367,621 research outputs found

    Periodic Solutions of Second Order Nonlinear Difference Equations with Singular Ï•

    Get PDF
    We obtain some existence results of solutions for discrete periodic boundary value problems with singular ϕ-Laplacian operator ∇Δuk/1-κ(Δuk)2+rkuk+mk/(uk)λ=ek,   2≤k≤N-1,           u1=uN, and     Δu1=ΔuN-1 by using the upper and lower solutions method and Brouwer degree theory, where κ>0 is a constant, r=(r2,…,rN-1), m=(m2,…,mN-1), e=(e2,…,eN-1)∈RN-2, and λ>0 is a parameter. We also give some examples with singular nonlinearities to illustrate our main results

    The sign of the Green function of an n-th order linear boundary value problem

    Full text link
    [EN] This paper provides results on the sign of the Green function (and its partial derivatives) of ann-th order boundary value problem subject to a wide set of homogeneous two-point boundary conditions. The dependence of the absolute value of the Green function and some of its partial derivatives with respect to the extremes where the boundary conditions are set is also assessed.This work has been supported by the Spanish Ministerio de Economia, Industria y Competitividad (MINECO), the Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER UE) grant MTM2017-89664-P.Almenar, P.; Jódar Sánchez, LA. (2020). The sign of the Green function of an n-th order linear boundary value problem. Mathematics. 8(5):1-22. https://doi.org/10.3390/math8050673S12285Butler, G. ., & Erbe, L. . (1983). Integral comparison theorems and extremal points for linear differential equations. Journal of Differential Equations, 47(2), 214-226. doi:10.1016/0022-0396(83)90034-7Peterson, A. C. (1979). Green’s functions for focal type boundary value problems. Rocky Mountain Journal of Mathematics, 9(4). doi:10.1216/rmj-1979-9-4-721Peterson, A. C. (1980). Focal Green’s functions for fourth-order differential equations. Journal of Mathematical Analysis and Applications, 75(2), 602-610. doi:10.1016/0022-247x(80)90104-3Elias, U. (1980). Green’s functions for a non-disconjugate differential operator. Journal of Differential Equations, 37(3), 318-350. doi:10.1016/0022-0396(80)90103-5Nehari, Z. (1967). Disconjugate linear differential operators. Transactions of the American Mathematical Society, 129(3), 500-500. doi:10.1090/s0002-9947-1967-0219781-0Keener, M. S., & Travis, C. C. (1978). Positive Cones and Focal Points for a Class of nth Order Differential Equations. Transactions of the American Mathematical Society, 237, 331. doi:10.2307/1997625Schmitt, K., & Smith, H. L. (1978). Positive solutions and conjugate points for systems of differential equations. Nonlinear Analysis: Theory, Methods & Applications, 2(1), 93-105. doi:10.1016/0362-546x(78)90045-7Eloe, P. W., Hankerson, D., & Henderson, J. (1992). Positive solutions and conjugate points for multipoint boundary value problems. Journal of Differential Equations, 95(1), 20-32. doi:10.1016/0022-0396(92)90041-kEloe, P. W., & Henderson, J. (1994). Focal Point Characterizations and Comparisons for Right Focal Differential Operators. Journal of Mathematical Analysis and Applications, 181(1), 22-34. doi:10.1006/jmaa.1994.1003Almenar, P., & Jódar, L. (2015). Solvability ofNth Order Linear Boundary Value Problems. International Journal of Differential Equations, 2015, 1-19. doi:10.1155/2015/230405Almenar, P., & Jódar, L. (2016). Improving Results on Solvability of a Class ofnth-Order Linear Boundary Value Problems. International Journal of Differential Equations, 2016, 1-10. doi:10.1155/2016/3750530Almenar, P., & Jodar, L. (2017). SOLVABILITY OF A CLASS OF N -TH ORDER LINEAR FOCAL PROBLEMS. Mathematical Modelling and Analysis, 22(4), 528-547. doi:10.3846/13926292.2017.1329757Sun, Y., Sun, Q., & Zhang, X. (2014). Existence and Nonexistence of Positive Solutions for a Higher-Order Three-Point Boundary Value Problem. Abstract and Applied Analysis, 2014, 1-7. doi:10.1155/2014/513051Hao, X., Liu, L., & Wu, Y. (2015). Iterative solution to singular nth-order nonlocal boundary value problems. Boundary Value Problems, 2015(1). doi:10.1186/s13661-015-0393-6Webb, J. R. L. (2017). New fixed point index results and nonlinear boundary value problems. Bulletin of the London Mathematical Society, 49(3), 534-547. doi:10.1112/blms.12055Jiang, D., & Yuan, C. (2010). The positive properties of the Green function for Dirichlet-type boundary value problems of nonlinear fractional differential equations and its application. Nonlinear Analysis: Theory, Methods & Applications, 72(2), 710-719. doi:10.1016/j.na.2009.07.012Wang, Y., & Liu, L. (2017). Positive properties of the Green function for two-term fractional differential equations and its application. The Journal of Nonlinear Sciences and Applications, 10(04), 2094-2102. doi:10.22436/jnsa.010.04.63Zhang, L., & Tian, H. (2017). Existence and uniqueness of positive solutions for a class of nonlinear fractional differential equations. Advances in Difference Equations, 2017(1). doi:10.1186/s13662-017-1157-7Wang, Y. (2020). The Green’s function of a class of two-term fractional differential equation boundary value problem and its applications. Advances in Difference Equations, 2020(1). doi:10.1186/s13662-020-02549-

    Nonlocal operators are chaotic

    Full text link
    [EN] We characterize for the first time the chaotic behavior of nonlocal operators that come from a broad class of time-stepping schemes of approximation for fractional differential operators. For that purpose, we use criteria for chaos of Toeplitz operators in Lebesgue spaces of sequences. Surprisingly, this characterization is proved to be-in some cases-dependent of the fractional order of the operator and the step size of the scheme.C. Lizama is partially supported by FONDECYT (Grant No. 1180041) and DICYT, Universidad de Santiago de Chile, USACH. M. Murillo-Arcila is supported by MICINN and FEDER, Projects MTM2016-75963-P and PID2019-105011GB-I00, and by Generalitat Valenciana, Project GVA/2018/110. A. Peris is supported by MICINN and FEDER, Projects MTM2016-75963-P and PID2019-105011GB-I00, and by Generalitat Valenciana, Project PROMETEO/2017/102.Lizama, C.; Murillo Arcila, M.; Peris Manguillot, A. (2020). Nonlocal operators are chaotic. Chaos An Interdisciplinary Journal of Nonlinear Science. 30(10):1-8. https://doi.org/10.1063/5.0018408183010Abadias, L., & Miana, P. J. (2018). Generalized Cesàro operators, fractional finite differences and Gamma functions. Journal of Functional Analysis, 274(5), 1424-1465. doi:10.1016/j.jfa.2017.10.010Atici, F. M., & Eloe, P. (2009). Discrete fractional calculus with the nabla operator. Electronic Journal of Qualitative Theory of Differential Equations, (3), 1-12. doi:10.14232/ejqtde.2009.4.3Atıcı, F. M., & Eloe, P. W. (2011). Two-point boundary value problems for finite fractional difference equations. Journal of Difference Equations and Applications, 17(4), 445-456. doi:10.1080/10236190903029241Atici, F. M., & Eloe, P. W. (2008). Initial value problems in discrete fractional calculus. Proceedings of the American Mathematical Society, 137(03), 981-989. doi:10.1090/s0002-9939-08-09626-3Atıcı, F. M., & Şengül, S. (2010). Modeling with fractional difference equations. Journal of Mathematical Analysis and Applications, 369(1), 1-9. doi:10.1016/j.jmaa.2010.02.009Banks, J., Brooks, J., Cairns, G., Davis, G., & Stacey, P. (1992). On Devaney’s Definition of Chaos. The American Mathematical Monthly, 99(4), 332-334. doi:10.1080/00029890.1992.11995856Baranov, A., & Lishanskii, A. (2016). Hypercyclic Toeplitz Operators. Results in Mathematics, 70(3-4), 337-347. doi:10.1007/s00025-016-0527-xBayart, F., & Matheron, E. (2009). Dynamics of Linear Operators. doi:10.1017/cbo9780511581113DELAUBENFELS, R., & EMAMIRAD, H. (2001). Chaos for functions of discrete and continuous weighted shift operators. Ergodic Theory and Dynamical Systems, 21(05). doi:10.1017/s0143385701001675Edelman, M. (2014). Caputo standard α-family of maps: Fractional difference vs. fractional. Chaos: An Interdisciplinary Journal of Nonlinear Science, 24(2), 023137. doi:10.1063/1.4885536Edelman, M. (2015). On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Grünvald-Letnikov fractional difference (differential) equations. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(7), 073103. doi:10.1063/1.4922834Edelman, M. (2015). Fractional Maps and Fractional Attractors. Part II: Fractional Difference Caputo α- Families of Maps. The interdisciplinary journal of Discontinuity, Nonlinearity, and Complexity, 4(4), 391-402. doi:10.5890/dnc.2015.11.003Erbe, L., Goodrich, C. S., Jia, B., & Peterson, A. (2016). Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions. Advances in Difference Equations, 2016(1). doi:10.1186/s13662-016-0760-3Ferreira, R. A. C. (2012). A discrete fractional Gronwall inequality. Proceedings of the American Mathematical Society, 140(5), 1605-1612. doi:10.1090/s0002-9939-2012-11533-3Ferreira, R. A. C. (2013). Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one. Journal of Difference Equations and Applications, 19(5), 712-718. doi:10.1080/10236198.2012.682577Goodrich, C., & Peterson, A. C. (2015). Discrete Fractional Calculus. doi:10.1007/978-3-319-25562-0Goodrich, C. S. (2012). On discrete sequential fractional boundary value problems. Journal of Mathematical Analysis and Applications, 385(1), 111-124. doi:10.1016/j.jmaa.2011.06.022Goodrich, C. S. (2014). A convexity result for fractional differences. Applied Mathematics Letters, 35, 58-62. doi:10.1016/j.aml.2014.04.013Goodrich, C., & Lizama, C. (2020). A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. Israel Journal of Mathematics, 236(2), 533-589. doi:10.1007/s11856-020-1991-2Gray, H. L., & Zhang, N. F. (1988). On a new definition of the fractional difference. Mathematics of Computation, 50(182), 513-529. doi:10.1090/s0025-5718-1988-0929549-2Li, K., Peng, J., & Jia, J. (2012). Cauchy problems for fractional differential equations with Riemann–Liouville fractional derivatives. Journal of Functional Analysis, 263(2), 476-510. doi:10.1016/j.jfa.2012.04.011Lizama, C. (2017). The Poisson distribution, abstract fractional difference equations, and stability. Proceedings of the American Mathematical Society, 145(9), 3809-3827. doi:10.1090/proc/12895Lizama, C. (2015). lp-maximal regularity for fractional difference equations on UMD spaces. Mathematische Nachrichten, 288(17-18), 2079-2092. doi:10.1002/mana.201400326Lizama, C., & Murillo-Arcila, M. (2020). Discrete maximal regularity for volterra equations and nonlocal time-stepping schemes. Discrete & Continuous Dynamical Systems - A, 40(1), 509-528. doi:10.3934/dcds.2020020Martínez-Giménez, F. (2007). Chaos for power series of backward shift operators. Proceedings of the American Mathematical Society, 135(6), 1741-1752. doi:10.1090/s0002-9939-07-08658-3Radwan, A. G., AbdElHaleem, S. H., & Abd-El-Hafiz, S. K. (2016). Symmetric encryption algorithms using chaotic and non-chaotic generators: A review. Journal of Advanced Research, 7(2), 193-208. doi:10.1016/j.jare.2015.07.002Radwan, A. G., Moaddy, K., Salama, K. N., Momani, S., & Hashim, I. (2014). Control and switching synchronization of fractional order chaotic systems using active control technique. Journal of Advanced Research, 5(1), 125-132. doi:10.1016/j.jare.2013.01.003Wu, G.-C., & Baleanu, D. (2013). Discrete fractional logistic map and its chaos. Nonlinear Dynamics, 75(1-2), 283-287. doi:10.1007/s11071-013-1065-7Wu, G.-C., Baleanu, D., & Zeng, S.-D. (2014). Discrete chaos in fractional sine and standard maps. Physics Letters A, 378(5-6), 484-487. doi:10.1016/j.physleta.2013.12.01

    Solutions of fractional gas dynamics equation by a new technique

    Full text link
    [EN] In this paper, a novel technique is formed to obtain the solution of a fractional gas dynamics equation. Some reproducing kernel Hilbert spaces are defined. Reproducing kernel functions of these spaces have been found. Some numerical examples are shown to confirm the efficiency of the reproducing kernel Hilbert space method. The accurate pulchritude of the paper is arisen in its strong implementation of Caputo fractional order time derivative on the classical equations with the success of the highly accurate solutions by the series solutions. Reproducing kernel Hilbert space method is actually capable of reducing the size of the numerical work. Numerical results for different particular cases of the equations are given in the numerical section.This research was partially supported by Spanish Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and Generalitat Valenciana PROMETEO/2016/089.Akgül, A.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2020). Solutions of fractional gas dynamics equation by a new technique. Mathematical Methods in the Applied Sciences. 43(3):1349-1358. https://doi.org/10.1002/mma.5950S13491358433Singh, J., Kumar, D., & Kılıçman, A. (2013). Homotopy Perturbation Method for Fractional Gas Dynamics Equation Using Sumudu Transform. Abstract and Applied Analysis, 2013, 1-8. doi:10.1155/2013/934060Momani, S. (2005). Analytic and approximate solutions of the space- and time-fractional telegraph equations. Applied Mathematics and Computation, 170(2), 1126-1134. doi:10.1016/j.amc.2005.01.009Hajipour, M., Jajarmi, A., Baleanu, D., & Sun, H. (2019). On an accurate discretization of a variable-order fractional reaction-diffusion equation. Communications in Nonlinear Science and Numerical Simulation, 69, 119-133. doi:10.1016/j.cnsns.2018.09.004Meng, R., Yin, D., & Drapaca, C. S. (2019). Variable-order fractional description of compression deformation of amorphous glassy polymers. Computational Mechanics, 64(1), 163-171. doi:10.1007/s00466-018-1663-9Baleanu, D., Jajarmi, A., & Hajipour, M. (2018). On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag–Leffler kernel. Nonlinear Dynamics, 94(1), 397-414. doi:10.1007/s11071-018-4367-yJajarmi, A., & Baleanu, D. (2018). A new fractional analysis on the interaction of HIV withCD4+T-cells. Chaos, Solitons & Fractals, 113, 221-229. doi:10.1016/j.chaos.2018.06.009Baleanu, D., Jajarmi, A., Bonyah, E., & Hajipour, M. (2018). New aspects of poor nutrition in the life cycle within the fractional calculus. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1684-xJajarmi, A., & Baleanu, D. (2017). Suboptimal control of fractional-order dynamic systems with delay argument. Journal of Vibration and Control, 24(12), 2430-2446. doi:10.1177/1077546316687936Singh, J., Kumar, D., & Baleanu, D. (2018). On the analysis of fractional diabetes model with exponential law. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1680-1Kumar, D., Singh, J., Tanwar, K., & Baleanu, D. (2019). A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. International Journal of Heat and Mass Transfer, 138, 1222-1227. doi:10.1016/j.ijheatmasstransfer.2019.04.094Kumar, D., Singh, J., Al Qurashi, M., & Baleanu, D. (2019). A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying. Advances in Difference Equations, 2019(1). doi:10.1186/s13662-019-2199-9Kumar, D., Singh, J., Purohit, S. D., & Swroop, R. (2019). A hybrid analytical algorithm for nonlinear fractional wave-like equations. Mathematical Modelling of Natural Phenomena, 14(3), 304. doi:10.1051/mmnp/2018063Kumar, D., Tchier, F., Singh, J., & Baleanu, D. (2018). An Efficient Computational Technique for Fractal Vehicular Traffic Flow. Entropy, 20(4), 259. doi:10.3390/e20040259Goswami, A., Singh, J., Kumar, D., & Sushila. (2019). An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma. Physica A: Statistical Mechanics and its Applications, 524, 563-575. doi:10.1016/j.physa.2019.04.058Mohyud-Din, S. T., Bibi, S., Ahmed, N., & Khan, U. (2018). Some exact solutions of the nonlinear space–time fractional differential equations. Waves in Random and Complex Media, 29(4), 645-664. doi:10.1080/17455030.2018.1462541Momani, S., & Shawagfeh, N. (2006). Decomposition method for solving fractional Riccati differential equations. Applied Mathematics and Computation, 182(2), 1083-1092. doi:10.1016/j.amc.2006.05.008Hashim, I., Abdulaziz, O., & Momani, S. (2009). Homotopy analysis method for fractional IVPs. Communications in Nonlinear Science and Numerical Simulation, 14(3), 674-684. doi:10.1016/j.cnsns.2007.09.014Yıldırım, A. (2010). He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. International Journal of Computer Mathematics, 87(13), 2998-3006. doi:10.1080/00207160902874653Momani, S., & Odibat, Z. (2007). Numerical comparison of methods for solving linear differential equations of fractional order. Chaos, Solitons & Fractals, 31(5), 1248-1255. doi:10.1016/j.chaos.2005.10.068Rida, S. Z., El-Sayed, A. M. A., & Arafa, A. A. M. (2010). On the solutions of time-fractional reaction–diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 15(12), 3847-3854. doi:10.1016/j.cnsns.2010.02.007Machado, J. A. T., & Mata, M. E. (2014). A fractional perspective to the bond graph modelling of world economies. Nonlinear Dynamics, 80(4), 1839-1852. doi:10.1007/s11071-014-1334-0Raja Balachandar, S., Krishnaveni, K., Kannan, K., & Venkatesh, S. G. (2018). Analytical Solution for Fractional Gas Dynamics Equation. National Academy Science Letters, 42(1), 51-57. doi:10.1007/s40009-018-0662-xWang, Y.-L., Liu, Y., Li, Z., & zhang, H. (2018). Numerical solution of integro-differential equations of high-order Fredholm by the simplified reproducing kernel method. International Journal of Computer Mathematics, 96(3), 585-593. doi:10.1080/00207160.2018.1455091Gumah, G. N., Naser, M. F. M., Al-Smadi, M., & Al-Omari, S. K. (2018). Application of reproducing kernel Hilbert space method for solving second-order fuzzy Volterra integro-differential equations. Advances in Difference Equations, 2018(1). doi:10.1186/s13662-018-1937-8Al-Smadi, M. (2018). Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation. Ain Shams Engineering Journal, 9(4), 2517-2525. doi:10.1016/j.asej.2017.04.006Kashkari, B. S. H., & Syam, M. I. (2018). Reproducing Kernel Method for Solving Nonlinear Fractional Fredholm Integrodifferential Equation. Complexity, 2018, 1-7. doi:10.1155/2018/2304858Akgül, A., & Grow, D. (2019). Existence of Unique Solutions to the Telegraph Equation in Binary Reproducing Kernel Hilbert Spaces. Differential Equations and Dynamical Systems, 28(3), 715-744. doi:10.1007/s12591-019-00453-3Akgül, A., Khan, Y., Akgül, E. K., Baleanu, D., & Al Qurashi, M. M. (2017). Solutions of nonlinear systems by reproducing kernel method. The Journal of Nonlinear Sciences and Applications, 10(08), 4408-4417. doi:10.22436/jnsa.010.08.33Karatas Akgül, E. (2018). Reproducing kernel Hilbert space method for solutions of a coefficient inverse problem for the kinetic equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 8(2), 145-151. doi:10.11121/ijocta.01.2018.00568Akgül, A., Inc, M., & Karatas, E. (2015). Reproducing kernel functions for difference equations. Discrete & Continuous Dynamical Systems - S, 8(6), 1055-1064. doi:10.3934/dcdss.2015.8.1055Akgül, A., Inc, M., Karatas, E., & Baleanu, D. (2015). Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Advances in Difference Equations, 2015(1). doi:10.1186/s13662-015-0558-8Aronszajn, N. (1950). Theory of reproducing kernels. Transactions of the American Mathematical Society, 68(3), 337-337. doi:10.1090/s0002-9947-1950-0051437-7Bergman, S. (1950). The Kernel Function and Conformal Mapping. Mathematical Surveys and Monographs. doi:10.1090/surv/005Inc, M., & Akgül, A. (2014). Approximate solutions for MHD squeezing fluid flow by a novel method. Boundary Value Problems, 2014(1). doi:10.1186/1687-2770-2014-18Inc, M., Akgül, A., & Geng, F. (2014). Reproducing Kernel Hilbert Space Method for Solving Bratu’s Problem. Bulletin of the Malaysian Mathematical Sciences Society, 38(1), 271-287. doi:10.1007/s40840-014-0018-8Wang, Y., & Chao, L. (2008). Using reproducing kernel for solving a class of partial differential equation with variable-coefficients. Applied Mathematics and Mechanics, 29(1), 129-137. doi:10.1007/s10483-008-0115-yWu, B. Y., & Li, X. Y. (2011). A new algorithm for a class of linear nonlocal boundary value problems based on the reproducing kernel method. Applied Mathematics Letters, 24(2), 156-159. doi:10.1016/j.aml.2010.08.036Yao, H., & Lin, Y. (2009). Solving singular boundary-value problems of higher even-order. Journal of Computational and Applied Mathematics, 223(2), 703-713. doi:10.1016/j.cam.2008.02.01

    Energy inequalities for a model of wave propagation in cold plasma

    Get PDF
    Energy inequalities are derived for an elliptic-hyperbolic operator arising in plasma physics. These inequalities imply the existence of distribution and weak solutions to various closed boundary-value problems. An existence theorem is proven for a related class of Keldysh equations, and the failure of expected methods for obtaining uniqueness is discussed. The proofs use ideas recently introduced by Lupo, Morawetz, and Payne for a generalized Tricomi operator. The existence of strong solutions under open boundary conditions is also proven.Comment: 33 page

    Stochastic representation of solutions to degenerate elliptic and parabolic boundary value and obstacle problems with Dirichlet boundary conditions

    Full text link
    We prove existence and uniqueness of stochastic representations for solutions to elliptic and parabolic boundary value and obstacle problems associated with a degenerate Markov diffusion process. In particular, our article focuses on the Heston stochastic volatility process, which is widely used as an asset price model in mathematical finance and a paradigm for a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate, elliptic partial differential operator whose coefficients have linear growth in the spatial variables and where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to terminal/boundary value or obstacle problems for the parabolic Heston operator correspond to value functions for American-style options on the underlying asset.Comment: 47 pages; to appear in Transactions of the American Mathematical Societ
    • …
    corecore