6,061 research outputs found

    Local similarity in the stable boundary layer and mixing-length approaches: consistency of concepts

    Get PDF
    In stably stratified flows vertical movement of eddies is limited by the fact that kinetic energy is converted into potential energy, leading to a buoyancy displacement scale z B . Our new mixing-length concept for turbulent transport in the stable boundary layer follows a rigid-wall analogy, in the sense that we assume that the buoyancy length scale is similar to neutral length scaling. This implies that the buoyancy length scale is: ¿ B = ¿ B z B , with ¿ B ¿ ¿, the von Karman constant. With this concept it is shown that the physical relevance of the local scaling parameter z/¿ naturally appears, and that the ¿ coefficient of the log-linear similarity functions is equal to c/¿ 2, where c is a constant close to unity. The predicted value ¿ ¿ 1/¿ 2 = 6.25 lies within the range found in observational studies. Finally, it is shown that the traditionally used inverse linear interpolation between the mixing length in the neutral and buoyancy limits is inconsistent with the classical log-linear stability functions. As an alternative, a log-linear consistent interpolation method is proposed

    Stabilization arising from PGEM : a review and further developments

    Get PDF
    The aim of this paper is twofold. First, we review the recent Petrov-Galerkin enriched method (PGEM) to stabilize numerical solutions of BVP's in primal and mixed forms. Then, we extend such enrichment technique to a mixed singularly perturbed problem, namely, the generalized Stokes problem, and focus on a stabilized finite element method arising in a natural way after performing static condensation. The resulting stabilized method is shown to lead to optimal convergences, and afterward, it is numerically validated

    A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes

    Full text link
    In this work, we develop and analyze a Hybrid High-Order (HHO) method for steady non-linear Leray-Lions problems. The proposed method has several assets, including the support for arbitrary approximation orders and general polytopal meshes. This is achieved by combining two key ingredients devised at the local level: a gradient reconstruction and a high-order stabilization term that generalizes the one originally introduced in the linear case. The convergence analysis is carried out using a compactness technique. Extending this technique to HHO methods has prompted us to develop a set of discrete functional analysis tools whose interest goes beyond the specific problem and method addressed in this work: (direct and) reverse Lebesgue and Sobolev embeddings for local polynomial spaces, LpL^{p}-stability and Ws,pW^{s,p}-approximation properties for L2L^{2}-projectors on such spaces, and Sobolev embeddings for hybrid polynomial spaces. Numerical tests are presented to validate the theoretical results for the original method and variants thereof

    Numerical stabilization of the Stokes problem in vorticity–velocity–pressure formulation

    Get PDF
    We work on a vorticity, velocity and pressure formulation of the bidimensional Stokes problem for incompressible fluids. In previous papers, the authors have developed a natural implementation of this scheme. We have then observed that, in case of unstructured meshes with Dirichlet boundary conditions on the velocity, the convergence is not optimal. In this paper, we propose to add ‘‘bubble’’ velocity functions with compact support along the boundary to improve convergence. We then prove a convergence theorem and illustrate by numerical results better behaviour of the scheme in general cases
    corecore