allows	for	

centralisation	 of	 the	 data	 storage	 and	 submission	 of	 data	 from	 any	 computer	 with	 the	 software	

installed.	 These	 three	 architectures	 are	 described	 below	 and	 constitute	 a	 summary	 of	 the	 salient	

implementation	results	of	the	DPAD	software.	

	 	

110	|	P a g e 	
	

	

Figure	32:	Data	handling	pipeline	breakdown.	The	steps	responsible	for	producing	accurately	characterised	data	that	are	
distinctly	represented	within	the	DPAD	software	

	 	

111	|	P a g e 	
	

7.2 DPAD	Software	Implementation	

7.2.1 Network	Architecture	

The	DPAD	software	utilises	a	network	architecture	that	allows	the	software	to	operate	in	three	distinct	

states.	These	terms	are	used	to	distinguish	the	different	ways	in	which	the	software	can	be	used.	As	

shown	 in	 Figure	 33	 the	 three	modes	 of	 operation	 are	 client,	 server	 and	 local.	 The	 client	mode	of	

operation	is	responsible	for	user	based	interactions	with	the	software	and	the	runtime	environment	

for	 the	plugins	 (see	 section	7.2.3).	The	server	mode	of	operation	controls	and	 limits	access	 to	 the	

software’s	 database	 as	 well	 as	 monitoring	 and	 handling	 the	 logic	 required	 for	 multiple	 client	

connections.	The	local	mode	of	operation	is	responsible	for	mimicking	a	server	connection	by	creating	

a	server	 implementation	that	 it	 is	hidden	to	the	user	but	provides	the	same	user	experience.	Local	

modes	of	operation	are	important	as	they	allow	the	software	to	be	used	when	no	network	connections	

are	 available	 or	 for	 when	 users	 do	 not	 wish	 to	 submit	 their	 data	 to	 a	 centralised	 repository.	 By	

convention,	the	underlying	network	architecture	implementation	type	used	is	known	as	‘thick	client’	

whereby	all	data	 is	processed	and	manipulated	on	the	client’s	computer	and	all	data	 is	stored	and	

accessed	 through	 the	 server.	 Choosing	 to	 implement	 a	 network	 architecture	 promotes	 the	

centralisation	of	data	storage,	which	in	the	long	term	can	be	used	to	reduce	the	amount	of	ad	hoc	

research	 being	 performed.	 Promoting	 automatic	 data	 submission	 to	 a	 centralised	 repository	 also	

promotes	the	lateral	transfer	of	knowledge	to	other	software	users	if	and	when	a	permissions	system	

is	implemented	(see	section	7.3).	

	 	The	 network	 implementation	 relies	 upon	 a	 multi-threaded,	 asynchronous,	 event-driven	

network	 application	 that	 is	 freely	 available	 to	 open-source	 and	 commercial	 applications	

(http://netty.io/).	This	application	provides	a	high-performance,	highly	scalable	scaffold	for	custom	

network	 implementations,	which	 sets	 the	 stage	 for	 a	 highly	 versatile	 network	 implementation	 for	

multiple	concurrent	users	within	a	dedicated	server	environment.	Utilising	an	asynchronous,	event-

driven	model	for	the	network	application	allows	multi-threaded	software	implementations	to	achieve	

112	|	P a g e 	
	

high-performance	as	no	queuing	of	network	information	processing	and	responses	occurs.	To	achieve	

a	secure	and	rapid	network	 implementation	the	communication	of	 information	between	the	client	

and	server	was	broken	down	 into	a	series	of	message	handlers	along	the	communication	pipeline.	

Information	being	 transmitted	 is	 limited	 to	 implementations	of	 the	Packet	 class	 (see	Figure	35).	A	

diagrammatic	representation	of	these	handlers	can	be	found	in	Figure	34	as	well	as	a	short	description	

of	the	handler’s	function.	Of	interest	within	the	pipeline	are	the	optional	encryption	handlers	which,	

when	the	software	is	not	operating	in	local	mode,	secure	all	information	transmission	to	and	from	the	

server	using	RSA	encryption	(Katzenbeisser,	2001).			

These	layers	of	communication	are	built	upon	the	transmission	control	protocol	(TCP)	directly	

rather	than	leveraging	some	of	the	existing	communication	standards	such	as	Simple	Object	Access	

Protocol	 (SOAP	 (Mein	 et	 al.,	 2002)	 and	 Representational	 State	 Transfer	 (ReST	 (Jakl,	 2005)).	 This	

decision	was	made	for	three	core	reasons.	Firstly,	direct	implementation	of	a	custom	communication	

layer	 between	 the	 client	 and	 server	 allows	 for	 state	 aware	 communication.	 State	 aware	

communication	 is	 essential	 for	 the	 general	 operation	and	encryption	 layers	of	 the	DPAD	 software	

which	 utilise	 context	 specific	 network	 handlers	 depending	 on	 the	 client	 state	 (e.g.	 encrypted	 or	

unencrypted).	 Secondly,	 by	 implementing	 a	 custom	 communication	 layer,	 the	 software	 provides	

highly	performant,	compact	and	efficient	network	messaging	as	the	implementation	leverages	direct	

access	to	byte	buffer	frameworks	and	direct	‘packet	in’	to	‘packet	out’	connections,	which	reduces	the	

need	for	additional	structure	specific	information	(such	as	hypertext	transfer	protocol,	HTTP,	headers)	

to	be	transferred	as	the	message	can	only	be	interpreted	in	one	manner	(by	the	mapped	packet,	with	

the	correct	network	context).	Finally,	DPAD	relies	upon	constant	uptime	in	network	connections	 in	

order	to	reduce	the	potential	for	sensitive	data	to	be	intercepted.	This	is	achieved	by	maintaining	a	

‘heartbeat’	communication	between	the	client	and	server	that	prevents	identity	based	attacks	from	

pretending	to	be	clients	after	successful	authentication.	These	choices	do	have	a	downside,	which	is	

that	generally	HTTP	messages	can	be	passed	between	the	client	and	server	without	firewall	 issues,	

but	 a	 custom	 TCP	 implantation	 generally	 requires	 specific	 ports	 to	 be	 opened	 up	 within	 the	

113	|	P a g e 	
	

organisation	deploying	DPAD.	However,	the	reasons	given	above	sufficiently	outweigh	the	overheads	

incurred	by	using	a	custom	TCP	implementation.			

	 Network	communication	within	the	software	is	monitored	by	a	dedicated	network	manager	

thread	which,	when	a	client	first	connects	to	the	server,	generates	a	distinct	session	that	handles	all	

communication	between	the	server’s	database	and	the	client	in	a	secure	manner	(see	section	7.2.2).	

The	network	managers	sort	network	communication	and	hand	them	off	to	the	correct	client	sessions	

as	well	as	allowing	sessions	to	communicate	with	the	correct	client.	Network	sessions	are	responsible	

for	 handling	 the	 data	 communicated	 through	 the	 pipeline	 and	 for	 regenerating	 packets	 into	

meaningful	information.	Network	sessions	hand	off	a	context	specific	network	protocol	to	the	packets	

to	allow	them	to	be	handled	accordingly.	Network	protocols	are	based	around	the	current	state	that	

a	connection	between	the	client	and	the	server	is	in	(e.g.	whether	the	user	has	successfully	logged	in	

and	 obtained	 an	 encryption	 key	 yet).	 By	 handling	 the	 newly	 obtained	 (through	 network	 transfer)	

packets	with	a	network	protocol	rather	than	the	network	session,	packets	are	limited	in	the	data	that	

they	can	access,	adding	a	further	layer	of	security	to	the	network	communication.	

	 Network	communication	is	not	freely	available	to	plugin	implementations,	see	section	7.2.3,	

as	this	would	defeat	many	of	the	security	layers	in	place,	instead	a	series	of	common	packet	types	are	

made	available	to	the	plugins	through	the	plugin	API,	see	section	7.2.3,	which	should	cover	all	 the	

necessary	network	communications.	Abstracting	the	network	communication	in	this	way	maintains	

flexibility	and	allows	rapid	error	tracing	whilst	minimising	the	security	risks	for	centralised	data	storage	

and	decreasing	the	complexity	of	implementing	custom	data	handling	plugins.		

114	|	P a g e 	
	

	

Figure	33:	Runtime	architecture	for	the	DPAD	software.	The	software	can	run	in	client,	server	or	local	modes	where	local	
runtime	creates	a	hidden	server	for	the	user	to	interact	with.	

	

	

Figure	34:	Schematic	of	the	network	pipeline.	The	pipeline	operates	in	both	directions	from	the	client	to	the	server.	The	
message	splitter	first	encodes	a	packet	identifier	into	the	byte	stream,	after	which	the	packet	contents	are	encoded	into	
the	byte	stream.	If	the	network	channel	requires	security	the	byte	stream	is	encrypted.	On	the	other	side	of	the	channel	
(i.e.	after	the	network	communication)	the	process	is	reversed.	

	 	

115	|	P a g e 	
	

package jonathansmith.dpad.common.network.packet;

import java.io.IOException;
import com.google.common.collect.BiMap;
import jonathansmith.dpad.common.network.protocol.INetworkProtocol;

/**
 * Created by Jon on 26/03/14.
 * Abstract packet class. Parent for all networking packets.
 */
public abstract class Packet {

 /**
 * Empty constructor to allow for packet registration without data
 */
 public Packet() { }

 /**
 * Generate an empty packet for automatic regeneration of the packet from the byte stream
 * that is transmitted
 * through the packet pipeline
 * @param integerClassBiMap the list of packets that are pre-registered
 * @param packetId the id of the packet within the packet list
 * @return the empty packet
 * @throws Exception if the packet could not be initialised
 */
 public static Packet getEmptyPacket(BiMap<Integer, Class<? extends Packet>>
 integerClassBiMap, int packetId) throws Exception {
 Class clazz = integerClassBiMap.get(packetId);
 return clazz == null ? null : (Packet) clazz.newInstance();
 }

 /**
 * Used to determine whether the packet needs to be processed immediately or should enter
 * the packet queue.
 * @return true if the packet should be processed out of order. Conventionally used for
 * setup purposes only.
 * Return false if the packet should be processed normally.
 */
 public boolean isUrgent() {
 return false;
 }

 /**
 * Function called to generate the packet data from the byte stream
 * @param packetBuffer the byte stream containing the packet's data
 * @throws IOException
 */
 public abstract void readPacketData(PacketBuffer packetBuffer) throws IOException;

 /**
 * Function to write the packet data into the bytestream using convenience methods in the
 * {@link jonathansmith.dpad.common.network.packet.PacketBuffer}
 * class
 * @param packetBuffer the packet buffer to write the data to
 * @throws IOException
 */
 public abstract void writePacketData(PacketBuffer packetBuffer) throws IOException;

 /**
 * Function called to handle the packet after it has been reconstituted from the byte
 * stream
 * @param networkProtocol a situational network protocol dependent on the state of the
 * network connection.
 */
 public abstract void processPacket(INetworkProtocol networkProtocol);

 /**
 * Convenience method for debugging that converts the packet into a string
 * @return summary of the packet
 */
 public abstract String payloadToString();
}
Figure	35:	The	abstract	packet	class	that	is	necessary	for	all	network	communication	

	 	

116	|	P a g e 	
	

7.2.2 Database	Architecture	

The	DPAD	software’s	database	architecture	is	designed	to	be	fast,	capable	of	encryption	and	have	a	

small	memory	impact.	The	database	runs	on	the	server	side	of	the	software	and	cannot	directly	be	

interacted	with	by	the	user.	To	access	the	database	contents	a	client	must	query	through	the	server	

through	the	network	architecture.	Database	access	within	the	server	side	of	the	software	is	limited	

only	to	a	network	session,	which	is	only	obtained	once	a	client	has	connected.	This	implementation	

prevents	 any	 external	 access	 to	 the	 database	 and	 maintains	 a	 one	 to	 one	 relationship	 between	

database	connections	and	client	connections.	

	 The	 database	 core	 implementation	 used	 within	 the	 software	 is	 known	 as	 H2	

(http://www.h2database.com/)	and	is	freely	available.	H2	utilises	the	structured	query	language	(SQL)	

for	communicating	with	the	server,	requires	an	extremely	small	amount	of	memory	and	relies	purely	

on	 the	 Java	 programming	 language	 which	 provides	 maximum	 compatibility	 with	 the	 current	

implementation	 of	 the	 software.	 Despite	 H2’s	 well	 documented	 performance	

(http://www.h2database.com/html/performance.html)	 some	 issues	have	been	 reported	with	 large	

numbers	 of	 concurrent	 database	 queries	 causing	 locks	 in	 the	 database	 input	 or	 output.	 To	 allow	

maximum	flexibility	in	the	software,	the	type	of	core	database	implementation	can	be	changed	with	

relative	 ease	 in	 future	 versions	 of	 the	 software,	 as	 long	 as	 the	 database	 still	 uses	 SQL	 for	

communication.	This	would	allow	the	software	to	utilise	more	robust,	industry	tested	SQL	databases	

should	the	need	ever	arise.	

	 The	Hibernate	ORM	(http://hibernate.org/)	application	is	embedded	within	the	software	to	

manage	 communications	 between	 the	 server	 and	 the	 database.	 Hibernate	 ORM	 offers	 a	 highly	

scalable,	 reliable	 and	 high	 performance	 to	 database	 creation	 and	 access.	 Hibernate	 ORM	 allows	

mapping	java	application	objects	(including	inheritance	and	relationship	properties)	directly	into	the	

database	without	having	 to	engineer	an	SQL	 schema	directly.	 To	achieve	 this,	 the	Hibernate	ORM	

communicates	with	the	H2	database	using	the	Java	Database	Connectivity	API	(JDBC)	which	allows	

117	|	P a g e 	
	

direct	communication	with	SQL	databases.	The	application	offers	lazy	loading,	optimistic	locking	and	

specialised	data	fetching	strategies,	all	of	which	improve	the	input/output	performance	of	data	into	

the	 database.	 The	 database	 schema	 is	 set	 programmatically	within	 the	DPAD	 software	 and	 either	

automatically	generated	or	validated	when	the	server	starts	up.	

	 To	improve	the	maximum	concurrent	users	capable	of	querying	the	server	at	any	one	time	

the	C3P0	connection	pooling	application	 (http://www.mchange.com/projects/c3p0/)	has	also	been	

embedded	into	the	software.	This	application	is	responsible	for	managing	the	number	of	connections	

that	are	open	between	the	database	at	any	one	time	and	recycling	both	memory	and	connections	

when	they	become	closed	or	unused.	

	 The	 database	 schema	 for	 the	 DPAD	 software	 is	 shown	 pictographically	 in	 Figure	 36	 and	

explicitly	in	Figure	37.	The	core	data	storage	record	is	the	dataset	record	which	essentially	contains	

time	course	data	for	a	single	measurement	type	and	the	corresponding	times.	Each	dataset	record	

must	be	appended	with	a	sample	tag	record	and	a	measurement	type	tag	record,	but	can	be	tagged	

with	any	number	of	additional	context	tags	records.	A	dataset	record	must	also	contain	a	plugin	record	

reference	so	that	the	source	of	the	data	can	be	traced.	Finally,	each	dataset	record	must	be	owned	by	

an	experiment	record	which	in	turn	must	be	owned	by	a	user	record.	This	allows	datasets	to	be	loosely	

grouped	without	forcing	a	direct	empirical	relationship	with	each	other.	Allowing	datasets	to	‘own’	

any	number	of	tags	increases	the	flexibility	of	the	software	to	make	use	of	metadata.	The	context	tag	

is	simply	a	name	and	a	description	with	no	limit	on	the	contents,	therefore	these	tags	could	be	used	

to	include	anything	from	the	bacterial	strain	used	or	the	ambient	temperature	during	data	acquisition.	

	 Finally,	 the	 software	enforces	database	 schema	contracts	 (meaning	 the	 schema	cannot	be	

changed)	by	only	allowing	table	specific	(table	relates	to	a	specific	portion	of	the	database	schema,	

i.e.	the	user	database	record	schema)	objects	to	access	their	contents.	These	objects	are	stateless	(i.e.	

they	are	not	dependent	on	 the	 client	who	 is	using	 them)	and	are	 freely	 available	 if	 the	 client	has	

118	|	P a g e 	
	

acquired	a	database	connection.	The	table	specific	objects	have	the	necessary	SQL	queries	embedded	

within	them	to	enforce	the	types	of	manipulation	that	can	be	performed	on	database	records.		

	

Figure	36:	Database	schema	for	the	DPAD	software.	Relationships	are	either	one	to	one	or	one	to	infinite	as	indicated	by	
the	annotations	on	the	arrows.	

	

Figure	37:	Full	Schema	for	the	DPAD	H2	Database.	Tables	are	arranged	into	the	core	functional	sections.	

	 	

119	|	P a g e 	
	

7.2.3 Plugin	Architecture	

The	DPAD	software	contains	a	plugin	architecture	that	enables	flexibility	in	both	the	types	of	data	that	

can	be	loaded	into	the	software	as	well	as	the	types	of	analysis	that	can	be	performed.	The	plugin	

architecture	allows	for	plugins	to	be	developed	using	the	DPAD	software	API	without	knowledge	of	

the	 actual	 software’s	 internal	 functionality.	 Plugins	 for	 the	 architecture	 are	 of	 two	 varieties:	 data	

loading	plugins	and	data	analysis	plugins.	

	 Data	loading	plugins	are	responsible	for	loading	data	from	the	client	computer	and	submitting	

them	to	the	server	side	database.	This	process	can	involve	de-convoluting	complex	datasets	such	as	

mixed	measurement	types	or	batch	type	data.	The	implementation	is	entirely	dependent	on	the	plugin	

and	is	not	limited	in	scope.	Data	analysis	plugins	are	capable	of	querying	server	side	data	that	a	user	

has	access	to	(see	section	7.2.2	and	section	7.3).	Data	analysis	plugins	are	responsible	for	combining	

multiple	datasets	in	meaningful	characterisation	data.	

To	achieve	this,	the	Java	Simple	Plugin	Framework	(JSPF)	(https://code.google.com/p/jspf/)	

application	has	been	embedded	within	the	software	implementation.	This	application	allows	dynamic	

loading	of	separate	applications	given	that	they	implement	a	specific	interface	from	the	DPAD	API	(this	

interface	is	dependent	on	whether	they	are	a	loading	or	an	analysing	type	plugin).	The	JSPF	application	

completely	 masks	 any	 of	 the	 actual	 plugin	 code	 from	 the	 server,	 instead	 relying	 only	 on	 the	

aforementioned	interfaces	to	communicate.	This	is	advantageous	as	it	minimises	interactions	to	an	

extremely	controllable	level	that	ensures	security	on	the	server	side.	

The	DPAD	API	 is	 the	main	crossover	point	of	 information	between	plugins	and	 the	software	 itself.	

Primarily	 communication	 is	 provided	 through	 two	 key	 interfaces	 (namely	 ILoadingPlugin	 and	

IAnalysingPlugin)	both	of	which	inherit	the	IPlugin	interface,	see	Figure	38.	Predominantly	information	

is	gathered	about	the	plugin	by	obtaining	a	plugin	record	from	the	plugin	which	is	submitted	to	the	

server	alongside	a	dataset	in	order	to	trace	its	origins.	Actual	runtime	operation	of	a	plugin	is	obtained	

by	retrieving	an	ordered	list	of	tasks	(objects	that	inherit	the	IPluginTask,	see	the	interface	in	Figure	

120	|	P a g e 	
	

36)	which	 contains	 functions	 that	 allow	 injection	of	 the	 software’s	API.	 The	API	 allows	 for	 display	

changing,	event	thread	access	and	controlled	communication	to	the	server.	The	list	of	tasks	obtained	

from	 the	 plugin	 represents	 an	 ordered	 set	 of	 operations	 that	 should	 be	 performed	 by	 the	 main	

application	runtime.	

 Two	 core	 plugins	 are	 already	 available	 for	 the	 current	 implementation	 of	 the	 DPAD	

software.	These	plugins	are	designed	to	be	examples	for	future	plugin	implementations	and	exhibit	all	

of	the	necessary	functions	that	a	plugin	would	conventionally	use.	The	first	plugin	is	designed	to	load	

microplate	data	in	a	tab	separated	value	format.	An	example	of	the	data	can	be	found	in	section	10.4.	

This	 example	 data	 can	 be	 de-convoluted	 into	 a	 time	 course	 data	 set	 for	 96	 samples	 with	 two	

measurement	 types.	 The	 second	 plugin	 can	 query	 the	 server	 for	 datasets	 in	 order	 to	 generate	

characterisation	 data	 according	 to	 the	 Kelly	 method	 (Kelly	 et	 al.,	 2009).	 Using	 the	 example	 data	

provided	 in	the	supplementary	materials	 it	 is	possible	to	produce	characterisation	for	all	of	 the	96	

wells	 on	 the	microplate	 in	 a	batch-wise	manner.	 This	dramatically	decreases	 the	 time	 required	 to	

perform	characterisation	analysis	whilst	preserving	the	data	in	a	meaningful	way.	

121	|	P a g e 	
	

package jonathansmith.dpad.api.common.plugin;

import java.util.LinkedList;

import net.xeoh.plugins.base.Plugin;

/**
 * Created by Jon on 28/05/2014.
 * <p/>
 * Core plugin class. Not to be used directly. Merely inherited either by
 * {@link jonathansmith.dpad.api.common.plugin.ILoaderPlugin}
 * or {@link jonathansmith.dpad.api.common.plugin.IAnalyserPlugin}
 * To implement this class you must compile with jspf found at
 * JSPF
 */
public interface IPlugin<T extends IPluginRecord> extends Plugin {

 /**
 * Return the plugin record type
 *
 * @return either an ILoaderPluginRecord or an IAnalyserPluginRecord depending on the type
 * of plugin
 */
 T getPluginRecord();

 /**
 * Return the list of tasks that this plugin should run when the user selects it
 *
 * @return
 */
 LinkedList<IPluginTask> getPluginRuntimeTasks();
}

Figure	38:	The	interface	class	that	acts	as	a	contract	for	all	plugins	for	the	DPAD	software.	

	

	

	

package jonathansmith.dpad.api.plugins.tasks;

import jonathansmith.dpad.api.plugins.runtime.IPluginRuntime;

/**
 * Created by Jon on 29/09/2014.
 * <p/>
 * A contract for plugin tasks. Objects implementing this will be automatically run in a
 * thread to perform the task.
 */
public interface IPluginTask {

 /**
 * Return the task name
 *
 * @return
 */
 String getTaskName();

 /**
 * Function called when the task is going to be run.
 */
 void runTask(IPluginRuntime runtime);

 /**
 * Function called to force code within the runTask function to finish early.
 */
 void killTask(IPluginRuntime runtime);
}
Figure	39:	The	abstract	task	object	that	dictates	the	actions	that	can	be	performed	by	a	plugin		

122	|	P a g e 	
	

package jonathansmith.dpad.api.plugins.runtime;

import java.util.HashSet;

import jonathansmith.dpad.api.database.DatasetRecord;
import jonathansmith.dpad.api.database.ExperimentRecord;
import jonathansmith.dpad.api.plugins.data.Dataset;
import jonathansmith.dpad.api.plugins.display.IPluginDisplay;
import jonathansmith.dpad.api.plugins.events.IEventThread;

/**
 * Created by Jon on 29/09/2014.
 * <p/>
 * All accessible methods for plugins
 */
public interface IPluginRuntime {

 /**
 * Change the current display within the plugin runtime environment
 *
 * @param pluginDisplay
 */
 void changeDisplay(IPluginDisplay pluginDisplay);

 /**
 * Return the main event thread for the plugin environment
 *
 * @return
 */
 IEventThread getEventThread();

 /**
 * Build standard progressbar display
 */
 void buildProgressbarDisplay();

 /**
 * Record an error to the engine
 *
 * @param errorMessage
 */
 void error(String errorMessage);

 /**
 * Submit a dataset to the server
 *
 * @param dataset
 */
 void sumbitDataset(Dataset dataset);

 /**
 * Obtain experiments available to the user
 */
 void getAvailableExperiments();

 /**
 * Return lazy loaded datasets (do not contain full information)
 *
 * @param interestedRecords
 */
 void getDatasetsForExperiments(HashSet<ExperimentRecord> interestedRecords);

 /**
 * Fully load datasets
 *
 * @param lazyLoadedDatasets
 */
 void getFullDatasetInformation(HashSet<DatasetRecord> lazyLoadedDatasets);
}
Figure	40:	IPluginRuntime	interface.	Acts	as	a	contractual	interface	between	the	engine	and	the	plugin.	 	

123	|	P a g e 	
	

package jonathansmith.dpad.api.plugins.display;

/**
 * Created by Jon on 29/09/2014.
 */
public interface IPluginDisplay {

 /**
 * Return the display panel responsible for handling your toolbar
 *
 * @return
 */
 DisplayPanel getDisplayToolbar();

 /**
 * Return the display panel that will act as the core of your plugin
 * @return
 */
 DisplayPanel getDisplayPanel();

 /**
 * Called when a display becomes active
 */
 void onDisplayActivation();

 /**
 * Called when a display is updated
 */
 void onDisplayUpdate();

 /**
 * Called when a display is destroyed
 */
 void onDisplayDestroy();
}
Figure	41:	IPluginDisplay	contract.	Used	to	create	plugin	displays.	

	

package jonathansmith.dpad.api.plugins.events;

/**
 * Created by Jon on 23/03/14.
 * <p/>
 * Methods for subscribing to and posting events
 */
public interface IEventThread {

 /**
 * Method to add an event listener into the event listener pool
 *
 * @param listener to add
 */
 void addEventListener(IEventListener listener);

 /**
 * Method to remove an event listener from the event listener pool
 *
 * @param listener to remove
 */
 void removeListener(IEventListener listener);

 /**
 * Post an event into the event thread for other listeners to respond to
 *
 * @param event
 */
 void postEvent(Event event);
}
Figure	42:	IEventThread	contract.	Allows	events	to	be	sent	and	received	using	the	core	internal	event	thread.	

	

124	|	P a g e 	
	

7.3 DPAD	Demonstration	

The	 DPAD	 software	 was	 demonstrated	 using	 some	 of	 the	 data	 acquired	 above	 that	 charts	 the	

behaviour	of	IVTT	when	diluted.	The	aim	for	this	demonstration	was	to	show	the	software	functioning,	

the	user	successfully	loading	a	plugin	located	within	the	plugins	folder	and	the	user	loading,	processing	

and	displaying	the	demonstration	data.		

	

Figure	43:	The	GUI	created	on	start	up	of	the	DPAD	software.	

	 When	first	run,	the	software	provides	the	user	with	a	set	of	options	on	what	runtime	
environment	they	wish	to	use	with	the	software.	These	options:	create	local,	connect	to	server	and	
host	server	correspond	to	the	three	runtime	environments	described	in	section	7.1.	

	

Figure	44:	The	options	displayed	for	creating	a	new	server	within	the	DPAD	software.	

125	|	P a g e 	
	

Figure	44	demonstrates	the	options	pane	that	is	displayed	should	the	user	choose	to	setup	a	local	
server	or	to	host	a	server.	From	this	pane,	the	user	is	then	presented	with	the	main	client	window	
(Figure	45).	

	

Figure	45:	The	main	client	window	in	the	DPAD	software.	

	 The	main	client	window,	when	run	in	local	mode,	will	be	added	as	a	tab	in	the	existing	server	

window	to	allow	both	runtimes	to	be	monitored	simultaneously.	The	first	and	only	step	available	to	

the	user	within	 the	main	 client	window	 is	 for	 the	user	 to	 log	 in.	Until	 this	 action	 is	performed	no	

subsequent	steps	are	permitted	for	security	reasons.	

	

Figure	46:	The	client	login	window	for	the	DPAD	software.	

126	|	P a g e 	
	

	 Figure	46	shows	the	client’s	login	window.	An	authentication	attempts	is	sent,	via	encrypted	

key	exchange,	to	the	server	to	confirm	a	user’s	identity.	Depending	on	how	the	server	is	configured,	

open	registration	of	users	can	be	enabled,	which	provides	the	‘User	Administration’	panel	with	the	

additional	option	of	adding	a	new	user	(Figure	47).	

	

Figure	47:	The	new	user	window	for	the	DPAD	software.	

	 Once	the	user	has	successfully	registered	and	logged	on,	the	user’s	network	state	is	switched	

to	the	secure	communication	protocols	as	described	in	section	7.2.1.	

	

Figure	48:	The	experiment	administration	section	of	the	DPAD	software.	

127	|	P a g e 	
	

	 Figure	48	displays	the	experiment	administration	panel	which	allows	users	to	create	a	new	

experiment	or	to	load	an	existing	experiment.	As	described	in	section	7.2.2,	an	experiment	provides	

an	object	aggregate	for	any	data	that	gets	loaded	into	the	system.	As	a	general	rule,	data	analyses	are	

done	on	entire	experimental	data	sets	(and	are	not	limited	to	just	data	loaded	in	one	iteration)	as	the	

information	is	usually	contextually	relevant.		

	

Figure	49:	The	experiment	creation	screen	for	the	DPAD	software.	The	upper	image	shows	the	screen	displayed	when	a	
new	experiment	is	selected	whilst	the	lower	displays	the	screen	displayed	when	the	user	attempts	to	load	an	existing	
experiment.	

	

128	|	P a g e 	
	

	 Once	the	experiment	has	been	set	for	the	work	that	is	about	to	follow	(either	for	data	loading	

or	for	data	analysis),	it	is	considered	contextually	relevant	to	all	future	actions,	until	the	experiment	is	

switched.	 This	 implies	 that	 all	 operations	performed	by	 the	user	 subsequent	 to	 this	 step,	become	

associated	with	the	experiment	object.	

	

Figure	50:	The	screen	displayed	in	the	DPAD	software	when	Load	Data	is	selected	on	the	main	panel.	

	 Figure	 50	 demonstrates	 the	 screen	 that	 is	 displayed	 once	 the	 load	 data	 option	 has	 been	

selected	 from	 the	 main	 navigation	 window.	 The	 ability	 to	 load	 data	 is	 only	 available	 once	 the	

experiment	 has	 been	 successfully	 set.	 Figure	 50	 demonstrates	 the	 first	 visual	 implementation	 of	

section	 7.2.3	 as	 a	 list	 of	 available	 loading	 plugins	 has	 been	 dynamically	 generated	 (and	 can	 be	

refreshed	if	the	user	changes	them	mid-session).		

	 In	this	demonstration	the	only	available	plugin	displayed	is	the	‘Microplate	TXT	File	Loader’,	

which	was	designed	to	load	longitudinal	(i.e.	timecourse)	data	from	a	microplate	experiment	into	the	

DPAD	software.		Once	this	plugin	is	selected	it	is	dynamically	loaded	into	the	Java	classpath	to	allow	

its	use	within	the	DPAD	software.		

129	|	P a g e 	
	

	

Figure	51:	Step	1	in	the	microplate	text	file	loader	plugin.	

	 Figure	51	displays	the	first	logical	step	performed	by	the	microplate	plugin,	the	ability	to	track	

files	for	loading.	By	navigating	through	a	file	selection	dialog	(Figure	52)	the	user	is	able	to	select	all	of	

the	files	pertinent	to	a	longitudinal	study.	

	

Figure	52:	The	modal	dialog	box	displayed	to	the	user	within	the	microplate	text	file	loader	plugin	for	file	selection.	

	 Once	 the	user	has	selected	 the	 files	of	 interest,	 they	are	 then	provided	with	a	screen	 that	

allows	the	assignment	of	time	contexts	to	each	of	the	files	(Figure	53).	

130	|	P a g e 	
	

	

Figure	53:	Step	2	in	the	microplate	text	loader	plugin.	

	 The	final	step	in	the	microplate	text	loading	plugin	is	to	assign	the	sample	names	to	the	wells	

provided.	For	this	specific	implementation,	the	number	of	wells	displayed	is	dynamically	generated	

depending	on	the	files	provided,	ensuring	that	microplate	size	is	always	correct	with	regards	to	your	

data.	

	

Figure	54:	Step	3	in	the	microplate	text	loading	plugin.	

	

131	|	P a g e 	
	

	 Once	the	user	has	provided	this	information,	the	plugin	then	loads	the	data	into	database	for	

permanent	storage.	The	result	of	this	loading	process	is	shown	in	Figure	55,	which	shows	a	graph	of	

the	data	loaded	by	the	previous	plugin.	

	

Figure	55:	The	outcome	of	loading	data	into	the	DPAD	software	using	the	microplate	text	file	loading	plugin.	

	

	

	

	 	

132	|	P a g e 	
	

7.4 Outcomes	

The	 DPAD	 software	 represents	 a	 novel	 approach	 to	 handling	 characterisation	 data,	 one	 which	

incorporates	all	of	the	stages	necessary	to	produce	high	quality,	meaningful	information.	By	breaking	

down	the	software	into	several	key	architectures,	the	internal	runtime	environment	for	the	software	

have	become	sufficiently	abstract	to	allow	a	flexible	plugin	framework	to	function.	Employing	a	plugin	

framework	allows	the	software	to	be	both	versatile	and	robust	in	its	application	with	potential	to	serve	

multiple	 data	 types	 across	 all	 fields	 of	 research.	 	 It	 has	 been	 tested	on	Windows	7	but	 should	be	

completely	 cross-platform	 compatible.	 The	 source	 code	 for	 the	 software	 can	 be	 found	 at	

http://www.github.com/JonathanCSmith/dpad	and	is	licenced	under	the	lesser	general	public	licence	

(LGPL)	version	2.1	and	as	such	is	fully	open	source.	

	 The	DPAD	API	is	the	core	enabling	feature	of	the	plugin	framework.	It	provides	the	ability	to	

access	 the	 software	 in	 an	 abstracted	 and	 modular	 manner.	 Primarily,	 access	 occurs	 through	 the	

IPluginRuntime	 interface	 (Figure	 40)	 which	 acts	 as	 a	 contract	 for	 all	 plugin	 –	 server	 interactions.	

IEventThread	 (Figure	42)	and	 IPluginDisplay	 (Figure	41)	are	also	contractual	obligations,	where	 the	

first	allows	the	plugins	to	send	events	within	the	software,	and	the	second	allows	plugins	to	submit	

their	own	displays.	See	the	supplementary	information	for	the	full	DPAD	API.	Section	7.3	demonstrates	

the	power	of	this	architecture,	showing	that	the	loading	/	processing	and	analysis	logic	is	completely	

separated	 from	 the	 core	 runtime	 logic	 of	 the	main	 program	 by	 demonstrating	 the	 start	 to	 finish	

loading	of	a	ubiquitous	data	type.	This	separation	allows	new	plugins	to	be	created	over	time,	as	well	

as	improvements	to	be	made.	Moreover,	the	plugin	architecture	allows	organisations	to	build	locally	

relevant	plugins	that	can	reduce	and	standardise	workloads	by	standardising	data	workflows.		

	 It	was	imperative	that	any	database	schema	created	when	designing	the	software	imposed	

minimal	structure	onto	the	disparate	data	types	that	are	likely	to	arise	within	characterisation	work.	

Achieving	this	allowed	potential	plugins	to	be	as	diverse	as	possible,	which	in	turn	ensures	that	as	the	

field	of	characterisation	evolves,	the	software	will	be	capable	of	meeting	those	evolving	needs.	The	

133	|	P a g e 	
	

use	of	a	loose	context	information	tagging	system	allows	for	future	compatibility	with	complex	plugins	

such	as	datasheet	generation	(Canton	et	al.,	2008),	as	information	can	be	appended	to	datasets	at	any	

point.	

	 Alternative	 database	 software	 applications	 are	 also	 available	 for	 data	 handling;	 however,	

many	of	these	software	applications	are	not	freely	available.	Much	of	the	database	software	that	is	

comparable	 to	 the	 DPAD	 software	 is	 based	 around	 the	 online	 parts	 registries	 (e.g.	

www.partsregistry.org	and	http://biofab.synberc.org/),	which	do	not	openly	declare	the	underlying	

software	architectures.	The	paper	by	Macdonald	et	al.(MacDonald	et	al.,	2011)	discusses	some	of	the	

potential	uses	and	approaches	for	software	application	in	Synthetic	Biology	but	predominantly	focuses	

on	CAD,	modelling	or	DNA	assembly	 software	 tools	 rather	 than	 software	under	 the	data	handling	

umbrella.	The	closest	software	examples	from	a	function	standpoint	are	the	commercial	Laboratory	

Information	Management	Systems	(LIMS)	which	aim	to	track	any	and	all	lab	information	and	manage	

workflows.	The	DPAD	software	offers	some	of	the	same	flexibility	in	data	handling,	with	easy	to	use	

graphical	user	interfaces	(GUIs)	and	centralised	data	storage;	however,	many	of	the	key	advantages	

of	the	DPAD	software	are	not	found	elsewhere	(such	as	the	plugin	framework)	and	will	expand	the	

usability	and	versatility	of	the	platform	as	a	whole.		

	 The	 software	 includes	 a	 high	 functioning	 graphing	 package	 (JFreeChart	 -	

http://www.jfree.org/jfreechart/)	 that	 can	 produce	 high	 quality	 publication	 level	 graphs	 that	 are	

capable	of	being	completely	written	to	.pdf	file	formats.	This	is	of	great	interest	for	future	version	of	

the	software	as	it	allows	the	complete	and	automated	production	of	the	aforementioned	datasheets	

(Canton	et	al.,	2008).	In	turn,	this	would	likely	increase	the	prevalence	of	both	characterisation	and	

datasheets	with	the	Synthetic	Biology	pipeline.	

	 Future	versions	of	the	software	could	move	to	a	more	robust	permissions	system	which	would	

allow	for	a	more	hierarchical	data	access	topology.	By	doing	this	it	is	possible	to	associate	not	only	a	

user	with	their	data,	but	also	grouping	users	with	a	laboratory.	A	topology	like	this	would	improve	the	

134	|	P a g e 	
	

lateral	transfer	of	information	between	collaborative	users.	This	is	important	as	other	users	can	weigh	

in	on	data	 to	provide	previously	unseen	 insight	and	 increase	 the	collective	 information	processing	

abilities	 of	 grouped	 users.	 The	 software	 could	 also	 be	 developed	 to	 include	 a	 third	 plugin	 type	

responsible	for	‘tagging’	samples	and	annotating	them	properly.	Doing	this	allows	a	layer	of	quality	

control	to	be	applied	at	the	final	data	analysis	stage	of	the	runtime	environment,	(i.e.	data	analysis	

plugins	 could	 refuse	 to	accept	data	 that	had	not	been	processed	by	 specific	plugins).	 Employing	a	

quality	 control	 assurance	 step	 into	 the	 data	 analysis	 process	 may	 decrease	 the	 independence	 of	

individual	 plugin	 implementations.	 It	 would	 help	 assure	 that	 any	 data	 submitted	 to	 the	 database	

follows	defined	conventions	and	constraints.	By	standardising	the	data	prior	to	analysis	it	is	possible	

to	limit	the	wide	variety	of	contextual	 information	available	to	experimenters	to	only	that	which	is	

necessary	for	the	analysis	to	be	fully	realised.	Some	features	of	the	software	can	still	be	 improved	

upon,	especially	when	large	datasets	become	a	concern	as	the	user	has	to	sift	through	multiple	data	

entries	before	finding	their	desired	dataset.	To	improve	the	software,	future	iterations	will	make	use	

of	more	sophisticated	search	algorithms	and	better	refinement	of	database	queries.	

	 	

135	|	P a g e 	
	

8 Materials	and	Methods	

8.1 Biological	Techniques	

8.1.1 DNA	Manipulation	

Predominantly	the	DNA	used	in	this	study	involved	a	standardised	expression	vector	where	only	the	

promoter	 region	 preceding	 the	 target	 for	 expression	 (GFP)	 was	 varied.	 To	 create	 these	 vectors	 a	

common	methodology	 set	 was	 used	 as	 detailed	 below.	 Essentially	 this	methodology	 consisted	 of	

created	a	standard	linear	stretch	of	DNA	corresponding	to	a	promoter-less	expression	vector	and	then	

inserting	the	promoter	targeted	for	characterisation.	

	 The	linearised	empty	expression	vector	was	created	by	obtaining	the	parts	listed	in	Table	8	

(without	 the	 promoter	 region)	and	 assembled	 according	 to	 the	 BioBrickTM	 Assembly	Method	 (see	

Figure	2	for	more	information)	(Shetty	et	al.,	2008).	A	schema	of	the	archetypal	expression	vector	can	

be	found	in	Figure	56.	The	circular	backbone	was	then	inserted	into	E.	coli	(section	8.1.7)	for	replication	

and	purified	(section	8.1.8).	The	backbone	was	then	linearized	by	digestion	(section	8.1.2)	generating	

specific	overhangs	designed	 for	 ligation	with	other	BioBrickTM	parts.	The	backbone	 inserts	 (i.e.	 the	

promoters)	were	created	by	designing	and	obtaining	two	complementary	oligonucleotides	that	when	

annealed	 (section	 8.1.3)	 resulted	 in	 a	 known	 promoter	 region,	 affixed	 on	 both	 ends	 with	 a	

predetermined	 sequence	 corresponding	 to	 a	 complementary	 overhang	 to	 those	 generated	 by	 the	

digestion	of	the	circularised	backbone,	an	example	of	this	can	be	seen	in	Figure	57.	

	 Promoter	 sequences	 were	 either	 obtained	 from	 the	 BioBrickTM	 parts	 registry	 or	 from	 the	

BioFab	registry	(www.	biofab.synberc.org)	and	adjusted	using	a	short	MATLAB	script	 (Figure	60)	to	

contain	the	necessary	overhangs.	The	sequences	 for	each	of	 the	primers	can	be	found	 in	Table	10	

(section	10.1).	All	oligonucleotides	were	obtained	from	Integrated	DNA	Technologies	Inc.	

	 	

136	|	P a g e 	
	

Table	 8:	 GFP	 Expression	 vector	 parts	 list.	 Variable	 indicates	 a	 promoter	 region	 corresponding	 to	 the	 oligonucleotide	
annealing	produced	using	the	sequences	found	in	Table	10	*Naming	convention	from	BioBrickTM	Registry	

Part	Type	 Part	Name	

Constitutive	Promoter	 Variable	

Ribosome	Binding	Site	(RBS)	 BBa_B0034	*	

Fluorescence	Reporter	 GFPmut3b	

Terminator	 BBa_B0015	*	

Vector	Backbone	 pSB1A2	

	

	

Figure	56:	A	plasmid	map	depicting	the	archetype	expression	vector's	component	parts.	The	archetypal	plasmid	contains	
the	parts	listed	in	Table	8	

	

Figure	 57:	 An	 example	 depicting	 the	 primer	 design	 used	 to	 insert	 promoter	 regions	 into	 a	 pre-cut	 expression	 vector	
backbone.		The	promoter	region	is	couched	in	sequences	corresponding	to	an	EcoRI	and	SpeI	double	digestion.	

137	|	P a g e 	
	

8.1.2 Digestion	

Digestions	were	performed	using	EcoRI	and	XbaI	(according	to	the	New	England	Biolab	guidelines)	at	

5	units	of	enzyme	per	μg	of	target	DNA.	Enzyme	volume	never	exceeded	10%	of	total	digestion	volume	

and	glycerol	volumes	were	maintained	below	5%	of	total	digestion	volume.	Digestions	were	incubated	

for	two	hours	at	37oC.	

8.1.3 Primer	Annealing		

10μl	reactions	containing	10ng	per	μl	of	each	primer	oligonucleotide	were	annealed	using	1μl	of	10x	

annealing	buffer	(10mM	Tris	pH	7.5-8.0,	50mM	NaCl,	1mM	EDTA)	and	double	distilled	H2O.	Reactions	

were	heated	within	a	PCR	block	to	85oC	and	allowed	to	slow	cool	to	room	temperature.	

8.1.4 Ligations	

10μl	ligation	reactions	were	performed	using	an	insert	to	vector	molar	ratio	of	3:1	with	25ng	of	vector.	

T4	 DNA	 ligase	 was	 used	 according	 to	 the	 manufacturer’s	 guidelines	 (New	 England	 Biolabs)	 and	

incubated	at	room	temperature	for	approximately	two	hours.	Insert	and	vector	concentrations	were	

estimated	using	agarose	gel	electrophoresis	(section	8.1.5).	

8.1.5 Agarose	Gel	Electrophoresis	

Agarose	Gels	were	prepared	using	a	1%	weight	to	volume	ratio	of	agarose	to	Tris-Acetate-EDTA	(TAE)	

with	0.5x	GelRed	(Cambridge	Bioscience)	added	as	a	nucleic	acid	stain.	Gels	were	loaded	with	samples	

using	DNA	loading	buffer	(10mM	EDTA,	50%	Glycerol,	0.1%	Bromophenol	blue)	and	the	sample	ladder	

was	1Kb	Plus	DNA	Ladder	from	Invitrogen.	Gels	were	run	in	TAE	buffer	at	100V	for	approximately	40	

minutes.	DNA	fragments	were	visualised	using	a	UV	trans-illuminator	(BioRad).		

8.1.6 Electroporation	Cell	Preparation	

Electrocompetent	XL1-Blue	(Agilent	Genomics)	E.	coli	cells	were	prepared	by	growing	cells	to	mid-log	

phase	in	LB	broth	(1%	w/v	bactotryptone,	1%	w/v	NaCl,	0.5%	w/v	bacto-yeast	extract,	double	distilled	

H2O)	containing	20μg	per	ml	of	tetracycline	at	37oC.	Cells	were	then	pelleted	by	centrifugation	at	4000	

x	g	for	15	minutes	at	4oC.	Pelleted	cells	were	first	washed	with	double	distilled	ice	cold	H2O	and	re-

138	|	P a g e 	
	

suspended	using	a	1/400	volume	of	10%	v/v	ice	cold	glycerol	and	double	distilled	H2O.	Cell	suspensions	

were	stored	in	50μl	aliquots	at	-80oC.	

8.1.7 Electroporation	

Electroporation	 was	 performed	 using	 50μl	 of	 electro-competent	 XL1-Blue	 cells	 prepared	 as	 per	

section	8.1.6	and	1μl	of	plasmid	DNA	or	post-ligation	DNA.	Transformation	was	performed	inside	a	

0.1cm	electro-cuvette	using	a	BioRad	Gene	Pulser	under	settings	of	200Ω,	25mF	and	1.67kV.	450μl	of	

LB	broth	was	then	added	to	the	cells	and	then	incubated	at	37oC	for	30	minutes.	After	incubation	cells	

were	plated	on	LB	agar	containing	ampicillin	(100μg	per	ml)	and	incubated	overnight	at	37oC.	

8.1.8 DNA	Purification	

DNA	 purification	 was	 performed	 using	 Qiagen	 QIAfilter	 Plasmid	 Maxi	 Kit	 according	 to	 the	

manufacturer’s	guidelines.	

8.1.9 DNA	Concentration	Quantification	

DNA	 Concentration	 and	 purity	 was	 quantified	 using	 a	 Thermo	 Scientific	 NanoDropTM	 1000	

Spectrophotometer	using	1μl	of	target	DNA	according	to	the	manufacturer’s	guidelines.	

8.1.10 GFP	Purification	

An	 expression	 vector	 containing	 a	 polyhistidine-tagged	 GFPmut3b	 was	 constructed	 by	 inserting	

GFPmut3b	into	a	pProEX-Htb	backbone	(obtained	from	Invitrogen)	which	contains	the	polyhistidine-

tag	 DNA	 sequence.	 E.	 coli	 XL1-Blue	 electrocompetent	 cells	 were	 transformed	 using	 the	 vector.	

Colonies	were	picked	from	the	resultant	plates	and	grown	in	4ml	of	LB	broth	with	ampicillin	(100μg	

per	ml)	and	grown	for	6	hours	at	37oC.	1ml	of	this	was	used	to	inoculate	an	overnight	culture	consisting	

of	100ml	of	LB	Broth	with	ampicillin	(100μg	per	ml)	for	growth	under	the	same	conditions.	50ml	of	

this	overnight	culture	was	then	used	to	inoculate	1000ml	of	LB	with	ampicillin	(100μg	per	ml),	which	

in	turn	was	grown	under	the	same	conditions	until	an	O.D.	600	of	0.5	was	observed.	1mM	of	isopropyl	

β-D-1-thiogalactopyranoside	(IPTG)	was	then	added	to	induce	GFP	production.	After	a	further	3	hours	

139	|	P a g e 	
	

of	 growth	at	37oC	 the	cells	were	 centrifuged	at	4000	x	g	 for	15	minutes	and	 the	 supernatant	was	

removed.	

	 Cells	were	then	re-suspended	in	50ml	of	Buffer	A	(10mM	imidazole,	150mM	NaCl,	50mM	Tris	

pH	7.5	and	5%	glycerol)	and	sonicated.	Sonication	was	performed	twice	with	a	minute	rest	in-between	

using	two	second	pulses	at	50%	amplitude.	The	cell	lysate	was	then	centrifuged	at	17,000rpm	for	45	

minutes	and	the	supernatant	loaded	into	a	prepared	1ml	HisTrap	column	in	an	ÄKTA	System	(GE	Life	

Sciences).	

	 The	HisTrap	column	was	prepared	by	equilibrating	the	column	with	10	column	volumes	(CV)	

of	Buffer	A.	The	system	was	run	at	0.8ml	per	minute	with	UV	detection	set	to	280nm.	Supernatant	

was	loaded	after	the	Buffer	A.	Proteins	without	His-Tags	were	removed	by	adding	10	CV	of	10%	Buffer	

B	(500mM	imidazole,	150mM	NaCl,	50mM	Tris	pH	7.5	and	5%	glycerol)	after	which	a	gradient	of	10-

100%	Buffer	B	was	applied	causing	target	protein	elution.		

	 The	desired	elution	fraction	(containing	purified	GFP)	was	identified	first	by	fluorescence	and	

then	through	15%	SDS-PAGE	for	purity	assessment.	

8.1.11 In	Vitro	Transcription-Translation	Preparation	

E.	coli	S30	circular	extract	cell-free	system	was	prepared	according	to	Promega	Ltd.’s	guidelines	and	

used	as	the	IVTT	expression	medium	throughout	the	course	of	this	study.	The	expression	solution	is	

composed	of	two	core	reagents,	the	cell	extract	and	the	pre-mix	which	contains	all	the	prerequisites	

for	 protein	 expression,	 such	 as:	 tRNAs,	 DNTPs,	 amino	 acids	 and	 energy	 regenerating	mechanisms	

(Katzen	 et	 al.,	 2005).	 1µl	 of	 approximately	 1000ng/µl	 of	 expression	 vector	 DNA	 (purified	 as	 per	

section	8.1.8)	was	added	to	the	IVTT	mixture	per	reaction.		

8.1.12 Microplate	Assays	

Reactions	were	prepared	 in	96	well	plates	(Greiner	Bio-One)	and	measured	 in	a	POLARstar	Omega	

plate	 reader	 from	 BMG	 Labtech.	Measurements	were	made	 by	 exciting	 the	 samples	with	 485nm	

140	|	P a g e 	
	

wavelength	light	and	emission	was	detected	at	520nm.	Measurements	were	taken	every	15	minutes	

and	the	reactions	were	held	at	30oC	for	four	hours.	 	

141	|	P a g e 	
	

8.2 Microfluidic	Techniques	

8.2.1 Microfluidic	Chip	Design	

Designs	for	the	microfluidic	chips	were	created	using	the	AutoCAD	software	framework.	Designs	were	

printed	 to	 acetate	 masks	 by	 Microlithograph	 services	 Ltd.	 The	 devices	 were	 printed	 in	 negative	

(channel	locations	were	clear,	channel	exterior	was	blacked	out)	to	facilitate	fabrication	stages.	

8.2.2 Microfluidic	Chip	Fabrication		

Microfluidic	 chips	 were	 fabricated	 using	 two	 core	 methodologies.	 Each	 presented	 their	 own	

advantages	and	disadvantages	and	are	discussed	in	section	8.4.	All	microfluidic	fabrication	steps	were	

performed	in	a	clean	room	environment	to	reduce	environmental	contamination	of	the	chips.		

Permanent	chrome	masks	were	generated	from	the	acetates	to	prevent	acetate	degradation	

(which	would	affect	the	quality	of	the	chips).	Chrome	masks	were	etched	into	soda-lime	glass	plates	

coated	in	chrome	and	AZ	1518	positive	photoresist	(MicroChemicals).	The	acetate	masks	were	secured	

to	the	glass	substrate	and	exposed	to	UV	light	(350-400nm)	using	a	UV	lamp	(Optical	Associated,	Inc.)	

at	 20mW	 per	 cm2	 for	 10	 seconds.	 Areas	 of	 positive	 photoresist	 exposed	 to	 the	 UV	 light	 (i.e.	 the	

channels)	become	removable	using	a	stripper	solution	(AZ	100	MicroChemicals)	leaving	unprotected	

chrome	in	its	wake.	The	chrome	was	then	etched	using	Standard	Chromium	Etchant	(Sigma	Aldrich)	

for	10	seconds	and	washed	with	double	distilled	H2O	resulting	in	an	exact	copy	of	the	original	acetate	

but	preserved	on	a	chrome/glass	plate.	

	 Silicon	wafer	masters	(a	cast	for	chip	fabrication)	were	created	by	first	cleaning	a	blank	silicon	

wafer	 using	 a	mixture	of	 hydrogen	peroxide	 and	 sulphuric	 acid	 (Pirahna	 Etch	 3:1	 ratio	 created	by	

slowly	 adding	 hydrogen	 peroxide	 to	 the	 sulphuric	 acid).	 A	 thin	 layer	 of	 negative	 photoresist	 was	

deposited	 across	 the	 clean	 wafer	 (SU-8	 MicroChemicals).	 Either	 SU-8	 50	 or	 SU-8	 100	 was	 used	

depending	on	 the	desired	channel	depth	 (predominantly	SU-8	100	was	used).	 SU-8	was	deposited	

evenly	across	the	wafer	surface	using	a	spin	coater	(Laurell	Technologies	Corp.)	with	different	spin	

142	|	P a g e 	
	

speeds	 and	 durations	 depending	 on	 the	 desired	 photoresist	 thickness	 (Table	 9	 shows	 the	 various	

combinations	used	to	obtain	specific	channel	thicknesses).	Each	spin	speed	was	preceded	by	a	ramp	

up	time	of	5	seconds	starting	from	300rpm.	Wafers	were	then	soft	baked	to	remove	excess	solvent	

(according	to	Table	9)	consisting	of	a	pre-bake	at	65oC	and	a	soft	bake	at	95oC.	

	 Chrome	masks	were	placed	on	the	wafers	and	exposed	to	UV	light,	under	the	same	conditions	

as	 described	 previously,	 according	 to	 the	 desired	 channel	 depth	 (Table	 9).	 Areas	 of	 negative	

photoresist	exposed	to	UV	light	(the	channels)	undergo	a	chemical	crosslinking	which	prevents	SU-8	

developer	from	removing	it.	Crosslinking	is	allowed	to	progress	during	a	final-bake	at	95oC.		

	 Finally,	 the	wafers	were	 treated	with	SU-8	developer	 (MicroChemicals)	 for	5	–	10	minutes	

during	which	the	undeveloped	photoresist	is	removed	(corresponding	to	the	areas	of	the	design	that	

are	not	part	of	the	microfluidic	channels).	This	section	of	device	fabrication	corresponds	to	the	first	

step	shown	in	Figure	58.	

Table	9:	Master	fabrication	properties	according	to	channel	depth	

Channel	

Depth	(μm)	

SU-8	 Spin	

Speed	

(rpm)	

Spin	

Duration	

(sec)	

Pre-Bake	

Duration	

(min)	

Soft-Bake	

Duration	

(min)	

UV	 Exposure	

Duration	

(sec)	

Final-Bake	

Duration	

(min)	

30	 50	 3000	 40	 5	 10	 5	 10	

50	 100	 3000	 30	 6	 20	 12	 20	

100	 100	 2000	 30	 10	 30	 15	 45	

	 	

Polydimethylsiloxane	(PDMS)	was	used	as	the	substrate	for	the	microfluidic	chips.	PDMS	was	

created	using	a	Sylguard	184	kit	(Dow	Corning	Corp.)	and	prepared	in	a	10:1	ratio	of	substrate	and	

catalyst.	The	liquid	PDMS	was	then	poured	over	the	silicon	master	(Figure	58	step	2).	Excess	air	was	

removed	 from	 the	 cast	 and	 PDMS	 by	 placing	 them	 within	 a	 vacuum	 chamber	 for	 30	 minutes	

(preventing	air	bubbles	from	distorting	the	device	when	they	expand	during	the	curing	phase).	PDMS	

143	|	P a g e 	
	

was	cured	on	a	hotplate	at	75oC	for	90	minutes.	Chips	were	removed	by	cutting	the	PDMS	around	the	

device	design	and	processed	in	two	distinct	manners	generating	two	distinct	chip	types	(Type	1	&	Type	

2)	both	of	which	are	shown	schematically	in	Figure	42.	

Type	1	

Type	1	fabrication	produces	extremely	sturdy	microfluidic	chip	that	use	a	microscope	slide	as	a	support	

to	increase	stability.	Microscope	glass	slides	were	marked	with	the	input	and	output	locations	using	

the	acetate	masks.	A	1mm	diamond	coated	drill	bit	was	then	used	to	carefully	pierce	the	slide	without	

cracking	 the	glass.	The	slides	were	 then	washed	using	a	 sonicator	water	bath,	 first	 in	96%	 filtered	

ethanol	and	then	in	de-ionised	water,	for	10	minutes	each.	

	 The	slides	were	then	bonded	to	the	PDMS	chip	using	a	plasma	cleaner	(Diener	Electronics)	

under	 vacuum	by	 carefully	 aligning	 the	 input/output	 ports	 and	 the	holes	 drilled	 in	 the	 slides.	 The	

orientation	of	the	bonding	located	the	slides	against	the	surface	of	the	PDMS	that	did	not	contain	the	

channel	moulds	(therefore	the	device	is	not	yet	sealed).	Micro	capillary	tubing	was	pushed	through	

the	 holes	 of	 the	 slides,	 through	 the	 PDMS	 into	 the	 voids	 corresponding	 to	 the	 input/output	 port	

channels.	The	sections	of	tubing	that	pierced	the	PDMS	were	removed	to	prevent	clogging	and	the	

entire	device	was	cleaned	in	a	sonicator	as	stated	previously.	The	channels	were	then	sealed	by	plasma	

bonding	a	microscope	coverslip	to	the	other	PDMS	surface.	The	tubing	was	secured	in	place	(and	the	

holes	in	the	glass	slide	were	sealed)	using	a	two	part	epoxy	resin	ensuring	that	no	gaps	were	left	in	

the	slide.	The	chips	were	given	a	final	bake	in	an	oven	at	65oC	overnight.	

Type	2	

Type	2	fabrication	requires	much	less	time	to	achieve	as	it	uses	no	chip	support.	Fabrication	begins	by	

partially	 curing	 an	 extremely	 thin	 layer	 (less	 than	1mm)	of	 PDMS	at	 65oC	 for	 7	minutes	 (until	 the	

surface	was	a	tacky	or	a	stringy	solid	rather	than	a	liquid).	Meanwhile	the	PDMS	chips	were	pierced	

144	|	P a g e 	
	

using	a	1mm	biopsy	needle	at	the	locations	of	the	input	and	output	ports.	The	chips	were	then	applied	

(channel	side	down)	to	the	partially	cured	PDMS	and	allowed	to	fully	cure	overnight	at	65oC	in	an	oven.	

	

	

Figure	58:	Overview	of	microfluidic	chip	fabrication	including	the	divergent	chip	types.	Type	1	and	Type	2	differ	in	their	
overall	rigidity	of	the	final	chips.	1	chips	are	extremely	robust	but	take	many	man	hours	to	manufacture.	Type	2	chips	tend	
to	be	quick	to	manufacture	but	have	a	shorter	shelf	life.	

	 	

145	|	P a g e 	
	

8.2.3 Microfluidic	Chip	Treatments		

Devices	were	occasionally	 (see	section	6)	 treated	with	Duxback	 solution	 (DuxBack	Ltd.)	 to	prevent	

leakage,	contamination	and	decrease	the	‘stickyness’	of	the	walls	with	respect	to	droplets.	Duxback	

works	by	fluorinating	the	PDMS	channel	surface	and	therefore	increasing	its	hydrophobicity.	

8.2.4 Microfluidic	Chip	Oil	Phases	and	Surfactants	

A	 variety	 of	 oil	 phases	 and	 surfactants	 can	 be	 used	with	microfluidic	 devices.	 In	 this	 study	 either	

mineral	oil	(Sigma	Aldrich)	or	Fluorinert®	FC-40	oil	(Sigma	Aldrich)	was	used.	Adding	surfactant	to	the	

oil	phase	serves	to	reduce	droplet	merging.	Mineral	oil	was	combined	with	either	Abil	EM	90	(3%	v/v	

-	 Golsdschmidt	 GmbH)	 surfactant	 or	 Span	 80	 (1.5%	 v/v	 -	 Sigma	 Aldrich)	 surfactant.	 FC-40	 was	

combined	 with	 either	 RainDanceTM	 surfactant	 (1.8%	wt/wt	 ratio,	 RainDance	 Technologies	 Inc.)	 or	

1H,1H,2H,2H-Perfluoro-1-octanol	surfactant.		

8.2.5 Compartment-on-demand	Robot	Software	

Originally	the	compartment-on-demand	robot	(Gielen	et	al.,	2013)	used	a	custom	LabVIEW	(National	

Instruments	Corp.)	workspace,	however,	a	custom	software	implementation	of	this	workspace	was	

also	created,	using	the	Java	programming	language	to	allow	computers	without	the	LabVIEW	software	

to	use	the	robot.	The	software	used	the	freely	available	Phidget	drivers	and	Phidget	Java	Application	

Programming	Interface	(API)	(http://www.phidgets.com/)	to	interface	with	the	carousel	of	the	robot,	

and	solenoid	control	was	achieved	through	the	RXTX	Java	API	(https://github.com/rxtx/rxtx).	 	

146	|	P a g e 	
	

8.3 Detection	Techniques	

8.3.1 Avalanche	Photodiode	Detector	(APD)	

Detection	was	performed	by	combining	an	Omnichrome	488nm	CW	air-cooled	argon	ion	laser	(Melles	

Griot)	 with	 a	 confocal	 microscope	 (Zeiss)	 and	 an	 avalanche	 photodiode	 detector.	 The	 laser	 was	

operated	at	60-80%	power	unless	stated	otherwise.	The	path	of	the	laser	is	depicted	in	Figure	59.	The	

laser	first	passes	through	a	glass	filter	(usually	a	1/20th	filter)	and	a	polariser	to	attenuate	the	laser	

intensity.	The	laser	beam	then	passes	through	an	iris	to	ensure	alignment	after	which	it	is	reflected	by	

a	dichroic	mirror	(DC2:	HQ505DCLP,	AHF	Analysentechnik	AG)	into	the	60x	objective	lens.	Emission	is	

passed	back	to	the	dichroic	mirror	(corresponding	to	an	emission	wavelength	of	511nm)	which	allows	

the	emitted	light	to	pass.	Emitted	light	is	filtered	to	reduce	non-specific	light	and	passed	through	a	

pinhole,	finally	leading	to	the	APD	detector.	

	

Figure	59:	The	APD	confocal	microscope	setup	used	in	the	investigation.		Primarily,	the	diagram	depicts	the	light	path	for	
the	argon	laser	and	how	it	is	attenuated	for	both	excitation	of	the	sample	and	how	the	data	is	recorded	at	the	APD.	

	 	

147	|	P a g e 	
	

8.3.2 Fluorescence	Wide-Field	Microscope	

Wide-Field	Fluorescence	Microscope	assays	used	a	TI-E	Super-research	Inverted	Microscope	(Nikon	

Ltd.)	with	a	mercury	lamp	excitation	source	and	a	C-FL	Epi-Fl	GFP-B	filter	set.	Detection	was	performed	

using	 a	 CoolSnap	 HQ2	 CCD	 (Photometrics).	 Data	 capture	 was	 performed	 by	 using	 NIS	 Elements	

Advanced	Research	software.	 	

148	|	P a g e 	
	

8.4 Analysis	Techniques		

8.4.1 APD	Droplet	Detection	

Data	analysis	 for	 the	APD	data	was	performed	as	per	 section	6.5.2	using	a	custom	set	of	MATLAB	

scripts.		

8.4.2 Image	Analysis	

Images	were	loaded	into	ImageJ	(from	Nikon’s	proprietary	image	format	‘.nd2’)	using	the	Nikon	ND2	

reader.	Image	stacks	were	converted	to	.tiff	and	separated	into	individual	images.	ImageJ	was	used	to	

generate	 overlay	 images	 whilst	 custom	 MATLAB	 scripts	 were	 used	 to	 calculate	 the	 time	 course	

fluorescence	profile	of	the	droplets	(as	per	section	6.5.3).	

8.4.3 Characterisation	Data	Analysis	

To	 analyse	 constitutive	 promoter	 data,	 repeat	 droplets	 were	 averaged	 to	 calculate	 the	 mean	

fluorescence	value	per	sample	per	time	point.		

Next,	the	times	corresponding	to	steady	state	GFP	production	for	the	dataset	as	a	whole	were	

identified.	The	two	closest	data	points	to	the	previously	established	steady	state	GFP	production	were	

then	 used	 to	 calculate	 a	 rate	 of	 fluorescence	 production	 as	 per:	 Equation	 1	 for	 each	 sample	

investigated.		

𝑅𝑎𝑡𝑒	𝑜𝑓	𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑋

= 𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒(𝑋)6789: − 𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒(𝑋)6789<	 𝑇𝑖𝑚𝑒2 − 𝑇𝑖𝑚𝑒1 	

Equation	1:	Equation	for	calculating	the	rate	of	fluorescence	production	for	a	given	sample	(X)		

Relative	 strengths	 of	 the	 promoters	 can	 then	 be	 calculated	 by	 referencing	 the	 internal	

standard	(BBa_J23100)	using	the	equation	shown	in	Equation	2.	

149	|	P a g e 	
	

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ	 𝑋

= 𝑅𝑎𝑡𝑒	𝑜𝑓	𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑋) 𝑅𝑎𝑡𝑒	𝑜𝑓	𝐹𝑙𝑢𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒	𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛	(𝑆𝑡𝑑)	

Equation	2:	Equation	for	calculating	the	relative	strength	of	a	constitutive	promoter	using	a	reference	 	

150	|	P a g e 	
	

8.5 Data	Processing	Analysis	and	Display	Software	

For	the	D-PAD	software	two	languages	were	predominantly	used;	firstly	MATLAB	was	used	as	the	core	

programming	language	for	the	system	as	work	was	being	done	in	parallel	with	this	language	already.	

As	 the	 complexity	 of	 the	 software	 increased	 the	 language	 was	 changed	 to	 JAVA	 so	 that	 greater	

flexibility	in	the	user	interface	as	well	as	a	more	robust	software	framework	could	be	achieved.	

	 	

151	|	P a g e 	
	

9 Conclusion	

In	 conclusion	 this	 study	attempted	 to	 improve	 the	uptake	of	 characterisation	within	 the	Synthetic	

Biology	 research	pipeline	by	providing	enabling	 technologies	 for	 the	characterisation	 speciality.	By	

reducing	the	apparent	complexity	and	time	involvement	of	current	characterisation	techniques	it	is	

hoped	that	more	researchers	will	employ	characterisation	within	their	workflow.	Fundamentally,	this	

would	 improve	the	capability	of	predictive	modelling	as	well	as	 improve	the	amount	of	communal	

information	available	for	biological	parts,	devices	and	systems.	

Specifically	the	work	above	has	developed	a	prototype	characterisation	platform	that	could	

potentially	fulfil	the	current	gap	in	high	throughput	characterisation	technologies	using	some	of	the	

newly	developed	solutions	to	the	lack	of	robust	technologies	available	 in	the	microfluidics	field.	By	

utilising	more	robust	version	of	the	compartment-on-demand	microfluidic	robot	in	combination	with	

either	 shorter	 tubing	 or	 improved	 suction,	 the	 realisation	 of	 a	 massively	 multiplexable,	 rapid	

characterisation	technology	is	entirely	plausible.	It	should	be	acknowledged	that	the	current	platform	

iteration	 is	 not	 suitable	 for	 high	 throughput	 characterisation	 work	 as	 the	 immaturity	 of	 the	

microfluidics	 field	 leads	 to	 a	 high	 user	 involvement	 in	 the	 platform’s	 operation.	 The	 platform	

suggested	above	has	successfully	shown	both	the	high	throughput	and	multiplexing	capabilities	of	the	

proposed	solution,	albeit	 in	an	 independent	manner.	Further	work	needs	 to	be	done	to	refine	the	

technology	and	improve	the	reproducibility.	These	improvements	can	likely	be	found	with	the	newer	

versions	of	 the	compartment	on	demand	robot	 in	combination	with	COMSOL	modelling	 to	ensure	

minimal	 backpressure	 issues.	 The	 technology	 could	 also	 be	 made	 more	 robust	 by	 adopting	 less	

prototypic	 assembly	 strategies	 (such	 as	 those	 used	 to	 join	 microtubing	 with	 syringes)	 as	 these	

represent	a	 common	 failure	point	across	all	 the	 system	tests.	By	 trading	off	on	 some	of	 the	 small	

efficiencies	gained	by	 reducing	droplet	 size	 it	would	be	possible	 to	make	use	of	aluminium	milling	

techniques	 and	 Luer-Lock	 type	 connections	 to	 ensure	 optimal	 connectivity	 between	 technology	

components.	

152	|	P a g e 	
	

The	work	above	also	created	a	data	handling	framework	for	characterisation	data	that	enables	

consistent	data	storage	whilst	maintaining	a	flexible	data	manipulation	mind	set.	The	DPAD	software	

offers	a	highly	concurrent,	robust	solution	to	the	data	handling	problem,	one	that	is	capable	of	highly	

scalable,	 flexible	 and	 robust	data	processing.	 The	DPAD	 software	also	offers	 a	 variety	of	potential	

points	 of	 improvements	 that	 would	 enable	 it	 to	 become	 and	 an	 enterprise-level	 centralised	 data	

handling	solution	for	many	research	institutions	at	the	same	time.	Theoretically,	this	would	greatly	

improve	the	rate	at	which	a	uniform	characterisation	database	 is	 realised	and	 increase	the	rate	of	

establishing	standards	and	lower	the	ambiguity	of	much	of	the	characterisation	speciality.	The	work	

above	has	demonstrated	the	utility	of	the	software	by	loading	a	common	type	of	data	through	the	

plugin	architecture	and	displaying	it	to	the	user	in	a	meaningful	manner.	In	future,	the	software	can	

be	improved	to	integrate	flow	cytometry	data	by	designing	custom	plugins.	This	would	tie	in	with	some	

of	 the	 more	 recent	 advances	 in	 biological	 DNA	 part	 characterisation	 and	 provide	 a	 more	

comprehensive	toolset	(Hirst,	2014).	Further	testing	should	also	be	performed	across	larger	network	

infrastructures	to	confirm	concurrent	data	accessibility,	network	stability	and	usability	across	a	more	

wide	ranging	user	group.	

The	 two	 solutions	 developed	 here,	 when	 joined	 together,	 can	 theoretically	 offer	 a	

comprehensive	solution	to	the	characterisation	problems	that	were	laid	out	in	the	beginning	of	this	

work.	 It	 is	hoped	that	such	complex	infrastructural	developments	can	be	adopted	and	in-lined	into	

everyday	workflows	in	order	to	increase	the	throughput	of	biological	part	characterisation	in	Synthetic	

Biology.		

	 	

153	|	P a g e 	
	

10 Appendices	

10.1 List	of	Promoter	Sequences	Generated	

Table	10:	Full	list	of	promoters	used	in	this	study.	Promoter	naming	convention	is	the	registry	name	(either	BioBrickTM	or	
BioFAB)	suffixed	with	FW	for	the	forward	primer	and	RV	for	the	reverse.	

Name Sequence

J23100FW aattcgcggccgcttctagagttgacggctagctcagtcctaggtacagtgctagcta

J23100RV ctagtagctagcactgtacctaggactgagctagccgtcaactctagaagcggccgcg

J23101FW aattcgcggccgcttctagagtttacagctagctcagtcctaggtattatgctagcta

J23101RV ctagtagctagcataatacctaggactgagctagctgtaaactctagaagcggccgcg

J23106FW aattcgcggccgcttctagagtttacggctagctcagtcctaggtatagtgctagcta

J23106RV ctagtagctagcactatacctaggactgagctagccgtaaactctagaagcggccgcg

J23114FW aattcgcggccgcttctagagtttatggctagctcagtcctaggtacaatgctagcta

J23114RV ctagtagctagcattgtacctaggactgagctagccataaactctagaagcggccgcg

J23113FW aattcgcggccgcttctagagctgatggctagctcagtcctagggattatgctagcta

J23113RV ctagtagctagcataatccctaggactgagctagccatcagctctagaagcggccgcg

J23116FW aattcgcggccgcttctagagttgacagctagctcagtcctagggactatgctagcta

J23116RV ctagtagctagcatagtccctaggactgagctagctgtcaactctagaagcggccgcg

J23104FW aattcgcggccgcttctagagttgacagctagctcagtcctaggtattgtgctagcta

J23104RV ctagtagctagcacaatacctaggactgagctagctgtcaactctagaagcggccgcg

J23105FW aattcgcggccgcttctagagtttacggctagctcagtcctaggtactatgctagcta

J23105RV ctagtagctagcatagtacctaggactgagctagccgtaaactctagaagcggccgcg

J23107FW aattcgcggccgcttctagagtttacggctagctcagccctaggtattatgctagcta

J23107RV ctagtagctagcataatacctagggctgagctagccgtaaactctagaagcggccgcg

J23108FW aattcgcggccgcttctagagctgacagctagctcagtcctaggtataatgctagcta

J23108RV ctagtagctagcattatacctaggactgagctagctgtcagctctagaagcggccgcg

J23109FW aattcgcggccgcttctagagtttacagctagctcagtcctagggactgtgctagcta

J23109RV ctagtagctagcacagtccctaggactgagctagctgtaaactctagaagcggccgcg

J23110FW aattcgcggccgcttctagagtttacggctagctcagtcctaggtacaatgctagcta

J23110RV ctagtagctagcattgtacctaggactgagctagccgtaaactctagaagcggccgcg

J23111FW aattcgcggccgcttctagagttgacggctagctcagtcctaggtatagtgctagcta

J23111RV ctagtagctagcactatacctaggactgagctagccgtcaactctagaagcggccgcg

J23112FW aattcgcggccgcttctagagctgatagctagctcagtcctagggattatgctagcta

J23112RV ctagtagctagcataatccctaggactgagctagctatcagctctagaagcggccgcg

J23115FW aattcgcggccgcttctagagtttatagctagctcagcccttggtacaatgctagcta

J23115RV ctagtagctagcattgtaccaagggctgagctagctataaactctagaagcggccgcg

J23117FW aattcgcggccgcttctagagttgacagctagctcagtcctagggattgtgctagcta

154	|	P a g e 	
	

J23117RV ctagtagctagcacaatccctaggactgagctagctgtcaactctagaagcggccgcg

J23118FW aattcgcggccgcttctagagttgacggctagctcagtcctaggtattgtgctagcta

J23118RV ctagtagctagcacaatacctaggactgagctagccgtcaactctagaagcggccgcg

J23119FW aattcgcggccgcttctagagttgacagctagctcagtcctaggtataatgctagcta

J23119RV ctagtagctagcattatacctaggactgagctagctgtcaactctagaagcggccgcg

 apFAB168FW aattcgcggccgcttctagagttattcctaatcatccggctcgtataatgtgtggata

 apFAB168RV ctagtatccacacattatacgagccggatgattaggaataactctagaagcggccgcg

 apFAB188FW aattcgcggccgcttctagagttattccttaatcatcggctcgtataatgtgtggata

 apFAB188RV ctagtatccacacattatacgagccgatgattaaggaataactctagaagcggccgcg

 apFAB189FW aattcgcggccgcttctagagtttttccttaatcatcggctcgtataatgtgtggata

 apFAB189RV ctagtatccacacattatacgagccgatgattaaggaaaaactctagaagcggccgcg

 apFAB190FW aattcgcggccgcttctagagttctgcgttaatcatcggctcgtataatgtgtggata

 apFAB190RV ctagtatccacacattatacgagccgatgattaacgcagaactctagaagcggccgcg

 apFAB197FW aattcgcggccgcttctagagttgacaattaatcatcggctcttaggttttgtggata

 apFAB197RV ctagtatccacaaaacctaagagccgatgattaattgtcaactctagaagcggccgcg

 apFAB200FW aattcgcggccgcttctagagttgacaattaatcatcggctcttagggtttgtggata

 apFAB200RV ctagtatccacaaaccctaagagccgatgattaattgtcaactctagaagcggccgcg

 apFAB210FW aattcgcggccgcttctagagttcgccgttaatcatcggctcgtataatgtgtggata

 apFAB210RV ctagtatccacacattatacgagccgatgattaacggcgaactctagaagcggccgcg

 apFAB212FW aattcgcggccgcttctagagttcgtttttaatcatcggctcgtataatgtgtggata

 apFAB212RV ctagtatccacacattatacgagccgatgattaaaaacgaactctagaagcggccgcg

 apFAB215FW aattcgcggccgcttctagagtttcaggttaatcatcggctcgtataatgtgtggata

 apFAB215RV ctagtatccacacattatacgagccgatgattaacctgaaactctagaagcggccgcg

 apFAB217FW aattcgcggccgcttctagagttgacaattaatcatcggctcctagggtttgtggata

 apFAB217RV ctagtatccacaaaccctaggagccgatgattaattgtcaactctagaagcggccgcg

 apFAB220FW aattcgcggccgcttctagagttgacaattaatcatcggctcatatggtctgtggata

 apFAB220RV ctagtatccacagaccatatgagccgatgattaattgtcaactctagaagcggccgcg

 apFAB235FW aattcgcggccgcttctagagttgacaattaatctccggctcttacggtatgtggata

 apFAB235RV ctagtatccacataccgtaagagccggagattaattgtcaactctagaagcggccgcg

 apFAB236FW aattcgcggccgcttctagagttgacaattaatcatcggctcctatggtgtgtggata

 apFAB236RV ctagtatccacacaccataggagccgatgattaattgtcaactctagaagcggccgcg

 apFAB237FW aattcgcggccgcttctagagttgacaattaatcatcggctcataacctttgtggata

 apFAB237RV ctagtatccacaaaggttatgagccgatgattaattgtcaactctagaagcggccgcg

 apFAB238FW aattcgcggccgcttctagagttgacaattaatcatcggctcgtaggttttgtggata

 apFAB238RV ctagtatccacaaaacctacgagccgatgattaattgtcaactctagaagcggccgcg

 apFAB240FW aattcgcggccgcttctagagtttgaatttaatcatcggctcgtataatgtgtggata

 apFAB240RV ctagtatccacacattatacgagccgatgattaaattcaaactctagaagcggccgcg

155	|	P a g e 	
	

 apFAB241FW aattcgcggccgcttctagagttaacattaatcatccggctcgtataatgtgtggata

 apFAB241RV ctagtatccacacattatacgagccggatgattaatgttaactctagaagcggccgcg

 apFAB247FW aattcgcggccgcttctagagttgacaattaatcatcggctcttaggttctgtggata

 apFAB247RV ctagtatccacagaacctaagagccgatgattaattgtcaactctagaagcggccgcg

 apFAB249FW aattcgcggccgcttctagagttgacaattaatcatcggctcgtagattttgtggata

 apFAB249RV ctagtatccacaaaatctacgagccgatgattaattgtcaactctagaagcggccgcg

 apFAB250FW aattcgcggccgcttctagagttgacaattaatcatcggctcctacgatttgtggata

 apFAB250RV ctagtatccacaaatcgtaggagccgatgattaattgtcaactctagaagcggccgcg

 apFAB255FW aattcgcggccgcttctagagttcacaattaatcatcggctcgtataatgtgtggata

 apFAB255RV ctagtatccacacattatacgagccgatgattaattgtgaactctagaagcggccgcg

 apFAB260FW aattcgcggccgcttctagagtttactgttaatcatcggctcgtataatgtgtggata

 apFAB260RV ctagtatccacacattatacgagccgatgattaacagtaaactctagaagcggccgcg

 apFAB264FW aattcgcggccgcttctagagtttatctttaatcatcggctcgtataatgtgtggata

 apFAB264RV ctagtatccacacattatacgagccgatgattaaagataaactctagaagcggccgcg

 apFAB265FW aattcgcggccgcttctagagttgactattaatcatcggctcatccattatgtggata

 apFAB265RV ctagtatccacataatggatgagccgatgattaatagtcaactctagaagcggccgcg

 apFAB266FW aattcgcggccgcttctagagttgacaattaatcatcggctcttaggctatgtggata

 apFAB266RV ctagtatccacatagcctaagagccgatgattaattgtcaactctagaagcggccgcg

 apFAB269FW aattcgcggccgcttctagagttgacaattaatcatcggctcgtaggctgtgtggata

 apFAB269RV ctagtatccacacagcctacgagccgatgattaattgtcaactctagaagcggccgcg

 apFAB270FW aattcgcggccgcttctagagttgacaattaatcatcggctcataaagtgtgtggata

 apFAB270RV ctagtatccacacactttatgagccgatgattaattgtcaactctagaagcggccgcg

 apFAB272FW aattcgcggccgcttctagagttgacaattaatcatcggctcgtagagtttgtggata

 apFAB272RV ctagtatccacaaactctacgagccgatgattaattgtcaactctagaagcggccgcg

 apFAB276FW aattcgcggccgcttctagagttgtctattaatcatcggctcgtataatgtgtggata

 apFAB276RV ctagtatccacacattatacgagccgatgattaatagacaactctagaagcggccgcg

 apFAB279FW aattcgcggccgcttctagagttgttctttaatcatcggctcgtataatgtgtggata

 apFAB279RV ctagtatccacacattatacgagccgatgattaaagaacaactctagaagcggccgcg

 apFAB295FW aattcgcggccgcttctagagttgcctcttaatcatcggctcgtataatgtgtggata

 apFAB295RV ctagtatccacacattatacgagccgatgattaagaggcaactctagaagcggccgcg

 apFAB303FW aattcgcggccgcttctagagttgaatcttaatcatcggctcgtataatgtgtggata

 apFAB303RV ctagtatccacacattatacgagccgatgattaagattcaactctagaagcggccgcg

 apFAB324FW aattcgcggccgcttctagagttgacaattaatcatcggctcttaggctttgtggata

 apFAB324RV ctagtatccacaaagcctaagagccgatgattaattgtcaactctagaagcggccgcg

 apFAB325FW aattcgcggccgcttctagagttgacaattaatatccggctcgtagcgtctgtggata

 apFAB325RV ctagtatccacagacgctacgagccggatattaattgtcaactctagaagcggccgcg

	 	

156	|	P a g e 	
	

10.2 Promoter	Sequence	Generation	Script	

	

%% BuildPrimers	
% Short script for generating primers from a cell array of strings (in	
% column format corresponding to the promoter sequences).	
% The input cell array can have other information attached to it that will	
% be prepended to the result	
%	
% NOTE: This function requires the bioinformatics toolbox	
%%	
function [primerSequences] = BuildPrimers(primerSeq)	
 % Check if we have an input	
 if (iscell(primerSeq) && isempty(primerSeq))	
 error('Input was not valid');	
 end	
 	
 % Ensure it's not empty	
 numSequences = size(primerSeq, 1);	
 if numSequences < 1	
 error('Input was not valid');	
 end	
 	
 % Ensure the first column has strings	
 if iscellstr(primerSeq(:, 1))	
 error('Input does not contain strings in column 1');	
 end	
 	
 % Prefill arrays	
 primerSequences = cell(numSequences * 2, 1);	
 sequenceCopy = cell(numSequences, 1);	
 sequenceCopy(:, 1) = primerSeq(:, 1);	
 additionalInformation = size(primerSeq, 2);	
 	
 % Affix Forward Primers	
 forwardPrimers = strcat('AATTCGCGGCCGCTTCTAGAG', sequenceCopy(:, 1), 'TA');	
 	
 % Affix Reverse Primers	
 reversePrimers = cellfun(@seqrcomplement, sequenceCopy(:, 1), 'uni', false);	
 reversePrimers = cellfun(@fliplr, reversePrimers(:, 1), 'uni', false);	
 reversePrimers = strcat('GCGCCGGCGAAGATCTC', reversePrimers(:, 1), 'ATGATC');	
 	
 % Set to uppercase as a standard	
 forwardPrimers = cellfun(@upper, forwardPrimers, 'uni', false);	
 reversePrimers = cellfun(@upper, reversePrimers, 'uni', false);	
 	
 for n = 1 : size(primerSequences, 1)	
 index = (n * 2) - 1;	
 	
 % Reverse Sequence	
 if mod(index, 2) == 1	
 sequence = forwardPrimers(index, 1);	
 direction = 'F';	
 	
 % Forward Sequence	
 else	
 sequence = reversePrimers(index, 1);	
 direction = 'R';	
 end	
 	
 primerSequences(index, 1) = sequence;	
 primerSequences(index, 2) = direction;	
 	
 if additionalInformation > 1	
 primerSequences(index, 3 : 2 + (additionalInformation - 1)) = ...	
 primerSeq(n, 2 : additionalInformation);	
 end	
 end	
end	

157	|	P a g e 	
	

Figure	60:	Script	for	generating	compatible	primers	for	the	generation	of	promoter	sequences	

10.3 APD	Data	Analysis	–	Data	Selection	Script	

%% Function to identify regions of the data to remove
% Displays a gui to allow the user to identify regions of the data to trim
function [headFrom, headTo, tailFrom, tailTo] = IdentifyDataTrimZones(inputData)
 % Build GUI and get our communication variable
 guiHandle = BuildDataSelectionGUI();
 userData = get(guiHandle, 'UserData');

 % Build plot
 set(userData.axes, 'XLim', [0 inputData(end, 2)]);
 set(userData.axes, 'YLim', [0, max(inputData(:, 1))]);
 userData.plot = plot(inputData(:, 2), inputData(:, 1), 'g');
 userData.axisSize = axis(userData.axes);

 % Set max width and height
 userData.maxWidth = inputData(end, 2);
 userData.maxHeight = max(inputData(:, 1));
 set(guiHandle, 'UserData', userData);

 % Loop while the user is doing nothing in the GUI
 while true
 % Update userData
 userData = get(guiHandle, 'UserData');

 % If we are finished
 if userData.isFinished
 break;
 end

 % No selection mode has been chosen
 if userData.runtime == 0
 waitfor(guiHandle, 'UserData');
 continue;
 end

 % User has chosen a selection
 waitforbuttonpress;
 userData = get(guiHandle, 'UserData');
 userData.oldpointer = get(guiHandle, 'Pointer');
 set(guiHandle, 'UserData', userData);
 set(guiHandle, 'Pointer', 'ibeam');
 set(guiHandle, 'WindowButtonMotionFcn', {@MouseMove, userData});
 set(guiHandle, 'WindowButtonUpFcn', {@MouseUp, userData});
 uiwait;
 end

 % Save head end trimming data
 headFrom = 1;
 if isfield(userData, 'headSelection')
 headTo = userData.headSelection(2);
 else
 headTo = 1;
 end

 % Save tail end trimming data
 tailTo = length(inputData);
 if isfield(userData, 'tailSelection')
 tailFrom = userData.tailSelection(1);
 else
 tailFrom = length(inputData);
 end

 close(guiHandle);
end

% Core function for displaying the trimming GUI
function [guiHandle] = BuildDataSelectionGUI()
 % Core communication variable
 userData.isFinished = false;
 userData.runtime = 0;

 % Main figure

158	|	P a g e 	
	

 guiHandle = figure(...
 'Units','characters',...
 'PaperUnits',get(0,'defaultfigurePaperUnits'),...
 'Name','selectLinearData',...
 'PaperPosition',get(0,'defaultfigurePaperPosition'),...
 'PaperSize',get(0,'defaultfigurePaperSize'),...
 'PaperType',get(0,'defaultfigurePaperType'),...
 'Position',[103.8 29.1538461538462 112 32.3076923076923],...
 'UserData', userData,...
 'Tag','figure1',...
 'Visible','on');

 userData.figure = guiHandle;

 % Main axes
 h2 = axes(...
 'Parent',guiHandle,...
 'Units','characters',...
 'Position',[-0.2 6.61538461538462 112 25.6153846153846],...
 'CameraPosition',[0.5 0.5 9.16025403784439],...
 'CameraPositionMode',get(0,'defaultaxesCameraPositionMode'),...
 'Tag','axes1');

 userData.axes = h2;
 set(guiHandle, 'UserData', userData);

 % Edit start data button
 h7 = uicontrol(...
 'Parent',guiHandle,...
 'Units','characters',...
 'Callback',@(hObject,eventdata)startDataSelection(userData),...
 'Position',[11.6 3.38461538461539 17 1.92307692307692],...
 'String',{ 'Select Start Data' },...
 'Tag','pushbutton1');

 % Edit end data button
 h8 = uicontrol(...
 'Parent',guiHandle,...
 'Units','characters',...
 'Callback',@(hObject,eventdata)endDataSelection(userData),...
 'Position',[51.6000000000001 3.38461538461539 17 1.92307692307692],...
 'String',{ 'Select End Data' },...
 'Tag','pushbutton3');

 % Finish button
 h9 = uicontrol(...
 'Parent',guiHandle,...
 'Units','characters',...
 'Callback',@(hObject,eventdata)finish(userData),...
 'Position',[92.8 0.692307692307693 17 1.92307692307692],...
 'String',{ 'Finish' },...
 'Tag','pushbutton5');
end

% Function to handle when the user selects edit start data
function [] = startDataSelection(userData)
 % Build relevant rectangle properties for start data
 userData = get(userData.figure, 'UserData');

 % Build rectangle
 hold on
 xv = [0, 0, 0, 0, 0];
 yv = [0, userData.maxHeight, 0, userData.maxHeight, 0];
 rectangleHandle = fill(xv, yv, 'b');
 set(rectangleHandle, 'facealpha', 0.5, 'linestyle', '--', 'edgecolor', 'b');
 hold off

 % Save rectangle properties
 userData.currentRectangle = rectangleHandle;
 userData.startRectangle = rectangleHandle;
 userData.currentRectangleStart = 0;
 userData.runtime = 1;
 set(userData.figure, 'UserData', userData);
end

% Function to handle when the user selects edit end data
function [] = endDataSelection(userData)

159	|	P a g e 	
	

 % Build relevant rectangle properties for end data
 userData = get(userData.figure, 'UserData');

 % Build rectangle
 hold on
 xv = [userData.maxWidth, userData.maxWidth, userData.maxWidth, userData.maxWidth,
userData.maxWidth];
 yv = [0, userData.maxHeight, 0, userData.maxHeight, 0];
 rectangleHandle = fill(xv, yv, 'r');
 set(rectangleHandle, 'facealpha', 0.5, 'linestyle', '--', 'edgecolor', 'r');
 hold off

 % Save rectangle properties
 userData.currentRectangle = rectangleHandle;
 userData.endRectangle = rectangleHandle;
 userData.currentRectangleStart = userData.maxWidth;
 userData.runtime = 2;
 set(userData.figure, 'UserData', userData);
end

% Function to handle when the user presses finish.
function [] = finish(userData)
 % Inform the wait loop that we are done
 userData = get(userData.figure, 'UserData');
 userData.isFinished = true;
 set(userData.figure, 'UserData', userData);
end

% Function to handle whenever the mouse moves
function [] = MouseMove(src, event, userData) %#ok
 % Build and collect the relevant data
 userData = get(userData.figure, 'UserData');
 mousenew = get(userData.axes, 'CurrentPoint');
 xy = mousenew(1, 1:2);
 axis(userData.axisSize);

 % Build the rectangle
 xv = [userData.currentRectangleStart(1), ...
 xy(1), ...
 xy(1), ...
 userData.currentRectangleStart(1), ...
 userData.currentRectangleStart(1)];
 yv = [0, ...
 0, ...
 userData.maxHeight, ...
 userData.maxHeight, ...
 0];

 % Update the current rectangle
 set(userData.currentRectangle, 'xdata', xv, 'ydata', yv);
 set(userData.figure, 'UserData', userData);
end

function [] = MouseUp(src, event, userData) %#ok
 % Gather our communication variable
 userData = get(userData.figure, 'UserData');

 % Store the values
 mousenew = get(userData.axes, 'CurrentPoint');
 xy = mousenew(1, 1:2);

 % Update variables based on the selection type
 switch userData.runtime
 case 1
 userData.headSelection = [0, closestPoint(userData, xy(1))];

 case 2
 userData.tailSelection = [closestPoint(userData, xy(1)), userData.maxWidth];
 end

 % Revert pointer and current rectangle selection
 set(userData.figure, 'Pointer', userData.oldpointer);
 userData.runtime = 0;
 userData.currentRectangle = [];

 % Update variables
 set(userData.figure, 'UserData', userData);

160	|	P a g e 	
	

 set(userData.figure, 'WindowButtonMotionFcn', '');
 set(userData.figure, 'WindowButtonUpFcn', '');
 uiresume;
end

% Function to determine the index along the x axis closest to the mouse
function [xIndex] = closestPoint(userData, xMouse)
 dx = (userData.axisSize(2) - userData.axisSize(1));
 ratio = dx / length(get(userData.plot, 'xData'));
 xIndex = floor(xMouse / floor(ratio));
end

	

Figure	61:	Example	of	how	data	is	selected	for	trimming	using	the	script	above.	

	 	

161	|	P a g e 	
	

10.4 Sample	Microplate	Data	for	the	DPAD	Software	

The	sections	below	display	the	useful	data	present	within	the	sample	data	set	used	to	derive	the	affect	

of	dilution	on	fluorescence	production	by	J23101	on	IVTT.	A1	corresponds	to	pure	GFP	(250ng/ul),	A2	

corresponds	 to	 J23101	and	 IVTT	where	 the	premix	was	diluted	by	half,	A3	 corresponds	 to	 J23101	

where	the	cell-free	portion	was	diluted	by	half	and	A4	corresponds	to	water.	

0.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 3412	 570	 480	 330	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

50.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 3117	 864	 540	 276	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

162	|	P a g e 	
	

100.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 2994	 1483	 567	 261	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

	

150.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 2761	 1891	 602	 244	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

	

	

	

	

163	|	P a g e 	
	

200.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 2315	 2103	 549	 241	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

	

250.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 2028	 2216	 541	 237	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

	

	

	

	

164	|	P a g e 	
	

300.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 1680	 2243	 482	 233	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

	

350.txt	

[Plate:	M	485/528]	

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	

A	 1486	 2201	 468	 230	 x	 x	 x	 x	 x	 x	 x	 x	

B	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

C	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

D	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

E	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

F	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x		

G	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

H	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	 x	

	

	

	

	 	

165	|	P a g e 	
	

11 References	

Registry	 of	 Standard	 Biological	 Parts	 [Online].	 Available:	
http://partsregistry.org/wiki/index.php?title=Assembly:Standard_assembly.	

2009.	 Synthetic	 biology:	 scope,	 applications	 and	 implications.	 London:	 The	 Royal	 Academy	 of	
Engineering.	

AGRESTI,	 J.	 J.,	 ANTIPOV,	 E.,	 ABATE,	 A.	 R.,	 AHN,	 K.,	 ROWAT,	 A.	 C.,	 BARET,	 J.-C.,	 MARQUEZ,	 M.,	
KLIBANOV,	A.	M.,	GRIFFITHS,	A.	D.	&	WEITZ,	D.	A.	2010.	Ultrahigh-throughput	screening	 in	
drop-based	 microfluidics	 for	 directed	 evolution.	 Proceedings	 of	 the	 National	 Academy	 of	
Sciences,	107.9,	4004-4009.	

ALPER,	H.,	FISCHER,	C.,	NEVOIGT,	E.	&	STEPHANOPOULOS,	G.	2005.	Tuning	genetic	control	through	
promoter	engineering.	Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	
of	America,	102,	12678-12683.	

ANDERSON,	J.	C.,	VOIGT,	C.	A.	&	ARKIN,	A.	P.	2007.	Environmental	signal	integration	by	a	modular	AND	
gate.	Mol	Syst	Biol,	3.1,	133.	

ANDRIANANTOANDRO,	E.,	BASU,	S.,	KARIG,	D.	K.	&	WEISS,	R.	2006.	Synthetic	biology:	new	engineering	
rules	for	an	emerging	discipline.	Mol	Syst	Biol,	2.1	

ARKIN,	A.	2008.	Setting	the	standard	in	synthetic	biology.	Nat	Biotech,	26,	771-774.	
BAKER,	 C.	 A.,	 DUONG,	 C.	 T.,	 GRIMLEY,	 A.	 &	 ROPER,	M.	 G.	 2009.	 Recent	 advances	 in	microfluidic	

detection	systems.	Bioanalysis,	1,	967-75.	
BASU,	S.,	MEHREJA,	R.,	THIBERGE,	S.,	CHEN,	M.-T.	&	WEISS,	R.	2004.	Spatiotemporal	control	of	gene	

expression	with	pulse-generating	networks.	Proceedings	of	the	National	Academy	of	Sciences	
of	the	United	States	of	America,	101,	6355-6360.	

BAYER,	T.	S.	&	SMOLKE,	C.	D.	2005.	Programmable	ligand-controlled	riboregulators	of	eukaryotic	gene	
expression.	Nat	Biotech,	23,	337-343.	

BEISEL,	C.	L.,	BAYER,	T.	S.,	HOFF,	K.	G.	&	SMOLKE,	C.	D.	2008.	Model-guided	design	of	ligand-regulated	
RNAi	for	programmable	control	of	gene	expression.	Mol	Syst	Biol,	4.1,	224.	

BEISEL,	C.	L.	&	SMOLKE,	C.	D.	2009.	Design	Principles	for	Riboswitch	Function.	PLoS	Comput	Biol,	5,	
e1000363.	

BENNETT,	M.	R.	&	HASTY,	J.	2009.	Microfluidic	devices	for	measuring	gene	network	dynamics	in	single	
cells.	Nat	Rev	Genet,	10,	628-638.		

BENSON,	D.	A.,	 KARSCH-MIZRACHI,	 I.,	 LIPMAN,	D.	 J.,	OSTELL,	 J.	&	WHEELER,	D.	 L.	 2005.	GenBank.	
Nucleic	Acids	Research,	33,	D34-D38.	

BIDGOOD,	 W.	 D.,	 JR.	 &	 HORII,	 S.	 C.	 1992.	 Introduction	 to	 the	 ACR-NEMA	 DICOM	 standard.	
Radiographics,	12,	345-55.	

BLOUNT,	B.	A.,	WEENINK,	T.,	VASYLECHKO,	S.	&	ELLIS,	T.	2012.	Rational	Diversification	of	a	Promoter	
Providing	Fine-Tuned	Expression	and	Orthogonal	Regulation	for	Synthetic	Biology.	PLoS	ONE,	
7,	e33279.	

CANTON,	B.,	LABNO,	A.	&	ENDY,	D.	2008.	Refinement	and	standardization	of	synthetic	biological	parts	
and	devices.	Nat	Biotech,	26,	787-793.	

CHAPPELL,	J.,	JENSEN,	K.	&	FREEMONT,	P.	S.	2013.	Validation	of	an	entirely	in	vitro	approach	for	rapid	
prototyping	of	DNA	regulatory	elements	for	synthetic	biology.	Nucleic	Acids	Res,	41,	3471-81.	

CONSORTIUM,	T.	U.	2013.	Update	on	activities	at	the	Universal	Protein	Resource	(UniProt)	in	2013.	
Nucleic	Acids	Research,	41,	D43-D47.	

DANINO,	T.,	MONDRAGON-PALOMINO,	O.,	TSIMRING,	L.	&	HASTY,	J.	2010.	A	synchronized	quorum	of	
genetic	clocks.	Nature,	463,	326-30.	

DEMELLO,	A.	J.	2006.	Control	and	detection	of	chemical	reactions	in	microfluidic	systems.	Nature,	442,	
394-402.	

DITTRICH,	P.	S.,	JAHNZ,	M.	&	SCHWILLE,	P.	2005.	A	new	embedded	process	for	compartmentalized	
cell-free	protein	expression	and	on-line	detection	 in	microfluidic	devices.	Chembiochem,	6,	
811-4.		

166	|	P a g e 	
	

DITTRICH,	P.	S.	&	MANZ,	A.	2006.	Lab-on-a-chip:	microfluidics	in	drug	discovery.	Nat	Rev	Drug	Discov,	
5,	210-8.	

DOKTYCZ,	M.	J.	&	SIMPSON,	M.	L.	2007.	Nano-enabled	synthetic	biology.	Mol	Syst	Biol,	3,	125.	
DU,	G.,	FANG,	Q.	&	DEN	TOONDER,	J.	M.	J.	2016.	Microfluidics	for	cell-based	high	throughput	screening	

platforms—A	review.	Analytica	Chimica	Acta,	903,	36-50.	
EASTBURN,	 D.	 J.,	 HUANG,	 Y.,	 PELLEGRINO,	 M.,	 SCIAMBI,	 A.,	 PTÁČEK,	 L.	 J.	 &	 ABATE,	 A.	 R.	 2015.	

Microfluidic	droplet	enrichment	for	targeted	sequencing.	Nucleic	Acids	Research,	43.13	e86	
ELLIS,	T.,	WANG,	X.	&	COLLINS,	J.	J.	2009.	Diversity-based,	model-guided	construction	of	synthetic	gene	

networks	with	predicted	functions.	Nat	Biotech,	27,	465-471.	
ELOWITZ,	M.	 B.	 &	 LEIBLER,	 S.	 2000.	 A	 synthetic	 oscillatory	 network	 of	 transcriptional	 regulators.	

Nature,	403,	335-338.	
ENDY,	D.	2005.	Foundations	for	engineering	biology.	Nature,	438,	449-453.	
FORSTER,	A.	C.	&	CHURCH,	G.	M.	2006.	Synthetic	biology	projects	in	vitro.	Genome	Research,	17,	000.	
FRIEDLAND,	A.	 E.,	 LU,	 T.	 K.,	WANG,	X.,	 SHI,	D.,	 CHURCH,	G.	&	COLLINS,	 J.	 J.	 2009.	 Synthetic	Gene	

Networks	That	Count.	Science,	324,	1199-1202.	
FUSSENEGGER,	M.	2010.	Synthetic	biology:	Synchronized	bacterial	clocks.	Nature,	463,	301-302.	
GALDZICKI,	 M.,	 CLANCY,	 K.	 P.,	 OBERORTNER,	 E.,	 POCOCK,	 M.,	 QUINN,	 J.	 Y.,	 RODRIGUEZ,	 C.	 A.,	

ROEHNER,	N.,	WILSON,	M.	L.,	ADAM,	L.,	ANDERSON,	J.	C.,	BARTLEY,	B.	A.,	BEAL,	J.,	CHANDRAN,	
D.,	CHEN,	J.,	DENSMORE,	D.,	ENDY,	D.,	GRUNBERG,	R.,	HALLINAN,	J.,	HILLSON,	N.	J.,	JOHNSON,	
J.	D.,	KUCHINSKY,	A.,	LUX,	M.,	MISIRLI,	G.,	PECCOUD,	J.,	PLAHAR,	H.	A.,	SIRIN,	E.,	STAN,	G.-B.,	
VILLALOBOS,	A.,	WIPAT,	A.,	GENNARI,	J.	H.,	MYERS,	C.	J.	&	SAURO,	H.	M.	2014.	The	Synthetic	
Biology	Open	Language	(SBOL)	provides	a	community	standard	for	communicating	designs	in	
synthetic	biology.	Nat	Biotech,	32,	545-550.		

GARAMELLA,	J.,	MARSHALL,	R.,	RUSTAD,	M.	&	NOIREAUX,	V.	2016.	The	All	E.	coli	TX-TL	Toolbox	2.0:	A	
Platform	for	Cell-Free	Synthetic	Biology.	ACS	Synthetic	Biology,	5,	344-355.	

GARDNER,	 T.	 S.,	 CANTOR,	 C.	 R.	 &	 COLLINS,	 J.	 J.	 2000.	 Construction	 of	 a	 genetic	 toggle	 switch	 in	
Escherichia	coli.	Nature,	403,	339-342.	

GEORGI,	V.,	GEORGI,	L.,	BLECHERT,	M.,	BERGMEISTER,	M.,	ZWANZIG,	M.,	WUSTENHAGEN,	D.	A.,	BIER,	
F.	 F.,	 JUNG,	 E.	&	 KUBICK,	 S.	 2016.	On-chip	 automation	 of	 cell-free	 protein	 synthesis:	 new	
opportunities	due	to	a	novel	reaction	mode.	Lab	Chip,	16,	269-81.	

GIBSON,	D.	G.,	GLASS,	J.	I.,	LARTIGUE,	C.,	NOSKOV,	V.	N.,	CHUANG,	R.-Y.,	ALGIRE,	M.	A.,	BENDERS,	G.	
A.,	MONTAGUE,	M.	G.,	MA,	L.,	MOODIE,	M.	M.,	MERRYMAN,	C.,	VASHEE,	S.,	KRISHNAKUMAR,	
R.,	 ASSAD-GARCIA,	 N.,	 ANDREWS-PFANNKOCH,	 C.,	 DENISOVA,	 E.	 A.,	 YOUNG,	 L.,	 QI,	 Z.-Q.,	
SEGALL-SHAPIRO,	 T.	 H.,	 CALVEY,	 C.	 H.,	 PARMAR,	 P.	 P.,	 HUTCHISON,	 C.	 A.,	 SMITH,	H.	O.	&	
VENTER,	 J.	 C.	 2010.	 Creation	 of	 a	 Bacterial	 Cell	 Controlled	 by	 a	 Chemically	 Synthesized	
Genome.	Science,	329,	52-56.	

GIELEN,	F.,	VAN	VLIET,	L.,	KOPROWSKI,	B.	T.,	DEVENISH,	S.	R.	A.,	FISCHLECHNER,	M.,	EDEL,	J.	B.,	NIU,	
X.,	DEMELLO,	A.	J.	&	HOLLFELDER,	F.	2013.	A	Fully	Unsupervised	Compartment-on-Demand	
Platform	for	Precise	Nanoliter	Assays	of	Time-Dependent	Steady-State	Enzyme	Kinetics	and	
Inhibition.	Analytical	Chemistry,	85,	4761-4769.	

GRIFFITHS,	A.	D.	&	TAWFIK,	D.	S.	2006.	Miniaturising	the	laboratory	in	emulsion	droplets.	Trends	in	
biotechnology,	24,	395-402.	

GULATI,	S.,	ROUILLY,	V.,	NIU,	X.,	CHAPPELL,	J.,	KITNEY,	R.	I.,	EDEL,	J.	B.,	FREEMONT,	P.	S.	&	DEMELLO,	
A.	 J.	 2009.	Opportunities	 for	microfluidic	 technologies	 in	 synthetic	 biology.	 Journal	 of	 The	
Royal	Society	Interface,	rsif20090083.	

HE,	M.	2008.	Cell-free	protein	synthesis:	applications	in	proteomics	and	biotechnology.	N	Biotechnol,	
25,	126-32.	

HEINEMANN,	 M.	 &	 PANKE,	 S.	 2006.	 Synthetic	 biology—putting	 engineering	 into	 biology.	
Bioinformatics,	22,	2790-2799.	

HILL,	A.	D.,	TOMSHINE,	J.	R.,	WEEDING,	E.	M.	B.,	SOTIROPOULOS,	V.	&	KAZNESSIS,	Y.	N.	2008.	SynBioSS:	
the	synthetic	biology	modeling	suite.	Bioinformatics,	24,	2551-2553.	

167	|	P a g e 	
	

HIRST,	C.	2014.	Automated	BioPart	characterisation	for	synthetic	biology.	
HOCKENBERRY,	A.	J.	&	JEWETT,	M.	C.	2012.	Synthetic	in	vitro	circuits.	Curr	Opin	Chem	Biol,	16,	253-9.	
HOLTZE,	C.,	ROWAT,	A.	C.,	AGRESTI,	J.	J.,	HUTCHISON,	J.	B.,	ANGILE,	F.	E.,	SCHMITZ,	C.	H.	J.,	KOSTER,	

S.,	DUAN,	H.,	HUMPHRY,	K.	J.,	SCANGA,	R.	A.,	JOHNSON,	J.	S.,	PISIGNANO,	D.	&	WEITZ,	D.	A.	
2008.	Biocompatible	surfactants	for	water-in-fluorocarbon	emulsions.	Lab	on	a	Chip,	8,	1632-
1639.	

HONG,	 J.,	 EDEL,	 J.	 B.	&	DEMELLO,	 A.	 J.	 2009.	Micro-	 and	 nanofluidic	 systems	 for	 high-throughput	
biological	screening.	Drug	Discov	Today,	14,	134-46.	

HUANG,	 H.-H.,	 CAMSUND,	 D.,	 LINDBLAD,	 P.	 &	 HEIDORN,	 T.	 2010.	 Design	 and	 characterization	 of	
molecular	 tools	 for	 a	 Synthetic	 Biology	 approach	 towards	 developing	 cyanobacterial	
biotechnology.	Nucleic	Acids	Research,	38,	2577-2593.	

HUEBNER,	A.,	BRATTON,	D.,	WHYTE,	G.,	YANG,	M.,	DEMELLO,	A.	J.,	ABELL,	C.	&	HOLLFELDER,	F.	2009.	
Static	microdroplet	arrays:	a	microfluidic	device	for	droplet	trapping,	incubation	and	release	
for	enzymatic	and	cell-based	assays.	Lab	on	a	Chip,	9,	692-698.	

HUEBNER,	 A.,	 SHARMA,	 S.,	 SRISA-ART,	 M.,	 HOLLFELDER,	 F.,	 EDEL,	 J.	 B.	 &	 DEMELLO,	 A.	 J.	 2008.	
Microdroplets:	A	sea	of	applications?	Lab	on	a	Chip,	8,	1244-1254.	

IIZUKA,	R.,	YAMAGISHI-SHIRASAKI,	M.	&	FUNATSU,	T.	2011.	Kinetic	study	of	de	novo	chromophore	
maturation	of	fluorescent	proteins.	Anal	Biochem,	414,	173-8.	

JAKL,	M.	2005.	Representational	State	Transfer.	Citeseer.	
JEWETT,	M.	C.,	CALHOUN,	K.	A.,	VOLOSHIN,	A.,	WUU,	J.	J.	&	SWARTZ,	J.	R.	2008.	An	integrated	cell-

free	metabolic	platform	for	protein	production	and	synthetic	biology.	Mol	Syst	Biol,	4,	220.	
JUNGMANN,	R.,	RENNER,	S.	&	SIMMEL,	F.	C.	2008.	From	DNA	nanotechnology	to	synthetic	biology.	

HFSP	J,	2,	99-109.	
KARA,	 C.	 &	 JAMES,	 S.	 2009.	 Cell-Free	 Systems	 for	Metabolic	 Engineering.	 The	Metabolic	 Pathway	

Engineering	Handbook.	CRC	Press.		
KAWANO,	 Y.,	 OTSUKA,	 C.,	 SANZO,	 J.,	 HIGGINS,	 C.,	 NIREI,	 T.,	 SCHILLING,	 T.	 &	 ISHIKAWA,	 T.	 2015.	

Expanding	imaging	capabilities	for	microfluidics:	applicability	of	darkfield	 internal	reflection	
illumination	(DIRI)	to	observations	in	microfluidics.	PLoS	One,	10,	e0116925.	

KATZEN,	 F.,	 CHANG,	 G.	 &	 KUDLICKI,	 W.	 2005.	 The	 past,	 present	 and	 future	 of	 cell-free	 protein	
synthesis.	Trends	Biotechnol,	23,	150-6.	

KATZENBEISSER,	 S.	 2001.	 Recent	 advances	 in	 RSA	 cryptography,	 Boston,	 MA,	 Kluwer	 Academic	
Publishers.	

KELLY,	J.,	RUBIN,	A.,	DAVIS,	J.,	AJO-FRANKLIN,	C.,	CUMBERS,	J.,	CZAR,	M.,	DE	MORA,	K.,	GLIEBERMAN,	
A.,	MONIE,	D.	&	ENDY,	D.	2009.	Measuring	the	activity	of	BioBrick	promoters	using	an	in	vivo	
reference	standard.	Journal	of	Biological	Engineering,	3,	4.	

KENSY,	F.,	ENGELBRECHT,	C.	&	BUCHS,	J.	2009.	Scale-up	from	microtiter	plate	to	laboratory	fermenter:	
evaluation	by	online	monitoring	techniques	of	growth	and	protein	expression	in	Escherichia	
coli	and	Hansenula	polymorpha	fermentations.	Microbial	Cell	Factories,	8,	68.	

KHALIL,	A.	S.	&	COLLINS,	J.	J.	2010.	Synthetic	biology:	applications	come	of	age.	Nat	Rev	Genet,	11,	
367-79.	

KHNOUF,	R.,	BEEBE,	D.	J.	&	FAN,	Z.	H.	2009.	Cell-free	protein	expression	in	a	microchannel	array	with	
passive	pumping.	Lab	Chip,	9,	56-61.	

KITNEY,	R.	 I.,	 FREEMONT,	P.	&	ROUILLY,	V.	2007.	Engineering	a	molecular	predation	oscillator.	 IET	
Synthetic	Biology,	1-3,	68-70.	

KOBAYASHI,	H.,	KÆRN,	M.,	ARAKI,	M.,	CHUNG,	K.,	GARDNER,	T.	S.,	CANTOR,	C.	R.	&	COLLINS,	J.	J.	2004.	
Programmable	cells:	 Interfacing	natural	and	engineered	gene	networks.	Proceedings	of	 the	
National	Academy	of	Sciences	of	the	United	States	of	America,	101,	8414-8419.	

KOLESNIKOV,	N.,	HASTINGS,	E.,	KEAYS,	M.,	MELNICHUK,	O.,	TANG,	Y.	A.,	WILLIAMS,	E.,	DYLAG,	M.,	
KURBATOVA,	N.,	BRANDIZI,	M.,	BURDETT,	T.,	MEGY,	K.,	PILICHEVA,	E.,	RUSTICI,	G.,	TIKHONOV,	
A.,	PARKINSON,	H.,	PETRYSZAK,	R.,	SARKANS,	U.	&	BRAZMA,	A.	2015.	ArrayExpress	update--
simplifying	data	submissions.	Nucleic	acids	research,	43,	D1113-6.	

168	|	P a g e 	
	

KONG,	D.	S.,	CARR,	P.	A.,	CHEN,	L.,	ZHANG,	S.	&	JACOBSON,	J.	M.	2007.	Parallel	gene	synthesis	in	a	
microfluidic	device.	Nucleic	Acids	Research,	35,	e61.	

KÖTTER,	 P.,	 WEIGAND,	 J.	 E.,	 MEYER,	 B.,	 ENTIAN,	 K.-D.	 &	 SUESS,	 B.	 2009.	 A	 fast	 and	 efficient	
translational	control	system	for	conditional	expression	of	yeast	genes.	Nucleic	Acids	Research,	
37,	e120.	

LEE,	T.	S.,	KRUPA,	R.	A.,	ZHANG,	F.,	HAJIMORAD,	M.,	HOLTZ,	W.	J.,	PRASAD,	N.,	LEE,	S.	K.	&	KEASLING,	
J.	D.	2011.	BglBrick	vectors	and	datasheets:	A	synthetic	biology	platform	for	gene	expression.	
J	Biol	Eng,	5,	12.	

LINSHIZ,	G.,	JENSEN,	E.,	STAWSKI,	N.,	BI,	C.,	ELSBREE,	N.,	JIAO,	H.,	KIM,	J.,	MATHIES,	R.,	KEASLING,	J.	
D.	&	HILLSON,	N.	J.	2016.	End-to-end	automated	microfluidic	platform	for	synthetic	biology:	
from	design	to	functional	analysis.	J	Biol	Eng,	10,	3.	

MACDONALD,	J.	T.,	BARNES,	C.,	KITNEY,	R.	I.,	FREEMONT,	P.	S.	&	STAN,	G.-B.	V.	2011.	Computational	
design	approaches	and	tools	for	synthetic	biology.	Integrative	Biology,	3,	97-108.	

MACEICZYK,	R.	M.,	LIGNOS,	I.	G.	&	DEMELLO,	A.	J.	2015.	Online	detection	and	automation	methods	in	
microfluidic	nanomaterial	synthesis.	Current	Opinion	in	Chemical	Engineering,	8,	29-35.	

MARGUET,	P.,	BALAGADDE,	F.,	TAN,	C.	&	YOU,	L.	2007.	Biology	by	design:	reduction	and	synthesis	of	
cellular	components	and	behaviour.	Journal	of	the	Royal	Society,	Interface	/	the	Royal	Society,	
4,	607-23.	

MCGRATH,	S.	C.,	SCHIELTZ,	D.	M.,	MCWILLIAMS,	L.	G.,	PIRKLE,	J.	L.	&	BARR,	J.	R.	2011.	Detection	and	
quantification	of	ricin	 in	beverages	using	 isotope	dilution	tandem	mass	spectrometry.	Anal	
Chem,	83,	2897-905.	

MEIN,	G.,	PAL,	S.,	DHONDU,	G.,	ANAND,	T.	K.,	STOJANOVIC,	A.,	AL-GHOSEIN,	M.	&	OEUVRAY,	P.	M.	
2002.	Simple	object	access	protocol.	Google	Patents.	

MILDENBERGER,	 P.,	 EICHELBERG,	 M.	 &	 MARTIN,	 E.	 2002.	 Introduction	 to	 the	 DICOM	 standard.	
European	Radiology,	12,	920-927.	

MILLINGTON,	D.	S.,	SISTA,	R.,	ECKHARDT,	A.,	ROUSE,	J.,	BALI,	D.,	GOLDBERG,	R.,	COTTEN,	M.,	BUCKLEY,	
R.	&	PAMULA,	V.	2010.	Digital	Microfluidics:	A	Future	Technology	in	the	Newborn	Screening	
Laboratory?	Seminars	in	Perinatology,	34,	163-169.	

MINSKY,	M.	1988.	Memoir	on	inventing	the	confocal	scanning	microscope.	Scanning,	10,	128-138.	
MURZIN,	A.	G.,	BRENNER,	S.	E.,	HUBBARD,	T.	&	CHOTHIA,	C.	1995.	SCOP:	A	structural	classification	of	

proteins	database	for	the	investigation	of	sequences	and	structures.	J	Mol	Biol,	247,	536-540.	
NEUZI,	 P.,	 GISELBRECHT,	 S.,	 LANGE,	 K.,	 HUANG,	 T.	 J.	 &	 MANZ,	 A.	 2012.	 Revisiting	 lab-on-a-chip	

technology	for	drug	discovery.	Nat	Rev	Drug	Discov,	11,	620-32.	
NEVIN,	D.	E.	&	PRATT,	J.	M.	1991.	A	coupled	in	vitro	transcription-translation	system	for	the	exclusive	

synthesis	of	polypeptides	expressed	from	the	T7	promoter.	FEBS	Letters,	291,	259-263.	
NIEDERHOLTMEYER,	H.,	SUN,	Z.	Z.,	HORI,	Y.,	YEUNG,	E.,	VERPOORTE,	A.,	MURRAY,	R.	M.	&	MAERKL,	

S.	J.	2015.	Rapid	cell-free	forward	engineering	of	novel	genetic	ring	oscillators.	Elife,	4,	e09771.	
NIU,	 X.,	 GIELEN,	 F.,	 DEMELLO,	 A.	 J.	 &	 EDEL,	 J.	 B.	 2009.	 Electro-coalescence	 of	 digitally	 controlled	

droplets.	Anal	Chem,	81,	7321-5.	
NOIREAUX,	 V.,	 BAR-ZIV,	 R.	 &	 LIBCHABER,	 A.	 2003.	 Principles	 of	 cell-free	 genetic	 circuit	 assembly.	

Proceedings	of	the	National	Academy	of	Sciences,	100,	12672-12677.	
NOIREAUX,	V.	&	LIBCHABER,	A.	2004.	A	vesicle	bioreactor	as	a	step	toward	an	artificial	cell	assembly.	

Proceedings	of	the	National	Academy	of	Sciences	of	the	United	States	of	America,	101,	17669-
17674.	

PAEGEL,	B.	M.,	BLAZEJ,	R.	G.	&	MATHIES,	R.	A.	2003.	Microfluidic	devices	for	DNA	sequencing:	sample	
preparation	and	electrophoretic	analysis.	Curr	Opin	Biotechnol,	14,	42-50.	

PASOTTI,	 L.,	 POLITI,	 N.,	 ZUCCA,	 S.,	 CUSELLA	 DE	 ANGELIS,	 M.	 G.	 &	 MAGNI,	 P.	 2012.	 Bottom-up	
engineering	of	biological	systems	through	standard	bricks:	a	modularity	study	on	basic	parts	
and	devices.	PLoS	ONE,	7,	e39407.	

PRINDLE,	 A.,	 SELIMKHANOV,	 J.,	 LI,	 H.,	 RAZINKOV,	 I.,	 TSIMRING,	 L.	 S.	&	HASTY,	 J.	 2014.	 Rapid	 and	
tunable	post-translational	coupling	of	genetic	circuits.	Nature,	508,	387-391.	

169	|	P a g e 	
	

RO,	D.-K.,	PARADISE,	E.	M.,	OUELLET,	M.,	FISHER,	K.	 J.,	NEWMAN,	K.	L.,	NDUNGU,	J.	M.,	HO,	K.	A.,	
EACHUS,	R.	A.,	HAM,	T.	S.,	KIRBY,	J.,	CHANG,	M.	C.	Y.,	WITHERS,	S.	T.,	SHIBA,	Y.,	SARPONG,	R.	
&	 KEASLING,	 J.	 D.	 2006.	 Production	 of	 the	 antimalarial	 drug	 precursor	 artemisinic	 acid	 in	
engineered	yeast.	Nature,	440,	940-943.		

ROMERO,	P.	A.	&	ABATE,	A.	R.	2012.	Flow	focusing	geometry	generates	droplets	through	a	plug	and	
squeeze	mechanism.	Lab	on	a	Chip,	12,	5130-5132.	

ROEHNER,	N.,	OBERORTNER,	E.,	POCOCK,	M.,	BEAL,	J.,	CLANCY,	K.,	MADSEN,	C.,	MISIRLI,	G.,	WIPAT,	
A.,	SAURO,	H.	&	MYERS,	C.	J.	2014.	Proposed	Data	Model	for	the	Next	Version	of	the	Synthetic	
Biology	Open	Language.	ACS	Synthetic	Biology,	4.1	57-71.		

SAINZ	DE	MURIETA,	I.,	BULTELLE,	M.	&	KITNEY,	R.	I.	2016.	Toward	the	First	Data	Acquisition	Standard	
in	Synthetic	Biology.	ACS	Synth	Biol,	5	(8),	817-826.	

SCHAERLI,	 Y.	 &	 HOLLFELDER,	 F.	 2009.	 The	 potential	 of	 microfluidic	 water-in-oil	 droplets	 in	
experimental	biology.	Molecular	BioSystems,	5,	1392-1404.	

SERRANO,	L.	2007.	Synthetic	biology:	promises	and	challenges.	Mol	Syst	Biol,	3.1,	158.	
SHAH,	 N.	 H.	 &	 TENENBAUM,	 J.	 D.	 2012.	 The	 coming	 age	 of	 data-driven	 medicine:	 translational	

bioinformatics'	next	frontier.	J	Am	Med	Inform	Assoc,	19,	e2-4.	
SHETTY,	R.,	ENDY,	D.	&	KNIGHT,	T.,	JR.	2008.	Engineering	BioBrick	vectors	from	BioBrick	parts.	Journal	

of	Biological	Engineering,	2,	1-12.	
SHIN,	 J.	 &	 NOIREAUX,	 V.	 2010.	 Efficient	 cell-free	 expression	 with	 the	 endogenous	 E.	 Coli	 RNA	

polymerase	and	sigma	factor	70.	J	Biol	Eng,	4,	8.	
SHIN,	J.	&	NOIREAUX,	V.	2012.	An	E.	coli	cell-free	expression	toolbox:	application	to	synthetic	gene	

circuits	and	artificial	cells.	ACS	Synth	Biol,	1,	29-41.	
SINGH,	 A.	 V.,	 FERRI,	 M.,	 TAMPLENIZZA,	 M.,	 BORGHI,	 F.,	 DIVITINI,	 G.,	 DUCATI,	 C.,	 LENARDI,	 C.,	

PIAZZONI,	C.,	MERLINI,	M.,	PODESTA,	A.	&	MILANI,	P.	2012.	Bottom-up	engineering	of	 the	
surface	roughness	of	nanostructured	cubic	zirconia	to	control	cell	adhesion.	Nanotechnology,	
23,	475101.	

SINHA,	 J.,	 REYES,	 S.	 J.	 &	 GALLIVAN,	 J.	 P.	 2010.	 Reprogramming	 bacteria	 to	 seek	 and	 destroy	 an	
herbicide.	Nat	Chem	Biol,	6,	464-470.	

SONG,	 H.,	 CHEN,	 D.	 L.	 &	 ISMAGILOV,	 R.	 F.	 2006.	 Reactions	 in	 droplets	 in	 microfluidic	 channels.	
Angewandte	Chemie	(International	ed.	in	English),	45,	7336-56.	

SRISA-ART,	M.,	DEMELLO,	A.	J.	&	EDEL,	J.	B.	2007.	High-Throughput	DNA	Droplet	Assays	Using	Picoliter	
Reactor	Volumes.	Analytical	Chemistry,	79,	6682-6689.	

SRISA-ART,	M.,	DEMELLO,	A.	 J.	&	EDEL,	 J.	 B.	 2009.	High-throughput	 confinement	and	detection	of	
single	DNA	molecules	in	aqueous	microdroplets.	Chemical	Communications,	6548-6550.	

STRICKER,	J.,	COOKSON,	S.,	BENNETT,	M.	R.,	MATHER,	W.	H.,	TSIMRING,	L.	S.	&	HASTY,	J.	2008.	A	fast,	
robust	and	tunable	synthetic	gene	oscillator.	Nature,	456,	516-519.		

SUN,	 Z.	 Z.,	 YEUNG,	 E.,	 HAYES,	 C.	 A.,	 NOIREAUX,	 V.	 &	MURRAY,	 R.	M.	 2014.	 Linear	 DNA	 for	 rapid	
prototyping	of	synthetic	biological	circuits	in	an	Escherichia	coli	based	TX-TL	cell-free	system.	
ACS	Synth	Biol,	3,	387-97.		

TAKAHASHI,	M.	K.,	HAYES,	C.	A.,	CHAPPELL,	J.,	SUN,	Z.	Z.,	MURRAY,	R.	M.,	NOIREAUX,	V.	&	LUCKS,	J.	B.	
2015.	 Characterizing	 and	 prototyping	 genetic	 networks	 with	 cell-free	 transcription–
translation	reactions.	Methods,	86,	60-72.	

TAWFIK,	D.	S.	&	GRIFFITHS,	A.	D.	1998.	Man-made	cell-like	compartments	for	molecular	evolution.	
Nat	Biotech,	16,	652-656.	

THEBERGE,	A.	B.,	COURTOIS,	F.,	SCHAERLI,	Y.,	FISCHLECHNER,	M.,	ABELL,	C.,	HOLLFELDER,	F.	&	HUCK,	
W.	 T.	 S.	 2010.	 Microdroplets	 in	 Microfluidics:	 An	 Evolving	 Platform	 for	 Discoveries	 in	
Chemistry	and	Biology.	Angewandte	Chemie	International	Edition,	49,	5846-5868.	

V.	KNYAZKOV,	K.,	V.	KOVALCHUK,	S.,	N.	TCHUROV,	T.,	V.	MARYIN,	S.	&	V.	BOUKHANOVSKY,	A.	2012.	
CLAVIRE:	 e-Science	 infrastructure	 for	 data-driven	 computing.	 Journal	 of	 Computational	
Science,	3,	504-510.	

170	|	P a g e 	
	

VILLAR,	G.,	HERON,	A.	J.	&	BAYLEY,	H.	2011.	Formation	of	droplet	networks	that	function	in	aqueous	
environments.	Nat	Nano,	6,	803-808.	

VISKARI,	 P.	 J.	 &	 LANDERS,	 J.	 P.	 2006.	 Unconventional	 detection	methods	 for	microfluidic	 devices.	
Electrophoresis,	27,	1797-810.	

WANG,	S.,	ZHANG,	X.,	WANG,	W.	&	LEE,	L.	J.	2009.	Semicontinuous	flow	electroporation	chip	for	high-
throughput	transfection	on	mammalian	cells.	Analytical	Chemistry,	81,	4414-21.	

WILLIAMS,	R.,	PEISAJOVICH,	S.	G.,	MILLER,	O.	J.,	MAGDASSI,	S.,	TAWFIK,	D.	S.	&	GRIFFITHS,	A.	D.	2006.	
Amplification	of	complex	gene	libraries	by	emulsion	PCR.	Nat	Methods,	3,	545-50.	

WIN,	M.	N.	&	SMOLKE,	C.	D.	2007.	A	modular	and	extensible	RNA-based	gene-regulatory	platform	for	
engineering	cellular	function.	Proceedings	of	the	National	Academy	of	Sciences,	104,	14283-
14288.	

YANG,	Y.-H.,	KIM,	T.-W.,	PARK,	S.-H.,	LEE,	K.,	PARK,	H.-Y.,	SONG,	E.,	JOO,	H.-S.,	KIM,	Y.-G.,	HAHN,	J.-S.	
&	 KIM,	 B.-G.	 2009.	 Cell-Free	 Escherichia	 coli-Based	 System	 To	 Screen	 for	Quorum-Sensing	
Molecules	 Interacting	with	Quorum	Receptor	 Proteins	 of	 Streptomyces	 coelicolor.	Applied	
and	Environmental	Microbiology,	75,	6367-6372.		

YANG,	J.,	SELVAGANAPATHY,	P.	R.,	GOULD,	T.	J.,	DWIVEDI,	D.	J.,	LIU,	D.,	FOX-ROBICHAUD,	A.	E.	&	LIAW,	
P.	 C.	 2015.	 A	microfluidic	 device	 for	 rapid	 quantification	 of	 cell-free	 DNA	 in	 patients	with	
severe	sepsis.	Lab	Chip,	15,	3925-33.	

ZHANG,	A.	L.,	LIU,	H.,	YANG,	M.	M.,	GONG,	Y.	S.	&	CHEN,	H.	2007.	Assay	and	characterization	of	a	
strong	 promoter	 element	 from	 B.	 subtilis.	 Biochemical	 and	 biophysical	 research	
communications,	354,	90-5.	

ZHANG,	 C.,	 XU,	 J.,	 MA,	 W.	 &	 ZHENG,	 W.	 2006.	 PCR	 microfluidic	 devices	 for	 DNA	 amplification.	
Biotechnology	Advances,	24,	243-284.	

ZHOU,	X.,	CAI,	S.,	HONG,	A.,	YOU,	Q.,	YU,	P.,	SHENG,	N.,	SRIVANNAVIT,	O.,	MURANJAN,	S.,	ROUILLARD,	
J.	M.,	XIA,	Y.,	ZHANG,	X.,	XIANG,	Q.,	GANESH,	R.,	ZHU,	Q.,	MATEJKO,	A.,	GULARI,	E.	&	GAO,	X.	
2004.	Microfluidic	PicoArray	synthesis	of	oligodeoxynucleotides	and	simultaneous	assembling	
of	multiple	DNA	sequences.	Nucleic	Acids	Res,	32,	5409-17.	

ZUBAY,	G.	1973.	In	vitro	synthesis	of	protein	in	microbial	systems.	Annu	Rev	Genet,	7,	267-87.	
ZUBAY,	 G.	 1980.	 The	 Isolation	 and	 Properties	 of	 CAP,	 the	 Catabolite	 Gene	 Activator.	Methods	 in	

Enzymology,	75,	856-877.		

	

