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We obtain some existence results of solutions for discrete periodic boundary value problems with singular 𝜙-Laplacian operator
∇(Δ𝑢𝑘/√1 − 𝜅(Δ𝑢𝑘)

2)+𝑟𝑘𝑢𝑘 +(𝑚𝑘/(𝑢𝑘)
𝜆) = 𝑒𝑘, 2 ≤ 𝑘 ≤ 𝑁−1, 𝑢1 = 𝑢𝑁, and Δ𝑢1 = Δ𝑢𝑁−1 by using the upper and lower solutions

method and Brouwer degree theory, where 𝜅 > 0 is a constant, r = (𝑟2, . . . , 𝑟𝑁−1),m = (𝑚2, . . . , 𝑚𝑁−1), e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2,
and 𝜆 > 0 is a parameter. We also give some examples with singular nonlinearities to illustrate our main results.

1. Introduction

In this paperwe present some existence results for the discrete
periodic boundary value problems with singular 𝜙-Laplacian
operator

∇(
Δ𝑢𝑘

√1 − 𝜅(Δ𝑢𝑘)
2

)+ 𝑟𝑘𝑢𝑘 +
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘,

𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(1)

where 𝜅 > 0 is a constant, r = (𝑟2, . . . , 𝑟𝑁−1), m = (𝑚2, . . . ,

𝑚𝑁−1), e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2, 𝜆 > 0 is a parameter, and
[2,𝑁 − 1]Z := {2, 3, . . . , 𝑁 − 1} with𝑁 > 4 is an integer.

These problems are originated in the study that a particle
moves on a straight line, subject to a restoring force 𝐹 with
relativistic effects, which can be described by the differential
equation of motion:

(
𝑚0𝑢


√1 − 𝑢2/𝑐2
)



= 𝐹, (2)

where 𝑚0 is the rest mass of the particle and 𝑐 is the speed
of light in the vacuum (see [1–3]). Assume that 𝑚0 = 𝑐 = 1.

The existence andmultiplicity of solutions for (2) subjected to
Dirichlet, Robin, periodic, orNeumann boundary conditions
have been studied by various methods, such as the method
of lower and upper solutions, topological degree theory, and
critical point theory; see [4–8] and the references therein.

An interesting question is which techniques and the-
orems regarding the continuous differential equations can
be adapted for difference equations (see Kelly and Peterson
[9], Agarwal [10], and Bereanu and Mawhin [11, 12]). The
purpose of this paper is to show that some known existence
and multiplicity results of periodic solution for singular
perturbations of the singular 𝜙-Laplacian operator also hold
for the corresponding difference equation and develop some
results for the singular difference equation boundary value
problems; see [12–17].

In the case 𝜅 = 1 and r = 0, Bereanu and Mawhin [12]
proved that the discrete periodic problem with an attractive
nonlinearity

∇(
Δ𝑢𝑘

√1 − (Δ𝑢𝑘)
2

)+
1

(𝑢𝑘)
𝜆
= 𝑒𝑘, 𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1

(3)
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has at least one positive solution if and only if e = 1/(𝑁 −

2)∑
𝑁−1

𝑠=2
𝑒𝑠 > 0. When 𝜆 ≥ 1, they also showed that the

repulsive singular periodic problem

∇(
Δ𝑢𝑘

√1 − (Δ𝑢𝑘)
2

)−
1

(𝑢𝑘)
𝜆
= 𝑒𝑘, 𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1

(4)

has at least one positive solution if and only if e < 0.
In the case 𝜅 = 0, the problem (1) is the classical discrete

periodic problem

∇ (Δ𝑢𝑘) + 𝑟𝑘𝑢𝑘 +
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘, 𝑘 ∈ [2,𝑁 − 1]Z, (5)

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1. (6)

This problem has been studied by Ma and Lu [15–17] where
the existence of positive solution needs a necessary condition
𝑟𝑘 < 0 or 0 < 𝑟𝑘 < 4sin2(𝜋/2𝑁) (see [14]). For other
results concerning the existence of solutions for singular
nonlinear difference equation boundary value problems, see,
for example, [9, 10, 18].

It is interesting to remark that, in contrast to the classical
case, the periodic problem with discrete relativistic accelera-
tion

∇(
Δ𝑢𝑘

√1 − (Δ𝑢𝑘)
2

)+ 𝑟𝑢𝑘 = 𝑒𝑘, 𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1

(7)

has at least one solution for any 𝑟 ̸= 0 and any forcing term e
(see [12, Corollary 2]). Note that, for this type of problems, in
some sense, the same situation occurs also if we add a singular
nonlinearity.

In order to explain the main result, let us introduce some
notation. For any 𝑥 ∈ R, we write 𝑥+ = max{𝑥, 0} and 𝑥− =

max{−𝑥, 0}. For e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2, we put

𝐸 =
𝑁−1

∑
𝑘=2

𝑒𝑘, 𝐸± =
𝑁−1

∑
𝑘=2

𝑒
±

𝑘
(8)

and note that 𝐸 = 𝐸+ − 𝐸−.
Motivated by the above results from [12, 14–17], we

consider the discrete periodic problem

∇(
Δ𝑢𝑘

√1 − 𝜅(Δ𝑢𝑘)
2

)+ 𝑟𝑘𝑢𝑘 −
1

(𝑢𝑘)
𝜆
= 𝑒𝑘,

𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(9)

where r = (𝑟2, . . . , 𝑟𝑁−1), e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2, and 𝜆 ≥
1. If either r > 0 or r = 0 and e < −𝑁𝑅−/2√𝜅(𝑁−2), then we

prove that the above problem has at least one solution (see
Example 14). In the case r < 0, we show that the periodic
problem with repulsive singular term

∇(
Δ𝑢𝑘

√1 − 𝜅(Δ𝑢𝑘)
2

)+ 𝑟𝑘𝑢𝑘 −
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘,

𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(10)

with 𝜆 > 0 and m = (𝑚2, . . . , 𝑚𝑁−1) ≥ 0, is solvable (see
Example 18) provided that

−𝐸 > (1 + 𝜆) [
|𝑅|𝜆𝑀

𝜆𝜆
]

1/(1+𝜆)

+
𝑁𝑅−
2√𝜅

. (11)

On the other hand, we also consider the periodic problem
with attractive singularity

∇(
Δ𝑢𝑘

√1 − 𝜅(Δ𝑢𝑘)
2

)+ 𝑟𝑘𝑢𝑘 +
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘,

𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(12)

where r = (𝑟2, . . . , 𝑟𝑁−1), m = (𝑚2, . . . , 𝑚𝑁−1), and e = (𝑒2,

. . . , 𝑒𝑁−1) ∈ R𝑁−2 with m ≥ 0 and 𝜆 > 0. If either r < 0 or
r = 0 and in both cases 𝐸 < 𝑀(2√𝜅/𝑁)𝜆 − (𝑁𝑅−/2√𝜅), then
the problem (12) has at least one solution (see Example 19).
Moreover, in the pure attractive case, that is,m > 0, it follows
that (12) is solvable if either r < 0 or r = 0 and 𝐸 > 𝑁𝑅+/2√𝜅

(Theorem 21).
The rest of the paper is organized as follows. In Section 2,

we introduce some notations and auxiliary results. In Sec-
tion 3 we establish the method of non-well-ordered lower
and upper solutions and give an application on the discrete
periodic problem with the strong repulsive nonlinearities.
In addition, we introduce some methods to construct lower
and upper solutions. Finally, in Section 4 we give some
applications to deal with the singular perturbations periodic
problems.

2. Some Notations and Auxiliary Results

In this section, we first introduce some notations. Let 𝑎, 𝑏 ∈ N

with 𝑎 < 𝑏; we denote [𝑎, 𝑏]Z := {𝑎, 𝑎 + 1, . . . , 𝑏}.
For u = (𝑢1, . . . , 𝑢𝑝) ∈ R𝑝, set ‖u‖∞ = max1≤𝑘≤𝑝|𝑢𝑘|,

‖u‖1 = ∑
𝑝

𝑘=1
|𝑢𝑘|. If 𝛼, 𝛽 ∈ R𝑝, we write 𝛼 ≤ 𝛽 (resp., 𝛼 < 𝛽)

if 𝛼𝑘 ≤ 𝛽𝑘 (resp., 𝛼𝑘 < 𝛽𝑘) for all 1 ≤ 𝑘 ≤ 𝑝. The following
assumption upon 𝜙 (called singular) is made throughout the
paper:

(𝐻𝜙) 𝜙 : (−𝑎, 𝑎) → R (0 < 𝑎 < ∞) is an increasing
homeomorphism with 𝜙(0) = 0.

The model example is

𝜙 (𝑠) =
𝑠

√1 − 𝜅𝑠2
, 𝑠 ∈ (−

1

√𝜅
,
1

√𝜅
) . (13)
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Let𝑁 ∈ N with𝑁 ≥ 4 be fixed and u = (𝑢1, 𝑢2, . . . , 𝑢𝑁) ∈

R𝑁. Then we denote

Δu = (Δ𝑢1, . . . , Δ𝑢𝑁−1) ∈ R
𝑁−1

, (14)

where Δ𝑢𝑘 = 𝑢𝑘+1 − 𝑢𝑘 for 𝑘 ∈ [1,𝑁 − 1]Z and if ‖Δu‖∞ :=
max𝑘∈[1,𝑁−1]Z |Δ𝑢𝑘| < 𝑎, define

∇ [𝜙 (Δu)] = (∇ [𝜙 (Δ𝑢2)] , . . . , ∇ [𝜙 (Δ𝑢𝑁−1)]) ∈ R
𝑁−2

,

(15)

where ∇[𝜙(Δ𝑢𝑘)] = 𝜙(Δ𝑢𝑘) − 𝜙(Δ𝑢𝑘−1) for 𝑘 ∈ [2,𝑁 − 1]Z.
Let 𝑓 : [2,𝑁 − 1]Z × R2 → R be a continuous function.

Then its Nemytskii operator 𝑁𝑓(u) : R𝑁 → R𝑁−2 is given
by

𝑁𝑓 (u) = (𝑓 (2, 𝑢2, Δ𝑢2) , . . . , 𝑓 (𝑁 − 1, 𝑢𝑁−1, Δ𝑢𝑁−1)) .

(16)

It follows that𝑁𝑓 is continuous and takes bounded sets into
bounded sets.

Let 𝑄 be the projectors defined by

u = 𝑄u =
1

𝑁 − 2

𝑁−1

∑
𝑘=2

𝑢𝑘 ∀u ∈ R
𝑁
. (17)

If u ∈ R𝑁, we write ũ = u − u and we will consider the
following closed subspaces of R𝑁:

𝑉
𝑁−2

= {u ∈ R
𝑁
| 𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1} . (18)

Let the vector space 𝑉𝑁−2 be endowed with the orienta-
tion of R𝑁 and the norm ‖u‖∞ = max1≤𝑘≤𝑁|𝑢𝑘|. Its elements
can be associated with the coordinates (𝑢2, . . . , 𝑢𝑁−1) and
correspond to the elements of R𝑁 of the form

(
𝑢2 + 𝑢𝑁−1

2
, 𝑢2, 𝑢3, . . . , 𝑢𝑁−1,

𝑢2 + 𝑢𝑁−1
2

) . (19)

Now, we recall the following technical result given as
Lemma 1 from [12].

Lemma 1. For each h = (ℎ2, . . . , ℎ𝑁−1), there exists a unique
𝛾 := 𝑄𝜙(h) such that

2𝜙
−1
(𝛾) +

𝑁−1

∑
𝑘=3

𝜙
−1
(
𝑘−1

∑
𝑗=2

ℎ𝑗 + 𝛾) = 0. (20)

Moreover, the function 𝑄𝜙 is continuous.

Lemma 2. Let 𝐹 : R𝑁 → R𝑁−2 be a continuous operator
which takes bounded sets into bounded sets and consider the
abstract discrete periodic problem:

∇ [𝜙 (Δu)] = 𝐹 (u) , 𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1. (21)

A function u is a solution of (21) if and only if u ∈ 𝑉𝑁−2 is a
fixed point of the continuous operator A𝐹 : 𝑉𝑁−2 → 𝑉𝑁−2

defined by A𝐹(u) = k, where k = (V1, V2, . . . , V𝑁) ∈ 𝑉𝑁−2

satisfying

V2 = 𝑢2 + 𝑄𝑁𝐹 (u) ,

V𝑘 = 𝑢2 + 𝑄𝑁𝐹 (u)

+
𝑘

∑
𝑗=3

𝜙
−1
(

𝑗−1

∑
𝑙=2

𝐹 (𝑢𝑘) + 𝑄𝜙 (𝑁𝐹 (u))) ,

𝑘 ∈ [3,𝑁 − 1]Z.

(22)

Furthermore, ‖Δ(A(u))‖∞ < 𝑎 for all u ∈ 𝑉𝑁−2 and

‖ũ‖∞ < 𝑎 (𝑁 − 2) (23)

for any solution u of (21).

Let us consider the discrete periodic problem

∇ [𝜙 (Δ𝑢𝑘)] = 𝑓 (𝑘, 𝑢𝑘, Δ𝑢𝑘) ,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1.
(24)

Obviously, fromLemma 2, the fixed point operator associated
with (24) is

A𝑓 (u) = u. (25)

Now, we state the method of upper and lower solutions
for discrete periodic problem (24) according to Bereanu and
Mawhin [12].

Definition 3. A function 𝛼 = (𝛼1, . . . , 𝛼𝑁) (resp., 𝛽 =
(𝛽1, . . . , 𝛽𝑁)) is called a lower solution (resp., an upper
solution) for (24) if ‖Δ𝛼‖∞ < 𝑎 (resp., ‖Δ𝛽‖

∞
< 𝑎) and

∇ [𝜙 (Δ𝛼𝑘)] ≥ 𝑓 (𝑘, 𝛼𝑘, Δ𝛼𝑘) ,

(resp. ∇ [𝜙 (Δ𝛽𝑘)] ≤ 𝑓 (𝑘, 𝛽𝑘, Δ𝛽𝑘)) ,

𝑘 ∈ [2,𝑁 − 1]Z,

𝛼1 = 𝛼𝑁, Δ𝛼1 ≥ Δ𝛼𝑁−1,

(resp. 𝛽1 = 𝛽𝑁, Δ𝛽1 ≤ Δ𝛽𝑁−1) .

(26)

Such a lower or an upper solution is called strict if the
inequality (26) is strict.

Lemma 4 (see [12, Theorem 3]). If (24) has a lower solution
𝛼 and an upper solution 𝛽 such that 𝛼 ≤ 𝛽, then (24) has a
solution u such that 𝛼 ≤ u ≤ 𝛽. Moreover, if 𝛼 and 𝛽 are strict,
then 𝛼 < u < 𝛽, and

deg [𝐼 −A𝑓, Ω𝛼,𝛽, 0] = −1, (27)

whereΩ𝛼,𝛽 = {u ∈ 𝑉𝑁−2 | 𝛼 < u < 𝛽, ‖Δu‖∞ < 𝑎}.

An easy adaption of the proof of [12,Theorem 3] provides
the following useful result.
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Lemma 5. Assume that (24) has a lower solution 𝛼 and an
upper solution 𝛽 such that 𝛼 < 𝛽, and

u ̸=A𝑓 (u) ∀𝑢 ∈ 𝜕Ω𝛼,𝛽. (28)

Then

deg [𝐼 −A𝑓, Ω𝛼,𝛽, 0] = −1. (29)

The next result is an elementary estimation of the oscilla-
tion of a periodic function.

Lemma 6. If 𝑢 : Z → R is a𝑁-periodic function, then

max
𝑘∈[1,𝑁]Z

𝑢𝑘 − min
𝑘∈[1,𝑁]Z

𝑢𝑘 ≤
𝑁

2
‖Δu‖∞. (30)

Proof. Let 𝑘∗ ∈ [1,𝑁 − 1]Z be such that 𝑢𝑘
∗

= min𝑘∈[1,𝑁]Z𝑢𝑘,
and let 𝑘∗ ∈ [𝑘∗, 𝑘∗ + 𝑁]Z be such that 𝑢𝑘∗ = max𝑘∈[1,𝑁]Z𝑢𝑘.
We have that

𝑢𝑘∗ − 𝑢𝑘
∗

=
𝑘
∗

−1

∑
𝑠=𝑘
∗

Δ𝑢𝑠 ≤ (𝑘
∗
− 𝑘∗) ‖Δu‖∞,

𝑢𝑘∗ − 𝑢𝑘
∗

=

𝑘
∗
+𝑁−1

∑
𝑠=𝑘∗

(−Δ𝑢𝑠) ≤ (𝑘∗ + 𝑁 − 𝑘
∗
) ‖Δu‖∞.

(31)

Then, multiplying both inequalities and using that 𝑥𝑦 ≤ (𝑥 +

𝑦)2/2, for all 𝑥, 𝑦 ∈ R, it follows that

(𝑢𝑘∗ − 𝑢𝑘
∗

)
2

≤
[𝑁‖Δu‖∞]

2

4
, (32)

and the proof is completed.

3. The Method of Lower and Upper
Solutions and Application

In 2008, Bereanu and Mawhin [12] proved that problem (24)
has at least one solution if it has a lower solution 𝛼 and an
upper solution 𝛽 with 𝛼 ≤ 𝛽. In the following result we prove
some additional concerning the location of the solution. In
particular, we have a posteriori estimationswhichwill be very
useful in the sequel (Remark 8).

Theorem 7. Assume that (24) has a lower solution 𝛼 and an
upper solution 𝛽 such that

∃𝑘⋆ ∈ [1,𝑁]Z : 𝛼𝑘
⋆

> 𝛽𝑘
⋆

. (33)

Then (24) has at least one solution u such that

min {𝛼𝑘
𝑢

, 𝛽𝑘
𝑢

} ≤ 𝑢𝑘
𝑢

≤ max {𝛼𝑘
𝑢

, 𝛽𝑘
𝑢

}

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑘𝑢 ∈ [1,𝑁]Z.
(34)

Proof. Let

𝑢
∗
= ‖𝛼‖∞ +

𝛽
∞ + 𝑎 (𝑁 − 2) ,

𝑚 = max {𝑓 (𝑘, 𝑢, V) + 1 |

(𝑘, 𝑢, V) ∈ [2,𝑁 − 1]Z

× [−𝑢
∗
− 2, 𝑢
∗
+ 2] × [−𝑎, 𝑎]} ,

(35)

and define the continuous function𝑔 : [2,𝑁 − 1]Z×R
2 → R

by

𝑔 (𝑘, 𝑢, V)

=

{{{{{{{{{
{{{{{{{{{
{

−𝑚 − 1, 𝑢 ≤ −𝑢∗ − 1,

𝑓 (𝑘, 𝑢, V) + (𝑢 + 𝑢∗)

× (𝑚 + 1 + 𝑓 (𝑘, 𝑢, V)) , −𝑢∗ − 1 < 𝑢 < −𝑢∗,

𝑓 (𝑘, 𝑢, V) , −𝑢∗ ≤ 𝑢 ≤ 𝑢∗,

𝑓 (𝑘, 𝑢, V) + (𝑢 − 𝑢∗)𝑚, 𝑢∗ < 𝑢 < 𝑢∗ + 1,

𝑓 (𝑘, 𝑢, V) + 𝑚, 𝑢 ≥ 𝑢∗ + 1.

(36)

Let us consider the modified periodic problem

∇ [𝜙 (Δ𝑢𝑘)] = 𝑔 (𝑘, 𝑢𝑘, Δ𝑢𝑘) ,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,
(37)

and letA𝑔 be the fixed point operator associated with (37).
It is not difficult to verify that 𝛼 is a lower solution and

𝛽 is an upper solution of the problem (37). Moreover, by
computation, 𝛼1 = −𝑢∗ − 2 is a lower solution of (37) and
𝛽1 = 𝑢∗ + 2 is an upper solution of (37). Notice that

𝛼1 < min {𝛼, 𝛽} ≤ max {𝛼, 𝛽} < 𝛽1, (38)

which together with (33) imply that

Ω𝛼
1
,𝛽 ∪ Ω𝛼,𝛽

1

⊂ Ω𝛼
1
,𝛽
1

, Ω𝛼
1
,𝛽 ∩ Ω𝛼,𝛽

1

= 0. (39)

So, we can consider the open bounded set

Ω = Ω𝛼
1
,𝛽
1

\ [Ω𝛼
1
,𝛽 ∪ Ω𝛼,𝛽

1

] . (40)

It follows that

Ω = {𝑢 ∈ Ω𝛼
1
,𝛽
1

|

𝑢𝑘
𝑢

> 𝛽𝑘
𝑢

,

𝑢𝑠
𝑢

< 𝛼𝑠
𝑢

for some 𝑘𝑢, 𝑠𝑢 ∈ [1,𝑁]Z} ,

𝜕Ω = 𝜕Ω𝛼
1
,𝛽
1

∪ 𝜕Ω𝛼
1
,𝛽 ∪ 𝜕Ω𝛼,𝛽

1

.

(41)

Clearly, any constant function between 𝛽𝑘
⋆

and 𝛼𝑘
⋆

is con-
tained inΩ, so Ω ̸= 0.

Next, let us consider u ∈ 𝜕Ω such that A𝑔(u) = u and
‖u‖∞ = 𝑢∗ + 2. Notice that one has ‖Δu‖∞ < 𝑎. This implies
that there exists 𝑘0 ∈ [1,𝑁]Z such that 𝑢𝑘

0

= max𝑘∈[1,𝑁]Z𝑢𝑘 =
𝑢∗ + 2 or 𝑢𝑘

0

= min𝑘∈[1,𝑁]Z𝑢𝑘 = −𝑢∗ − 2. In the first case we
can assume that 𝑘0 ∈ [1,𝑁 − 1]Z. If 𝑘0 ∈ [2,𝑁 − 1]Z, then
Δ𝑢𝑘
0

≤ 0, Δ𝑢𝑘
0
−1 ≥ 0. This together with 𝜙 is an increasing

homeomorphism implying ∇[𝜙(Δ𝑢𝑘
0

)] ≤ 0. On the other
hand, we have that

∇ [𝜙 (Δ𝑢𝑘
0

)] = 𝑓 (𝑘0, 𝑢𝑘
0

, Δ𝑢𝑘
0

) + 𝑚 > 0, (42)

which is a contradiction. If 𝑘0 = 1, then from boundary
condition 𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1, we can get that Δ𝑢1 ≤ 0
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and Δ𝑢𝑁−1 ≥ 0, which implies that Δ𝑢1 = Δ𝑢𝑁−1 = 0. This
together with ∇[𝜙(Δ𝑢𝑁−1)] = 𝜙(Δ𝑢𝑁−1) −𝜙(Δ𝑢𝑁−2) = 𝑓(𝑁−
1, 𝑢𝑁−1, 0) + 𝑚 > 0 implies that 𝑢𝑁 = 𝑢𝑁−1 < 𝑢𝑁−2; this is
a contradiction. Analogously, one can obtain a contradiction
in the second case. Consequently,

[u ∈ 𝜕Ω,A𝑔 (u) = u] ⇒ ‖u‖∞ < 𝑢
∗
+ 2. (43)

Now, let u ∈ 𝜕Ω be such thatA𝑔(u) = u. It follows from
(43) that ‖u‖∞ < 𝑢∗ + 2, ‖Δu‖∞ < 𝑎 and u ∈ 𝜕Ω𝛼

1
,𝛽 ∪ 𝜕Ω𝛼,𝛽

1

.
We infer that there exists 𝑘0 ∈ [1,𝑁]Z such that 𝑢𝑘

0

= 𝛼𝑘
0

or
𝑢𝑘
0

= 𝛽𝑘
0

, implying that |𝑢𝑘
0

| ≤ ‖𝛼‖∞ + ‖𝛽‖
∞
. Then,

𝑢𝑘
 ≤

𝑢𝑘0
 +
𝑁−1

∑
𝑠=2

Δ𝑢𝑠
 < 𝑢
∗

∀𝑘 ∈ [1,𝑁]Z, (44)

and, consequently,

[u ∈ 𝜕Ω,A𝑔 (u) = u] ⇒ ‖u‖∞ < 𝑢
∗
. (45)

We have divided two cases to discuss.

Case 1.Assume that there exists u ∈ 𝜕Ω such thatA𝑔(u) = u.
Using (45), we deduce that ‖u‖∞ < 𝑢∗, implying that u is a
solution of (24) and (34) holds. Actually, in this case, there
exists 𝑘𝑢 ∈ [1,𝑁]Z such that 𝑢𝑘

𝑢

= 𝛼𝑘
𝑢

or 𝑢𝑘
𝑢

= 𝛽𝑘
𝑢

.

Case 2. Assume that A𝑔(u) ̸=u for all u ∈ 𝜕Ω. Then, from
Lemma 5 applied to 𝑔, it follows that

deg [𝐼 −A𝑔, Ω𝛼
1
,𝛽
1

, 0] = deg [𝐼 −A𝑔, Ω𝛼
1
,𝛽, 0]

= deg [𝐼 −A𝑔, Ω𝛼,𝛽
1

, 0] = −1.
(46)

This together with the additivity property of the Brouwer
degree implies that

deg [𝐼 −A𝑔, Ω, 0] = 1, (47)

which together with the existence property of the Brouwer
degree imply that there exists u ∈ Ω such thatA𝑔(u) = u. It
follows that there exists 𝑘1, 𝑘2 ∈ [1,𝑁]Z such that 𝑢𝑘

1

< 𝛼𝑘
1

and 𝑢𝑘
2

> 𝛽𝑘
2

. Then, using once again the fact that ‖Δu‖∞ <

𝑎, it follows that ‖u‖∞ < 𝑢∗ and u is a solution of (24).
Moreover, from u ∈ Ω, it follows that (34) is true.

Remark 8. Assume that (24) has a lower solution 𝛼 and
an upper solution 𝛽. From Lemma 4 and Theorem 7, we
deduce that (24) has at least one solution u satisfying (34).
In particular,

‖u‖∞ < ‖𝛼‖∞ +
𝛽
∞ + 𝑎 (𝑁 − 2) . (48)

As an application of Theorem 7, we deal with singular
strong nonlinearities. Consider the following discrete peri-
odic problem:

∇ [𝜙 (Δ𝑢𝑘)] + ℎ (𝑢𝑘) Δ𝑢𝑘 = 𝑔 (𝑢𝑘) + 𝑓 (𝑘, 𝑢𝑘, Δ𝑢𝑘) ,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,
(49)

where 𝑓 : [2,𝑁 − 1]Z × R2 → R and ℎ, 𝑔 : (0,∞) → R are
continuous functions such that

lim
𝑢→0

+

𝑔 (𝑢) = +∞ (50)

and ℎ ≥ 0. Under those assumptions we have the following
theorem.

Theorem 9. Assume that (49) has a lower solution 𝛼 > 0 and
an upper solution 𝛽 > 0. Then (49) has at least one solution u
which satisfies (34).

Proof. First, we define some notations as follows:

𝛿 = min
[1,𝑁]Z

min {𝛼, 𝛽} , 𝐵 = ‖𝛼‖∞ +
𝛽
∞ + 𝑎 (𝑁 − 2) ,

𝑚 = min
[1,𝑁]Z×[−𝐵,𝐵]×[−𝑎,𝑎]

𝑓.

(51)

From (50), there exists 𝜀 ∈ (0, 𝛿) such that

𝑔 (𝑢𝑘) > ℎ (𝜀) ∑
𝑠∈𝐼
1

Δ𝑢𝑠 + ∑
𝑠∈𝐼
2

ℎ (𝑢𝑠) Δ𝑢𝑠 − (𝑁 − 2)𝑚

− ∑
𝑠∈𝐼
2

𝑔 (𝑢𝑠) , 𝑢𝑘 ∈ (0, 𝜀] ,
(52)

where 𝐼1 = {𝑘 | 0 < 𝑢𝑘 ≤ 𝜀}, 𝐼2 = {𝑘 | 𝑢𝑘 > 𝜀}.
Let 𝑔, ℎ̂ : R → R be the continuous functions given by

𝑔 (𝑢) = {
𝑔 (𝑢) , 𝑢 ≥ 𝜀,

𝑔 (𝜀) , 𝑢 ≤ 𝜀,

ℎ̂ (𝑢) = {
ℎ (𝑢) , 𝑢 ≥ 𝜀,

ℎ (𝜀) , 𝑢 ≤ 𝜀,

(53)

and consider the auxiliary periodic problem

∇ [𝜙 (Δ𝑢𝑘)] + ℎ̂ (𝑢𝑘) Δ𝑢𝑘 = 𝑔 (𝑢𝑘) + 𝑓 (𝑘, 𝑢𝑘, Δ𝑢𝑘) ,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1.
(54)

From 𝜀 < 𝛿, it follows that 𝛼 and 𝛽 are lower and upper
solutions of (54), respectively.

If 𝛼 ≤ 𝛽, then (54) has a solution u satisfying 𝛼 ≤ u ≤ 𝛽
from Lemma 4 and [12, Remark 3] (without any additional
assumption). If condition (33) holds, then (54) has a solution
u satisfying (34). Obviously, the solution u satisfies

−𝐵 ≤ u ≤ 𝐵, ‖Δu‖∞ < 𝑎. (55)

Next, we will prove that u > 𝜀. From (55), there exists
𝑘0 ∈ [1,𝑁]Z such that 𝑢𝑘

0

= min𝑘∈[1,𝑁]Z𝑢𝑘. Suppose on the
contrary that 𝑢𝑘

0

≤ 𝜀, summing from 𝑠 = 2 to 𝑠 = 𝑁 − 1 for
(54); then we have

𝑁−1

∑
𝑠=2

ℎ̂ (𝑢𝑠) Δ𝑢𝑠 =
𝑁−1

∑
𝑠=2

𝑔 (𝑢𝑠) +
𝑁−1

∑
𝑠=2

𝑓 (𝑠, 𝑢𝑠, Δ𝑢𝑠) . (56)
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This together with (52) implies that

0 =
𝑁−1

∑
𝑠=2

𝑔 (𝑢𝑠) −
𝑁−1

∑
𝑠=2

ℎ̂ (𝑢𝑠) Δ𝑢𝑠 +
𝑁−1

∑
𝑠=2

𝑓 (𝑠, 𝑢𝑠, Δ𝑢𝑠)

= ∑
𝑠∈𝐼
1

𝑔 (𝑢𝑠) + ∑
𝑠∈𝐼
2

𝑔 (𝑢𝑠) −
𝑁−1

∑
𝑠=2

ℎ̂ (𝑢𝑠) Δ𝑢𝑠

+
𝑁−1

∑
𝑠=2

𝑓 (𝑠, 𝑢𝑠, Δ𝑢𝑠)

= 𝑔 (𝜀) ∑
𝑠∈𝐼
1

1 + ∑
𝑠∈𝐼
2

𝑔 (𝑢𝑠) − ℎ (𝜀) ∑
𝑠∈𝐼
1

Δ𝑢𝑠 − ∑
𝑠∈𝐼
2

ℎ (𝑢𝑠) Δ𝑢𝑠

+
𝑁−1

∑
𝑠=2

𝑓 (𝑠, 𝑢𝑠, Δ𝑢𝑠)

≥ 𝑔 (𝜀) + ∑
𝑠∈𝐼
2

𝑔 (𝑢𝑠) − ℎ (𝜀) ∑
𝑠∈𝐼
1

Δ𝑢𝑠 − ∑
𝑠∈𝐼
2

ℎ (𝑢𝑠) Δ𝑢𝑠

+
𝑁−1

∑
𝑠=2

𝑓 (𝑠, 𝑢𝑠, Δ𝑢𝑠) > 0,

(57)

which is a contradiction. Hence, u > 𝜀, implying that u is also
a solution of (49).

Now, we give a method to construct the lower solution
and the upper solution of the following discrete periodic
problem:

∇ [𝜙 (Δ𝑢𝑘)] = 𝑔0 (𝑘, 𝑢𝑘) + 𝑒𝑘, 𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,
(58)

where𝑔0 : [2,𝑁 − 1]Z×(0,∞) → R is a continuous singular
nonlinearity and e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2.

The following result gives a method to construct a lower
solution to (58), getting also control on its localization.

Theorem 10. Suppose that there exist 𝑢1 > 0 and c =

(𝑐2, . . . , 𝑐𝑁−1) ∈ R𝑁−2 such that

𝑔0 (𝑘, 𝑢) ≤ 𝑐𝑘, ∀ (𝑘, 𝑢) ∈ [2,𝑁 − 1]Z × [𝑢
1
, 𝑢
1
+
𝑎𝑁

2
] .

(59)

If

c + e ≤ 0, (60)

then (58) has a lower solution 𝛼 such that

𝑢
1
≤ 𝛼 < 𝑢

1
+
𝑎𝑁

2
. (61)

Proof. Consider the function 𝜓 = c + e. We have two cases.

Case 1. Assume that Ψ+ = 0. Taking 𝛼 ≡ 𝑢1 and using that
c + e ≤ 0, it follows from (59) that 𝛼 is a lower solution of
(58).

Case 2. Assume that Ψ+ > 0. Let ℎ𝑘 = 𝜓+
𝑘
Ψ− − 𝜓−

𝑘
Ψ+. Then

using
𝑁−1

∑
𝑘=2

ℎ𝑘 =
𝑁−1

∑
𝑘=2

[𝜓
+

𝑘
Ψ− − 𝜓

−

𝑘
Ψ+] = 0 (62)

and [12, Proposition 3], it follows that there exists w ∈ 𝑉𝑁−2

such that
∇ [𝜙 (Δ𝑤𝑘)] = ℎ𝑘, 𝑤1 = 𝑤𝑁, Δ𝑤1 = Δ𝑤𝑁−1. (63)

Let us take 𝑢0 = 1/Ψ+ and 𝜛𝑗 = min{0, 𝜙−1(∑𝑗−1
𝑙=2

𝑢0ℎ𝑙 +

𝑄𝜙(𝑢
0h))} for 𝑗 = 3, . . . , 𝑁 − 1. Then we define

𝛼2 = 𝑢
1
− min
𝑘∈[3,𝑁−1]Z

𝑘

∑
𝑗=3

𝜛𝑗,

𝛼𝑘 = 𝑢
1
+
𝑘

∑
𝑗=3

𝜙
−1
(

𝑗−1

∑
𝑙=2

𝑢
0
ℎ𝑙 + 𝑄𝜙 (𝑢

0h))

− min
𝑘∈[3,𝑁−1]Z

𝑘

∑
𝑗=3

𝜛𝑗, 𝑘 ∈ [3,𝑁 − 1]Z.

(64)

Let 𝛼1 = 𝛼𝑁 = (𝛼2 + 𝛼𝑁−1)/2; then Δ𝛼1 = Δ𝛼𝑁−1. On the
other hand, we have that

Δ𝛼𝑘 = 𝜙
−1
(
𝑘

∑
𝑙=2

𝑢
0
ℎ𝑙 + 𝑄𝜙 (𝑢

0h)) , 2 ≤ 𝑘 ≤ 𝑁 − 1. (65)

Since min𝑘∈[3,𝑁−1]Z ∑
𝑘

𝑗=3
𝜛𝑗 ≤ 0, Lemma 6 implies (61). Now,

wewill show that𝛼 is the lower solution of (58). By using (60),
it follows that Ψ+ ≤ Ψ−; this together with the definitions of
𝛼, 𝑢0, and ℎ𝑘 implies that

∇ [𝜙 (Δ𝛼𝑘)] = 𝑢
0
ℎ𝑘 =

1

Ψ+
[𝜓
+

𝑘
Ψ− − 𝜓

−

𝑘
Ψ+]

≥ 𝜓
+

𝑘
− 𝜓
−

𝑘
= 𝜓𝑘, 𝑘 ∈ [2,𝑁 − 1]Z.

(66)

From (59) and (61), we deduce that
𝑔0 (𝑘, 𝛼𝑘) + 𝑒𝑘 ≤ 𝜓𝑘, ∀𝑘 ∈ [2,𝑁 − 1]Z. (67)

Consequently,
∇ [𝜙 (Δ𝛼𝑘)] ≥ 𝑔0 (𝑘, 𝛼𝑘) + 𝑒𝑘, ∀𝑘 ∈ [2,𝑁 − 1]Z. (68)

By a similar argument, it is easy to prove the following
theorem.

Theorem 11. Suppose that there exist 𝑢2 > 0 and d =

(𝑑2, . . . , 𝑑𝑁−1) ∈ R𝑁−2 such that
𝑔0 (𝑘, 𝑢) ≥ 𝑑𝑘,

𝑓𝑜𝑟 𝑎𝑛𝑦 (𝑘, 𝑢) ∈ [2,𝑁 − 1]Z × [𝑢
2
, 𝑢
2
+
𝑎𝑁

2
] .

(69)

If

d + e ≥ 0, (70)
then (58) has an upper solution 𝛽 such that

𝑢
2
≤ 𝛽 < 𝑢

2
+
𝑎𝑁

2
. (71)
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4. Some Applications for Singular
Perturbations Problems

4.1. Strong Repulsive Perturbations. Consider the discrete
periodic problem

∇ [𝜙 (Δ𝑢𝑘)] + 𝑟𝑘𝑢𝑘 − 𝑔 (𝑢𝑘) = 𝑒𝑘,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,
(72)

where r = (𝑟2, . . . , 𝑟𝑁−1), e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2, and 𝑔 :
(0,∞) → R is continuous and satisfies

lim
𝑥→0

𝑔 (𝑥) = +∞, lim
𝑥→∞

𝑔 (𝑥) = 0. (73)

The main result of this subsection is the following theo-
rem.

Theorem 12. Assume that (73) holds. If either

r > 0 𝑜𝑟 r = 0, e < −
𝑎𝑁𝑅−

2 (𝑁 − 2)
, (74)

then problem (72) has at least one solution.

Proof. Notice that from (73) it follows that there exists a
constant 𝛽 sufficiently small such that

0 ≤ 𝑔 (𝛽) + 𝑒𝑘 − 𝑟𝑘𝛽, (75)

which means that 𝛽 is an upper solution of (72).
Now we construct a lower solution of (72) by apply-

ing Theorem 10. Consider the continuous function 𝑔0 :
[2,𝑁 − 1]Z × (0,∞) → R defined by

𝑔0 (𝑘, 𝑢𝑘) = −𝑟𝑘𝑢𝑘 + 𝑔 (𝑢𝑘) , (76)

𝑔∗ : (0,∞) → R given by

𝑔
∗
(𝑢) = max

𝑥∈[𝑢,𝑢+𝑎𝑁/2]

𝑔 (𝑥) , (77)

and 𝛾∗ : (0,∞) → R defined by

𝛾
∗
(𝑢) = −𝑅𝑢 +

𝑎𝑁

2
𝑅− + (𝑁 − 2) 𝑔

∗
(𝑢) . (78)

Case 1. Assume that r > 0. This together with (73) implies
that

lim
𝑢→∞

𝛾
∗
(𝑢) = −∞, (79)

so there exists 𝑢1 > 0 such that 𝛾∗(𝑢1) ≤ −𝐸. In order to apply
Theorem 10, define

𝑐𝑘 = 𝑟
−

𝑘
(𝑢
1
+
𝑎𝑁

2
) − 𝑟
+

𝑘
𝑢
1
+ 𝑔
∗
(𝑢
1
) , 𝑘 ∈ [2,𝑁 − 1]Z.

(80)

It follows that 𝐶 = 𝛾∗(𝑢1) and 𝐶 + 𝐸 ≤ 0, meaning that
condition (60) is fulfilled. One has that

𝑔0 (𝑘, 𝑢𝑘) = 𝑟
−

𝑘
𝑢𝑘 − 𝑟

+

𝑘
𝑢𝑘 + 𝑔 (𝑢𝑘)

≤ 𝑟
−

𝑘
(𝑢
1
+
𝑎𝑁

2
) − 𝑟
+

𝑘
𝑢
1
+ 𝑔
∗
(𝑢
1
) ,

(81)

for all (𝑘, 𝑢𝑘) ∈ [2,𝑁 − 1]Z × [𝑢1, 𝑢1 + 𝑎𝑁/2]. So, condition
(59) holds. Then, from Theorem 10 we infer that (72) has a
lower solution 𝛼. Therefore, from Theorem 9, we can obtain
the result.

Case 2.Assume that r = 0 and e < −𝑎𝑁𝑅−/2(𝑁−2). It follows
that

𝛾
∗
(𝑢) =

𝑎𝑁

2
𝑅− + (𝑁 − 2) 𝑔

∗
(𝑢) , lim

𝑢→∞
𝛾
∗
(𝑢) =

𝑎𝑁

2
𝑅−.

(82)

Then, there exists 𝑢1 > 0 such that 𝛾∗(𝑢1) ≤ −𝐸, since e <
−𝑎𝑁𝑅−/2(𝑁− 2). The result follows by a similar argument to
that used in Case 1.

Remark 13. Theorem 9 in [12] follows from Theorem 12 just
taking 𝑟 = 0.

Example 14. Consider the repulsive singular periodic prob-
lem

∇(
Δ𝑢𝑘

√1 − 𝜅(Δ𝑢𝑘)
2

)+ 𝑟𝑘𝑢𝑘 −
1

(𝑢𝑘)
𝜆
= 𝑒𝑘,

𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(83)

where r = (𝑟2, . . . , 𝑟𝑁−1), e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2, and 𝜆 ≥
1. If either r > 0 or r = 0, e < −𝑁𝑅−/2√𝜅(𝑁 − 2), then (83)
has at least one solution.

In the case r < 0, there exists 𝑠0 < 0 such that (83) has
at least two solutions provided that e ≤ 𝑠0 holds true. In fact,
in this case, problem (83) has two strict upper solutions 𝛽1,
𝛽2 > 0 and a strict lower solution𝛼 > 0 such that𝛽1 < 𝛼 < 𝛽2.
Thus, the result follows from Lemma 4 andTheorem 9.

4.2.Mixed Singularities. Consider the discrete periodic prob-
lem

∇ [𝜙 (Δ𝑢𝑘)] + 𝑟𝑘𝑢𝑘 + 𝑔 (𝑘, 𝑢𝑘) = 𝑒𝑘,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,
(84)

where r = (𝑟2, . . . , 𝑟𝑁−1), e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2, and 𝑔 :
[2,𝑁 − 1]Z × (0,∞) → R is continuous and satisfies

lim
𝑢→∞

𝑔 (𝑘, 𝑢) = 0, uniformly with 𝑘 ∈ [2,𝑁 − 1]Z. (85)

Let the continuous function 𝑔0 : [2,𝑁 − 1]Z × (0,∞) → R

defined by

𝑔0 (𝑘, 𝑢𝑘) = −𝑟𝑘𝑢𝑘 − 𝑔 (𝑘, 𝑢𝑘) , (86)

𝑔∗, 𝑔
∗ : [2,𝑁 − 1]Z × (0,∞) → R given by

𝑔∗ (𝑘, 𝑢) = min𝑥∈[𝑢,𝑢+𝑎𝑁/2]𝑔 (𝑘, 𝑥) ,

𝑔
∗
(𝑘, 𝑢) = max𝑥∈[𝑢,𝑢+𝑎𝑁/2]𝑔 (𝑘, 𝑥) ,

(87)
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and 𝛾∗ : (𝑎𝑁/2,∞) → R, 𝛾∗ : (0,∞) → R, defined by

𝛾∗ (𝑢) = −𝑅𝑢 +
𝑎𝑁

2
𝑅+ −
𝑁−1

∑
𝑗=2

𝑔∗ (𝑗, 𝑢 −
𝑎𝑁

2
) ,

𝛾
∗
(𝑢) = −𝑅𝑢 −

𝑎𝑁

2
𝑅+ −
𝑁−1

∑
𝑗=2

𝑔
∗
(𝑗, 𝑢) .

(88)

The following lemma plays a key role to prove the main
result in this subsection.

Lemma 15. Let (85) hold and 𝛾𝑚
∗
:= inf 𝛾∗. If r < 0 and −𝐸 >

𝛾𝑚
∗
, then (84) has at least one solution.

Proof. Since −𝐸 > 𝛾𝑚
∗
, there exists 𝑧 > 𝑎𝑁/2 such that

𝛾∗(𝑧) ≤ −𝐸. Let us take 𝑢1 = 𝑧 − 𝑎𝑁/2 > 0 and c =

(𝑐2, . . . , 𝑐𝑁−1) ∈ R𝑁−2 by

𝑐𝑘 = 𝑟
−

𝑘
(𝑢
1
+
𝑎𝑁

2
) − 𝑟
+

𝑘
𝑢
1
− 𝑔∗ (𝑘, 𝑢

1
) . (89)

Then it follows that conditions (59) and (60) hold.Thus, from
Theorem 10 we infer that (84) has a lower solution 𝛼 such that
𝑢1 ≤ 𝛼 < 𝑢1 + 𝑎𝑁/2.

On the other hand, using the fact that r < 0, there exists
𝑢2 ≥ 𝑧 such that 𝛾∗(𝑢2) ≥ −𝐸. Consider d = (𝑑2, . . . , 𝑑𝑁−1) ∈

R𝑁−2 by

𝑑𝑘 = 𝑟
−

𝑘
𝑢
2
− 𝑟
+

𝑘
(𝑢
2
+
𝑎𝑁

2
) − 𝑔
∗
(𝑘, 𝑢
2
) . (90)

Then, it follows that conditions (69) and (70) hold.Therefore,
fromTheorem 11 we can get that (84) has an upper solution 𝛽
such that 𝛼 ≤ 𝛽. The result follows from Lemma 4.

Remark 16. From Lemma 15, the solution u of (84) is a
positive solution since 0 < 𝑢1 ≤ 𝛼 ≤ u ≤ 𝛽 < 𝑢2 + 𝑎𝑁/2.

Let us consider the discrete periodic problem

∇ [𝜙 (Δ𝑢𝑘)] + 𝑟𝑘𝑢𝑘 +
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘, 𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(91)

where r = (𝑟2, . . . , 𝑟𝑁−1), m = (𝑚2, . . . , 𝑚𝑁−1), e =

(𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2, and 𝜆 > 0. We have the following
theorem.

Theorem 17. If r < 0 and

−𝐸 > (1 + 𝜆) [
|𝑅|𝜆𝑀−

𝜆𝜆
]

1/(1+𝜆)

+
𝑎𝑁

2
𝑅− −𝑀+[

𝑎𝑁

2
+ (

𝜆𝑀−
|𝑅|

)
1/(1+𝜆)

]

−𝜆

,

(92)

then (91) has at least one solution.

Proof. We have divided two cases.

Case 1. Assume that𝑀− = 0. In this case one has that

𝛾∗ (𝑢) = −𝑅𝑢 +
𝑎𝑁

2
𝑅+ −

𝑀+
𝑢𝜆

, (93)

implying that 𝛾𝑚
∗

= 𝛾∗(𝑎𝑁/2). So, (92) becomes −𝐸 > 𝛾𝑚
∗
,

and the result follows from Lemma 15.

Case 2. Assume that 𝑀− > 0. Notice that the minimum of
𝑢 → −𝑅𝑢 + (𝑎𝑁/2)𝑅+ +𝑀−/(𝑢 − 𝑎𝑁/2)𝜆 is attained in 𝑢0 =

𝑎𝑁/2 + [𝜆𝑀−/|𝑅|]
1/(𝜆+1) and

𝛾∗ (𝑢
0
) ≤ −𝑅𝑢

0
+
𝑎𝑁

2
𝑅+ +

𝑀−

(𝑢0 − 𝑎𝑁/2)
𝜆
−

𝑀+

(𝑢0)
𝜆
. (94)

It is not difficult to verify that 𝛾∗(𝑢
0) < −𝐸 by using (92).

Hence, −𝐸 > 𝑟𝑚
∗
, and the result follows from Lemma 15.

Example 18. Consider the discrete periodic problem with
repulsive singularity:

∇(
Δ𝑢𝑘

√1 − 𝜅(Δ𝑢𝑘)
2

)+ 𝑟𝑘𝑢𝑘 −
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘,

𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(95)

where r = (𝑟2, . . . , 𝑟𝑁−1), m = (𝑚2, . . . , 𝑚𝑁−1), and e =

(𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2 withm ≥ 0 and 𝜆 > 0. If r < 0 and

−𝐸 > (1 + 𝜆) [
|𝑅|𝜆𝑀

𝜆𝜆
]

1/(1+𝜆)

+
𝑁𝑅−
2√𝜅

, (96)

then the above problem has at least one solution.

Example 19. Consider the periodic problem with attractive
singularity

∇(
Δ𝑢𝑘

√1 − 𝜅(Δ𝑢𝑘)
2

)+ 𝑟𝑘𝑢𝑘 +
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘,

𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(97)

where r = (𝑟2, . . . , 𝑟𝑁−1), m = (𝑚2, . . . , 𝑚𝑁−1), and e =

(𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2 withm ≥ 0 and 𝜆 > 0. If r < 0 and

𝐸 < 𝑀(
2√𝜅

𝑁
)

𝜆

−
𝑁𝑅−
2√𝜅

, (98)

then the above problem has at least one solution.

In connection with Example 19, if r = 0, then we have the
following theorem.
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Theorem 20. Consider the discrete periodic problem with
attractive singularity

∇ [𝜙 (Δ𝑢𝑘)] +
𝑚𝑘

(𝑢𝑘)
𝜆
= 𝑒𝑘, 𝑘 ∈ [2,𝑁 − 1]Z,

𝑢1 = 𝑢𝑁, Δ𝑢1 = Δ𝑢𝑁−1,

(99)

where m = (𝑚2, . . . , 𝑚𝑁−1), e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2 with
m ≥ 0 and 𝜆 > 0. If

0 < 𝐸 < 𝑀(
2

𝑎𝑁
)
𝜆

, (100)

then (99) has at least one solution.

Proof. We will use the same strategy as in the proof of
Lemma 15. In this case one has that 𝑔0(𝑘, 𝑢) = −𝑚𝑘/𝑢

𝜆.
Clearly, it follows from (100) that there exists 𝑧 > 𝑎𝑁/2

such that 𝐸 < 𝑀𝑧−𝜆. Let us define 𝑢1 = 𝑧 − 𝑎𝑁/2 > 0 and
c = (𝑐2, . . . , 𝑐𝑁−1) ∈ R𝑁−2 by

𝑐𝑘 = −𝑚𝑘(𝑢
1
+
𝑎𝑁

2
)
−𝜆

. (101)

Then, it follows that conditions (59) and (60) hold.Therefore,
from Theorem 10 we infer that (99) has a lower solution 𝛼
such that 𝑢1 ≤ 𝛼 < 𝑢1 + 𝑎𝑁/2.

Using again (100), it follows that there exists 𝑢2 > 𝑧 such
that 𝐸 ≥ 𝑀(𝑢2)−𝜆. Let us define d = (𝑑2, . . . , 𝑑𝑁−1) ∈ R𝑁−2

by 𝑑𝑘 = −𝑚𝑘(𝑢
2)−𝜆. Then it follows that conditions (69) and

(70) are true. Hence, fromTheorem 11 we infer that (99) has
an upper solution 𝛽 such that 𝑢2 ≤ 𝛽 < 𝑢2 + 𝑎𝑁/2.

Consequently, (99) has a lower solution 𝛼 and an upper
solution 𝛽 such that 𝛼 ≤ 𝛽. The result follows from Lemma 4.

In the “pure” attractive case we have the following result
concerning (84).

Theorem 21. Assume that (85) and

lim
𝑢→0

𝑔 (𝑘, 𝑢) = +∞, 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑤𝑖𝑡ℎ 𝑘 ∈ [2,𝑁 − 1]Z

(102)

hold. Then (84) has at least one solution provided that either

r < 0 𝑜𝑟 r = 0, 𝐸 >
𝑎𝑁

2
𝑅+. (103)

Proof. Notice that from (102) it follows that any sufficiently
small positive constant 𝛼 is a lower solution of (84). The
construction of an upper solution 𝛽 ≥ 𝛼 for (84) is similar
as in Lemma 15. Then the result follows from Lemma 4.

Remark 22. Theorem 21 follows from [12] taking r = 0 in
Theorem 21.

Example 23. Let us consider again problem (97), with the
conditionm > 0. If either r < 0 or r = 0 and 𝐸 > 𝑁𝑅+/2√𝜅,
then (97) has at least one solution.

Example 24. Let 𝜆 > 0, 𝜇 ≥ 1 with 𝜇 > 𝜆 and consider the
discrete periodic problem

∇(
Δ𝑢𝑘

√1 − (Δ𝑢𝑘)
2

)+ 𝑐
Δ𝑢𝑘

(𝑢𝑘)
4/5

+
1

(𝑢𝑘)
𝜆
−

1

(𝑢𝑘)
𝜇 = 𝑒𝑘(𝑢𝑘)

𝜆
,

𝑢1 = 𝑢𝑁, Δ𝑢0 = Δ𝑢𝑁−1,

(104)

where e = (𝑒2, . . . , 𝑒𝑁−1) ∈ R𝑁−2 with e ≤ 0. It is not difficult
to prove that the above problem has at least one solution for
any 𝑐 ∈ R by usingTheorem 9.
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