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Numerical stabilization of the Stokes problem
in vorticity–velocity–pressure formulation

Michel Salaün a, Stéphanie Salmon b,*
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Abstract

We work on a vorticity, velocity and pressure formulation of the bidimensional Stokes problem for incompressible fluids. In previous
papers, the authors have developed a natural implementation of this scheme. We have then observed that, in case of unstructured meshes
with Dirichlet boundary conditions on the velocity, the convergence is not optimal. In this paper, we propose to add ‘‘bubble’’ velocity
functions with compact support along the boundary to improve convergence. We then prove a convergence theorem and illustrate by
numerical results better behaviour of the scheme in general cases.

Keywords: Stokes problem; Vorticity–velocity–pressure formulation; Stream function-vorticity formulation; Mixed finite elements method; Bubble

functions; Inf–sup conditions

1. Introduction

1.1. Motivation

Let X be a bounded connected domain of R2 with a reg-
ular boundary oX � C. We recall the Stokes problem which
models the stationary equilibrium of an incompressible vis-
cous fluid when the nonlinear terms are neglected (see e.g.
[1])

ÿmDuþrp ¼ f in X;

divu ¼ 0 in X;

u ¼ 0 on C;

8

>

<

>

:

ð1Þ

where u is the velocity, p the pressure, m the kinematic vis-
cosity, which is a strictly positive constant, and f the datum

of external forces. For the sake of simplicity, we shall take
m = 1 in all the following.

The HAWAY method (Harlow and Welch MAC
scheme [2], Arakawa C-grid [3], Yee translated grids for
Maxwell equations [4]) is a very popular way to solve the
Navier–Stokes or Maxwell equations on quadrangular
and regular meshes. It is now well extended in the
Computer Graphics community [5] to simulate realistic
movements of fluids. In 1992, Dubois [6] introduced a
three-fields (vorticity, velocity and pressure) formulation
in order to extend this HAWAY method to arbitrary trian-
gular meshes. The idea of this formulation is to use exactly
the same degrees of freedom as in the HAWAY one (see
Figs. 1 and 2).

The boundary C of the domain X is decomposed with
the help of two independent partitions and the problem
we want to solve reads as

C ¼ Cm [ Cp with Cm \ Cp ¼ ;;
C ¼ Ch [ Ct with Ch \ Ct ¼ ;;

* Corresponding author. Tel.: +33 3 90240202; fax: +33 3 90240328.
E-mail addresses: michel.salaun@ensica.fr (M. Salaün), stephanie.

salmon@math.u-strasbg.fr (S. Salmon).



xÿ curlu ¼ 0 in X;

curlxþrp ¼ f in X;

divu ¼ 0 in X;

u � n ¼ 0 on Cm;

p ¼ P0 on Cp;

x ¼ 0 on Ch

u � t ¼ r0 on Ct;
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>

:

where u Æ n and u Æ t stand respectively for the normal and
the tangential components of the velocity.

We studied in [7] this three-fields mixed formulation in
vorticity–velocity–pressure. This formulation asks two
inf–sup conditions to be verified, the first one is the classi-
cal one in pressure and velocity and the second one links
vorticity and velocity. We discretized the problem using
conforming spaces compatible with the inf–sup condition
in velocity–pressure (Raviart–Thomas of lower degree for
velocity and constant functions for pressure [8]). For the
second inf–sup condition, there is no problem with spaces
as we chose piecewise linear continuous functions for the
vorticity and Raviart–Thomas of lower degree for velocity.
The only condition, which is needed, is a compatibility
between boundary conditions on vorticity and velocity:
the velocity should be known at least where the vorticity
is known (Ch � Cm). Let us just observe that this compati-
bility condition is not really difficult to achieve as generally,
there is no boundary condition on the vorticity. So, as soon
as the inf–sup conditions are verified, the discrete problem
is always well-posed.

Numerical experiments, using this scheme, were per-
formed in [7]. On structured meshes with regular functions,
we have optimal convergence for the three fields in L2-
norm: Oðh2Þ for the vorticity, OðhÞ for velocity and pres-
sure. But on unstructured meshes, results were really not
satisfying: vorticity and pressure fields are not well
approached. In particular, on a test for which an analytical
solution is known, we observe that values of vorticity and
pressure are far from the expected ones along the bound-
ary, even if the mesh is refined and that the order of conver-
gence for all these fields, except the velocity, is more or less
Oð

ffiffiffi

h
p

Þ. The theoretical study of convergence shows that the
problem appears when we try to prove the stability as we
then need a kind of ‘‘opposite’’ of the compatibility condi-
tion between boundary conditions on vorticity and veloc-
ity. Actually, the condition becomes the velocity and the
vorticity should be known on the same part of the bound-
ary (Ch = Cm). By the way, in this very particular case, an
optimal rate of convergence is achieved, even on unstruc-
tured meshes (see [7]). Nevertheless, this condition is really
too restrictive and we need to build a numerical velocity
field which allows to release it. The idea of adding field
called bubbles is well-known for the Stokes problem for
verifying the discrete velocity–pressure inf–sup condition
with piecewise linear continuous functions spaces, see
Arnold et al. [9] and Franca and Oliveira [10]. But, where
these bubble functions are introduced on the whole
domain, here we only add them along the part of the
boundary where the velocity is known but not the vorticity.
The aim of this paper is to construct this bubble velocity
field in order to get rid of the second compatibility condi-
tion and then allow to improve numerical results on the
three fields.

Then the scope of this work is the following. We recall
the variational formulation which was originally proposed
and studied by the authors and its classical discretization,
as it is mentioned above. As this formulation show
numerical problems in the most general case of boundary
conditions (see the first part of this work [7]), we though
introduce ‘‘bubble functions’’ and the associated stabilized
formulation in Section 2, which is numerically analyzed in
Section 3. Section 4 is dedicated to some numerical
results. Finally, the last section presents some extensions
of results discussed in Section 3 and some particular
cases.

1.2. Functional spaces and notation

Let X be a given bounded connected domain of R2 with
a regular boundary C. We refer to Adams [11] for more
details on the Sobolev spaces. We note L2(X) the space of
all (classes of) functions which are square integrable on
X, equipped with its natural inner product, denoted by
(Æ, Æ), and the associated norm k Æk0,X. The subspace of
L2(X) containing square integrable functions whose mean
value is zero, is denoted by L2

0ðXÞ.

Fig. 1. HAWAY discretization on a cartesian mesh.

Pressure

Normal velocity flux

Normal velocity flux

Normal velocity flux

Vorticity

Vorticity
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Fig. 2. Degrees of freedom on a triangular mesh.



Space H1(X) will be the space of functions u 2 L2(X) for
which the first partial derivatives (in the distribution sense)
belong to L2(X)

H 1ðXÞ ¼ u 2 L2ðXÞ ou

oxi

�

2 L2ðXÞ for i 2 f1; 2g
� �

:

The usual norm in space H1(X) is denoted by k Æk1,X while
the semi-norm is written j Æ j1,X. In a similar way, we define
space H2(X) as the space of functions of H1(X) for which
the first partial derivatives belong to H1(X). The associated
norms and semi-norms are respectively noted k Æk2,X and
j Æ j2,X. We also introduce space H 1

0ðXÞ which is the closure
of the space of all indefinitely differentiable functions on
X for the norm k Æk1,X.

For all vector field v in R2, the divergence of v is defined
by

divv ¼ ov1

ox1
þ ov2

ox2
:

Then, space H(div,X) is the space of vector fields that be-
long to (L2(X))2 with divergence (in the distribution sense)
in L2(X). We have classically

Hðdiv;XÞ ¼ fv 2 ðL2ðXÞÞ2=divv 2 L2ðXÞg; ð2Þ

which is a Hilbert space for the norm

kvkdiv;X ¼
X

2

j¼1

kvjk20;X þ kdivvk20;X

 !1=2

: ð3Þ

We recall that functions of H(div,X) have a normal trace,
that we will shortly note v Æ n.

Finally, let us recall that if v is a vector field in a bidi-
mensional domain, then curlv is the scalar field defined by

curlv ¼ ov2

ox1
ÿ ov1

ox2
: ð4Þ

In the following, we shall also use the curl of a scalar field,
say u, which is the bidimensional field defined by

curlu ¼ ou

ox2
;ÿ ou

ox1

� �t

: ð5Þ

1.3. First vorticity–velocity–pressure numerical scheme for

the Stokes problem

1.3.1. Continuous problem

Following [6,12], we write the Stokes problem with help
of a vorticity–velocity–pressure formulation. So, we intro-
duce the vorticity x as

x ¼ curlu ð6Þ

and the equations of the Stokes problem become

xÿ curlu ¼ 0 in X; ð7Þ
curlxþrp ¼ f in X; ð8Þ
divu ¼ 0 in X: ð9Þ

Then, we suppose that the boundary C of the domain X is
decomposed with the help of two independent partitions

C ¼ Cm [ Cp with Cm \ Cp ¼ ;; ð10Þ
C ¼ Ch [ Ct with Ch \ Ct ¼ ;: ð11Þ

The general boundary conditions for the Stokes problem
are

u � n ¼ 0 on Cm; ð12Þ
p ¼ P0 on Cp; ð13Þ
x ¼ 0 on Ch; ð14Þ
u � t ¼ r0 on Ct; ð15Þ

where u Æ n and u Æ t stand respectively for the normal and
the tangential components of the velocity, n being the outer
normal vector to the boundary C and t the tangent vector,
chosen such that (n, t) is direct.

We finally introduce the following spaces. For velocity,
we define space X by

X ¼ fv 2 Hðdiv;XÞ=v � n ¼ 0 on Cmg; ð16Þ
where Cm is the part of the boundary where the trace of the
vector field v is given.

For the vorticity, we set

W ¼ u 2 H 1ðXÞ=cu ¼ 0 on Ch

� 	

: ð17Þ

Let us remark that we have noted cu the trace of the
function u.

Finally, the space for pressure is parameterized by the
fact that meas (Cp) is zero or not. We set

Y ¼ L2ðXÞ if meas ðCpÞ 6¼ 0;

L2
0ðXÞ if meas ðCpÞ ¼ 0:

(

ð18Þ

The variational formulation is easily obtained from
Eqs. (7)–(9) and the associated boundary conditions. We
obtain

Find ðx; u; pÞ in W � X � Y such that :

ðx;uÞ ÿ ðcurlu; uÞ ¼ hr0; cuiC 8u 2 W ;

ðcurlx; vÞ ÿ ðp; divvÞ ¼ ðf ; vÞ ÿ hP0; v � niC 8v 2 X ;

ðdivu; qÞ ¼ 0 8q 2 Y :

8

>

>

>

<

>

>

>

:

ð19Þ
In these expressions, hÆ, ÆiC stands for a boundary integral.
For more details about well-posedness of this continuous
problem, the reader is referred to [12,13].

1.3.2. A first numerical discretization

Let T be a triangulation of the domain X. For the sake
of simplicity, we shall assume that X is polygonal, in such a
way that it is entirely covered by the mesh T. Moreover,
we will suppose that the trace of the triangulation on the
boundary is such that the boundary edge of any triangle
does not overlap different parts of the boundary, Cm and
Cp on the one hand, Ch and Ct on the other hand. Then,
we denote by ET the set of triangles in T. Moreover,



AT will be the set of all edges of triangles ofT. Finally, hT
is the maximum of the diameters of the triangles of T.

Definition 1 (Family Ur of uniformly regular meshes). We
suppose thatT belongs to the setUr of triangulations such
that there exists two strictly positive constants s and r

independent of hT and K such that

shT 6 hK 6 rqK for all K 2 ET; ð20Þ
where hK is the diameter of the triangle K and qK is the
diameter of the circle inscribed in K.

Now, we shall introduce finite-dimensional spaces, say
W T, XT and YT which are respectively contained in W,
X and Y.

For the vorticity, we choose piecewise linear continuous
functions

P 1
T
¼ u 2 H 1ðXÞ=ujK 2 P1ðKÞ 8K 2 ET

n o

: ð21Þ

Then, including the boundary conditions, we set the fol-
lowing subspace of W:

W T ¼ u 2 P 1
T
=cu ¼ 0 on Ch

� 	

: ð22Þ
If we introduce the classical Lagrange interpolation opera-
tor, denoted by P1

T
, we have the following well-known

result (see e.g. [14]):

Theorem 2 (Interpolation error for vorticity). Let us

assume that the mesh T belongs to a regular family of

triangulations (see Definition 1). Then, there exists a strictly

positive constant C, independent of hT, such that, for all

x 2 H2(X), we have

kxÿP1
T
xk1;X 6 ChTjxj2;X:

Then, velocity is given by its fluxes through edges of the
triangles, by the use of the Raviart–Thomas finite element
of degree one [8]

RT 0
T
¼ v 2 Hðdiv;XÞ=vjK ¼ aK

bK

� �

þ cK
x

y

� �

8K 2 ET

� �

:

ð23Þ
Now, we can state the discrete space for velocity

XT ¼ v 2 RT 0
T
=v � n ¼ 0 on Cm

� 	

: ð24Þ
Following [8], let us recall how the interpolation operator is
defined.

Definition 3 (Interpolation operator in H(div,X)). For all
vector field v in (H1(X))2, the interpolation operator Pdiv

T
is

such that

8a 2 AT;

Z

a

Pdiv
T
v � ndc ¼

Z

a

v � ndc;

where n is the unit normal vector to edge a.

Then, we recall the associated interpolation error (see
[15]).

Theorem 4 (Interpolation error for velocity). Let us

assume that the mesh T belongs to a regular family of

triangulation. Then, there exists a strictly positive constant

C, independent of hT, such that, for all v in (H1(X))2, we

have

kvÿPdiv
T
vk0;X 6 ChTkvk1;X:

Remark 5. It is possible to define the interpolation opera-
tor for less regular functions i.e. for functions v belonging
to (H�(X))2 \ H(div,X). Moreover, an associated interpola-
tion theorem can also be given. But, as we shall not explic-
itly use it in this paper, we only refer to Mathew [16] for
complements on this topic.

Finally, pressure is chosen piecewise constant. Setting

P 0
T
¼ q 2 L2ðXÞ=qjK 2 P0ðKÞ 8K 2 ET

n o

; ð25Þ

we define

YT ¼ q 2 P 0
T

Z

X

qdx ¼ 0 if Cp ¼ ;
�� �

: ð26Þ

If we introduce the L2 projection operator on space YT,
denoted by P0

T
, which is defined for all q in L2(X) by

Z

K

ðP0
T
qÿ qÞdx ¼ 0 for all K 2 ET;

we recall the following result (see e.g. [17]):

Theorem 6 (Interpolation error for pressure). There exists

a strictly positive constant C, independent of hT, such that,

for all q 2 H1(X), we have

kqÿP0
T
qk0;X 6 ChTjqj1;X:

Let us also recall the following basic property, which is a
direct consequence of the previous definitions and of the
Stokes formula (cf. [7]):

Proposition 7. For all v in (H1(X))2 and for all q in YT, we

have

Z

X

qdiv ðPdiv
T
vÿ vÞdx ¼ 0:

The discrete problem is then to find ðxT; uT; pTÞ in
W T � XT � YT such that:

ðxT;uÞ ÿ ðcurlu;uTÞ ¼ hr0; cuiC 8u 2 W T;

ðcurlxT; vÞ ÿ ðp
T
;divvÞ ¼ ðf ; vÞ ÿ hP0; v � niC 8v 2 XT;

ðdivuT;qÞ ¼ 0 8q 2 YT:

8

>

<

>

:

ð27Þ

1.3.3. A partial convergence result

In [7], we prove that the discrete problem (27) is well-
posed when Ch is contained in Cm. Naturally, there are also
other technical hypotheses but they are more classical (reg-
ularity of the mesh family, regularity of the Laplace oper-



ator on the domain X . . .). In particular, the proof needs
two inf–sup conditions which are recalled here and are
proved in the first part of this work (see [7]). The condition
Ch contained in Cm does not seem to be difficult to achieve.
In fact, most of the time, Ch is empty.

Proposition 8 (Inf–sup condition on velocity and pres-
sure). Let us assume that X is polygonal and bounded, and

that the mesh T belongs to a regular family of triang-

ulations. Then, there exists a strictly positive constant a,

independent of hT, such that

inf
qT2YT

sup
vT2XT

ðq
T
; divvTÞ

kvTkdiv;XkqTk0;X
P a: ð28Þ

Proposition 9 (Inf–sup condition on vorticity and veloc-
ity). Let X be a simply connected domain. Let us assume that

Cm has a strictly positive measure and that Ch is contained in

Cm. We denote by V T the discrete kernel of the divergence

operator (see (38)). Then, there exists a strictly positive con-

stant b, independent of hT, such that

inf
vRT2VT

sup
u2WT

ðvRT ; curluÞ
kvRTkXkukW

P b: ð29Þ

Remark 10. For the second inf–sup condition, we use the
fact that for any vector field vRT of RT 0

T
, divergence free,

such that vRT Æ n = 0 on Cm and then on Ch contained in
Cm, there exists a scalar field u in W T such that
vRT = curlu on X.

The problem of this formulation appears when we try to
prove the convergence result obtained in [7] and that we
recall here.

Theorem 11 (Convergence of the discrete variational for-
mulation). Let us recall the two partitions of the boundary

C ¼ Cm [ Cp ¼ Ch [ Ct:

Then, we assume that Cm has a strictly positive measure and

that Ch is equal to Cm

Ch ¼ Cm:

Moreover, we also assume that X is polygonal, bounded and

simply connected and that the mesh T belongs to a regular

family of triangulations.

Let (x, u,p) be the solution in W · X · Y of the

continuous problem (19) and ðxT; uT; pTÞ in space

W T � XT � YT, the solution of the discrete problem (27).
We suppose that the solution is such that: x 2 H2(X),

u 2 (H1(X))2, with divu 2 H1(X), and p 2 H1(X). Then, there

exists a strictly positive constant C, independent of the mesh,

such that

kxÿ xTk1;X þ kuÿ uTkdiv;X þ kp ÿ p
T
k0;X

6 ChT jxj2;X þ kuk1;X þ kdivuk1;X þ jpj1;X
� �

:

To obtain this result, let us remark that we had to enforce
the link between Ch and Cm. More precisely, they must be
equal: Ch = Cm. But this equality is clearly too restrictive.
Let us observe that the reason of this hypothesis is that,
to conclude on the convergence of the scheme, we need
to set vT ¼ curlhT, with vT in XT and hT in W T.

Moreover, numerical experiments, using this scheme,
were performed but the results were not satisfying, when
the equality Ch = Cm is not true. On unstructured meshes,
vorticity and pressure fields are not well approached. In
particular, on a test proposed by Bercovier and Engelman
[18], for which an analytical solution is known, we observe
that values of vorticity and pressure are far from the
expected ones along the boundary, even if the mesh is
refined (see [7]).

Then, the aim of the following section is to build a velo-
city field which permits us to set, in a weaker sense,
vT ¼ curlhT, with vT in XT and hT in W T. Finally, let
us add that numerical experiments have guided the choice
of these extra velocity fields.

2. Numerical stabilization

2.1. Description of the bubble velocity functions

The problem is to build a velocity field which belongs to
H(div,X) and satisfies the boundary conditions. For any
vertex S which is on the boundary of the domain X and
for any triangle K for which S is a vertex, we define the
following vector field:

wS ¼ BcurlkS ; ð30Þ
where kS is the function associated with the barycentric
coordinates relatively to S (see Fig. 3). Moreover, we set:
B = 60k1k2k3, which is the ‘‘bubble’’ function on triangle
K (in this case, to avoid heavy notation, the three vertices
of K are denoted by 1, 2 and 3). We recall the classical
formula
Z

K

kn1k
m

2 k
p

3 dx ¼ 2jKj n!m!p!

ðnþ mþ p þ 2Þ! ð31Þ

for all integers n, m and p, where jKj stands for the area of
K. Then, it is easy to check that the multiplicative coeffi-
cient 60 is such that

Vertex i

Fig. 3. Support of an added function.



Z

K

Bdx ¼ jKj: ð32Þ

This ‘‘bubble’’ function ensures, first, that functions wS are
zero on the boundary of X, and then satisfy the boundary
conditions, and, second, that they are also zero on the
edges of each triangle of their support. So their normal
fluxes are zero and by the way are continuous across the
edges. Consequently, the vector fields wS belong to the con-
tinuous velocity space X = {v 2 H(div,X)/v Æ n = 0 on Cm}
defined in (16).

Let us recall that, if hT is a vorticity field, which is zero
along Ch, then the velocity field vT ¼ curlhT belongs to
RT 0

T
and is such that vT � n ¼ 0 on Ch. So, in practice, extra

functions are only added on the part CmnCh of the bound-
ary where normal velocity is prescribed but not the vorti-
city. Then, we set:

Definition 12 (Space of extra velocity functions). The space
X S

T
of extra velocity functions vS is spanned by the

functions wS associated to the vertices of the triangulation
that are on Cmnh = CmnCh. Let us denote these vertices by
Si. Then, if NðT;CmnhÞ is their number, it is equal to the
dimension of space X S

T
. Finally, each function vS in X S

T

can be written

vS ¼
X

NðT;CmnhÞ

i¼1

aiwSi ¼
X

NðT;CmnhÞ

i¼1

aiBcurlkSi:

Remark 13. Let us observe that these extra fields vS are not
divergence free. However, due to Stokes formula, on each
triangle K of their support, they obviously satisfy

Z

K

divvS dx ¼ 0: ð33Þ

Now, we introduce the first degree polynomial function
associated with vS.

Definition 14. To any extra velocity functions vS of X S
T
,

which can be written

vS ¼
X

NðT;CmnhÞ

i¼1

aiBcurlkSi;

we associate the first degree polynomial function kS defined
as

kS ¼
X

NðT;CmnhÞ

i¼1

aikSi;

where kSi is the barycentric coordinate function relatively
to node Si.

We have the following relation between the norms of these
vector fields

Lemma 15. For any extra velocity functions vS of X S
T
,

associated with the first degree polynomial function kS, we

have:

kvSk0;X ¼
ffiffiffiffiffi

10

7

r

kcurlkSk0;X:

Proof. Using the previous definition, we have

kvSk20;X ¼
X

NðT;CmnhÞ

i¼1

aiBcurlkSi;
X

NðT;CmnhÞ

j¼1

ajBcurlkSj

 !

¼
X

NðT;CmnhÞ

i¼1

X

NðT;CmnhÞ

j¼1

X

K3Si ;Sj
aiaj curlkSi curlkSj

Z

K

B2 dx;

which leads to the result as
R

K
B2 dx ¼ 10

7
jKj (see (31)). h

Then, using the equality (32), it is easy to check that for all
triangle K
Z

K

curlkS dx ¼ jKjcurlkS ¼
Z

K

vS dx: ð34Þ

We have not exactly vT ¼ curlhT with vT in XT and hT in
W T, but the equality is true in mean value on each triangle.

2.2. Stabilized variational formulation

Let us recall the expression of the continuous variational
formulation

Find ðx; u; pÞ in W � X � Y such that :

ðx;uÞ ÿ ðcurlu; uÞ ¼ hr0; cuiC 8u 2 W ;

ðcurlx; vÞ ÿ ðp; divvÞ ¼ ðf ; vÞ ÿ hP0; v � niC 8v 2 X ;

ðdivu; qÞ ¼ 0 8q 2 Y :

8

>

<

>

:

As we have the following imbeddings: W T � W , XT � X ,
X S

T
� X and YT � Y , the discrete problem is directly

deduced from the previous one and consists in finding
xT 2 W T, uT ¼ uRT þ uS 2 XT � X S

T
and p

T
2 YT such

that

ðxT;uÞ ÿ ðcurlu; uTÞ ¼ hr0; cuiC 8u 2 W T;

ðcurlxT; vÞ ÿ ðp
T
; divvÞ ¼ ðf ; vÞ ÿ hP0; v � niC 8v 2 XT � X S

T
;

ðdivuT; qÞ ¼ 0 8q 2 YT:

8

>

<

>

:

ð35Þ
However, due to some basic properties of the extra velocity
fields, this formulation will be slightly modified.

Let us begin by the following properties of the extra
velocity fields.

Lemma 16. For all q in YT and for all vS in X S
T
, we have

ðq;divvSÞ ¼ 0:

Proof. As q is constant on each triangle, we have

ðq;divvSÞ ¼
X

K2T
qjK

Z

K

divvS dx ¼ 0

as vS is divergence free in mean value on each triangle
(see (33)). h



An immediate consequence of this lemma is that the third
equation of (35) becomes

ðdivuT; qÞ ¼ ðdivuRT ; qÞ þ ðdivuS ; qÞ ¼ ðdivuRT ; qÞ ¼ 0

ð36Þ
for all q in YT. In a similar way, the second equation of
(35), written for the extra velocity fields, is

ðcurlxT; vSÞ ÿ ðp
T
; divvSÞ ¼ ðf ; vSÞ ÿ hP0; vS � niC

and, due to the above property and the fact that vS are zero
on the whole boundary C, it leads to:

ðcurlxT; vSÞ ¼ ðf ; vSÞ ð37Þ
for all vS in X S

T
.

This last equation will be modified in the following way.
Let us recall that, in the original Stokes problem (1), the
velocity appears through its Laplacian. Well, we have

ÿDu ¼ curl ðcurluÞ ÿ rðdivuÞ ¼ curlxÿrðdivuÞ:
As the velocity is divergence free, the term $(divu) is
dropped out. In the variational formulation, it would have
led to the additional term (divu,divv) (and also to the asso-
ciated boundary term). The Raviart–Thomas part of the
discrete velocity will be exactly divergence free because of
(36) and of the following lemma, whose proof can be found
in [7].

Lemma 17. Let us define the discrete kernel of the

divergence operator by

V T ¼ v 2 XT=ðdivv; qÞ ¼ 0 for all q 2 YTf g: ð38Þ
Then, we have the following characterization of V T:

V T ¼ fv 2 XT=divv ¼ 0 on Xg: ð39Þ
But the extra velocity fields are not exactly divergence

free and it seems natural to include an additional term
(divuS,divvS) in the discrete variational formulation (the
associated boundary term is zero as vS is zero on C), and
more precisely in Eq. (37). For reasons which will clearly
appear in the last Section, we prefer to add the following
term:

½divuS ; divvS� � D
X

K2T
jKj
Z

K

divuS divvS dx; ð40Þ

where D is an arbitrary strictly positive scalar. This term
looks like a penalization term as it appears in Galerkin-
least-square method [19,10].

Remark 18. As the divergence of a Raviart–Thomas
polynomial function is constant on each triangle, it is easy
to check that, for all uT ¼ uRT þ uS and for all vT ¼ vRT þ
vS , we have

ðdivuT; divvTÞ ¼ ðdivuRT ; divvRT Þ þ ðdivuS ; divvSÞ: ð41Þ
It is why, when we noticed above that the discrete formu-
lation should have included an additional term (divu,divv),
only the part (divuS,divvS) really occurs.

The practical value of coefficient D will be discussed
further.

Now, we can state the stabilized discrete variational for-

mulation: Find xT 2 W T, uT ¼ uRT þ uS 2 XT � X S
T

and
p
T
2 YT such that

8u 2 W T; ðxT;uÞ ÿ ðcurlu; uRT Þ ÿ ðcurlu; uSÞ

¼ hr0; cuiC;

8vRT 2 XT; ðcurlxT; vRT Þ ÿ ðp
T
; divvRT Þ

¼ ðf ; vRT Þ ÿ hP0; vRT � niC;

8vS 2 X S
T
; ðcurlxT; vSÞ þ ½divuS ; divvS� ¼ ðf ; vSÞ;

8q 2 YT; ðdivuRT ; qÞ ¼ 0:
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<
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>

>

>

>

>

>

>

:

ð42Þ

3. Convergence results

3.1. Preliminary results

In all this section, we have to suppose that the meshT is
uniformly regular (see Definition 1).

To study the convergence of the discrete solution
towards the continuous one, we need some technical
results. This point deals with the extra velocity fields and
the term [divuS,divvS]. Let us recall that hT is the maximal
diameter of the triangles ofT. Then, we have the following
fundamental property.

Proposition 19 (Property of the extra velocity fields). Let

us assume that the triangulation T is uniformly regular.

Then, there exists two strictly positive constants C1 and C2

independent of hT such that, for all vS in X S
T

C1kvSk0;X 6 ½½divvS �� � ½divvS ; divvS �1=2 6 C2kvSk0;X: ð43Þ

Proof. As it plays no role in the following, the constant D,
which appears in the definition of [divvS,divvS] (see (40)),
is dropped out in this proof.

The right inequality is a direct consequence of the
classical inverse inequalities (see [14]) which needs the
triangulation to be uniformly regular. So, we have

½½divvS ��2 ¼
X

K2ET

jKjkdivvSk20;K 6 h2
T
kdivvSk20;X 6 C2kvSk20;X

as jKj is smaller than h2
T
. The constant C2 is associated with

the one which appears in the inverse inequality.
Following Definition 14, as any function vS can be

written

vS ¼
X

NðT;CmnhÞ

i¼1

aiBcurlkSi;

we introduce the associated first degree polynomial func-
tion kS



kS ¼
X

NðT;CmnhÞ

i¼1

aikSi:

Then, on each triangle K, we have: vS = BcurlkS, and
consequently: divvS = $B Æ curlkS. This leads to:

½½divvS ��2 ¼
X

K2ET

jKj
Z

K

ðrB � curlkSÞ2 dx: ð44Þ

Using (31), it is fairly easy to check the following equality
on each K:
Z

K

ðrB � curlkSÞ2 dx

¼ 10jKjfðrk1 curlkSÞ2 þ ðrk2 curlkSÞ2 þ ðrk3 curlkSÞ2g:
ð45Þ

Here again, to simplify notation, ki, for i 2 {1,2,3}, stands
for the three usual barycentric coordinate functions on trian-
gleK. Let us recall that we have also: krkik ¼ li

2jKj, where li is
the length of the opposite side to vertex i. To simplify the
demonstration, let us assume that l1 is the longest side of K
and let us work in a system of coordinates such that we have

rk1 ¼
a1

0

� �

; rk2 ¼
a2

b2

� �

; rk3 ¼
ÿa1 ÿ a2

ÿb2

� �

:

As l1 is the longest side, we obtain

krk2k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a22 þ b2
2

q

¼ l2

2jKj 6
l1

2jKj ¼ ja1j ¼ krk1k;

from which we deduce that

ja2j 6 ja1j: ð46Þ
Now, let us introduce the two vectors of R3 which are built
on the two opposite sides to the vertices 1 and 2, say l1 and
l2. The third component of these vectors is taken to 0.
Then, the norm of the vector product l1 · l2 is equal to
twice the area of the triangle K. As we have: li = 2jKj$ki
(if we set to 0 the third component of $ki), we obtain

krk1 �rk2k ¼ ja1b2j ¼
1

2jKj : ð47Þ

Let us denote by r1 and r2 the two components of curlkS.
Then, we deduce from (45)
Z

K

ðrB � curlkSÞ2 dx

P 10jKj ðrk1 curlkSÞ2 þ ðrk2 curlkSÞ2
n o

P 10jKj ða1r1Þ2 þ ða2r1 þ b2r2Þ2
n o

:

Let us set: Q = (a1r1)
2 + (a2r1 + b2r2)

2. Then, we have
also

Q ¼ ða21 ÿ a22Þr21 þ 2a22r
2
1 þ 2a2b2r1r2 þ b2

2r
2
2

P a21 ÿ a22
ÿ �

r21 þ 2a22r
2
1 ÿ 2ja2b2r1r2j þ b2

2r
2
2

P a21 ÿ a22
ÿ �

r21 þ
1

2
a22r

2
1 þ

1

3
b2
2r

2
2;

by using the following inequality: 2jabj 6 3
2
a2 þ 2

3
b2. So we

obtain

QP
1

2
a21r

2
1 þ

1

2
ða21 ÿ a22Þr21 þ

1

3
b2
2r

2
2 P

1

3
ða21r21 þ b2

2r
2
2Þ;

with (46). Finally, as ja1j ¼ l1
2jKj and, with (47), jb2j ¼ 1

l1
, it

leads to:

Z

K

ðrB � curlkSÞ2 dxP
10

3
jKj l1

2jKj

� �2

r21 þ
1

l1

� �2

r22

 !

:

Introducing this relation in (44) gives

½½divvS ��2 P
10

3

X

K2ET

jKj2 l21

4jKj2
r21 þ

1

l21
r22

 !

P
5

6

X

K2ET

jKj l21
jKj r

2
1 þ

jKj
l21

r22

 !

:

As the triangulation is uniformly regular, and l1 = hK, we
have

l21
jKjP

h2K

h2
T

P s2 and
jKj
l21
P

q2
K

2h2K
P

1

2r2
:

Thus, there exists a strictly positive constant C independent
of hT such that

½½divvS ��2 P C
X

K2ET

jKjðr21 þ r22Þ ¼ C
X

K2ET

kcurlkSk20;K

¼ CkcurlkSk20;X ¼ 7

10
CkvSk20;X:

with Lemma 15, which achieves the proof. h

Now, let us give two properties of the first degree
polynomial functions kS introduced in Definition 14

kS ¼
X

NðT;CmnhÞ

i¼1

aikSi:

Before all, let us remark that, by definition of the barycen-
tric coordinates functions, we have: ai = kS(Si).

Lemma 20. Let us assume that the triangulation T is

uniformly regular. Then, there exists two strictly positive

constants C1 and C2 independent of hT such that, for all

function kS ¼PNðT;CmnhÞ
i¼1 aikSi, we have

C1

ffiffiffiffiffiffi

hT
p X

NðT;CmnhÞ

i¼1

k2SðSiÞ
" #

1
2

6 kkSk0;C

6 C2

ffiffiffiffiffiffi

hT
p X

NðT;CmnhÞ

i¼1

k2SðSiÞ
" #

1
2

:

Proof. Let us denote by ATðCmnhÞ the set of all triangles
edges which are contained in CmnCh. Then, by definition,
we have



kkSk20;C ¼
X

A2ATðCmnhÞ

Z

A

k2S dc:

As kS is a first degree polynomial function, k2S is a polyno-
mial function of degree 2. Then, using Simpson’s formula,
which is exact for third degree polynomial function, we
obtain

kkSk20;C ¼
X

A2ATðCmnhÞ

jAj
6

k2SðaÞ þ 4k2S
aþ b

2

� �

þ k2SðbÞ
� �

;

ð48Þ
where we have set A = [a,b], jAj its length and aþb

2
its

middle.
A direct consequence of (48) is

kkSk20;C P
X

A2ATðCmnhÞ

jAj
6

k2SðaÞ þ k2SðbÞ
� �

P
1

6
min

A2ATðCmnhÞ
jAj

X

NðT;CmnhÞ

i¼1

k2SðSiÞ:

A being one edge of a triangle K of T, jAj is greater than
the diameter qK of the circle inscribed in K. Then, as the
mesh is uniformly regular, with (20), we obtain

jAjP qK P
s

r
hT:

So, there exists a strictly positive constant C1 independent
of hT such that

kkSk20;C P C1hT
X

NðT;CmnhÞ

i¼1

k2SðSiÞ:

To obtain the other inequality, we proceed as follows.
As kS is a first degree polynomial function, we have

kS
aþ b

2

� �

¼ 1

2
kSðaÞ þ kSðbÞð Þ:

Then, using 2ab 6 a2 + b2, we easily obtain the
overestimation

k2S
aþ b

2

� �

6
1

2
k2SðaÞ þ k2SðbÞ
ÿ �

:

Now, let us introduce the above inequality in (48). It leads to:

kkSk20;C 6
X

A2ATðCmnhÞ

jAj
2

k2SðaÞ þ k2SðbÞ
ÿ �

6 max
A2ATðCmnhÞ

jAj
X

NðT;CmnhÞ

i¼1

k2SðSiÞ:

As jAj is smaller than the triangle diameter hK, which is
smaller than hT, we obtain the second inequality. h

Proposition 21. Let us assume that the triangulation T is

uniformly regular. Then, there exists a strictly positive con-

stant C independent of hT such that, for all function

kS ¼
PNðT;CmnhÞ

i¼1 aikSi , we have

kcurlkSk0;X 6
C
ffiffiffiffiffiffi

hT
p kkSk0;C:

Proof. First, let us observe that, because kS is a first degree
polynomial function, its curl is constant on each triangle.
So we have

kcurlkSk20;X ¼
X

K

jKjjcurlkSjK j2:

Let us remark that the integrals on K are all zero except if
K contains a vertex of CmnCh. By the way, we have also

curlkSjK ¼
X

Si2K
kSðSiÞcurlkSi ¼

X

Si2K
kSðSiÞ

vSi
2jKj ;

where kSi is the barycentric coordinate function associated
with the vertex Si and vSi is the vector associated to the
opposite edge of K, relatively to Si. Let us set lSi the length
of vSi . Then, by definition of hT, we obtain

jcurlkSjK j2 6 C
X

Si2K
k2SðSiÞ

l2Si

jKj2
6 C

h2
T

jKj2
X

Si2K
k2SðSiÞ;

where C is a constant only dependent on the number of
vertices of K. This estimate and the previous inequality lead
to:

kcurlkSk20;X 6 C
X

K

h2
T

jKj
X

Si2K
k2SðSiÞ 6 C

X

K

X

Si2K
k2SðSiÞ

as the triangulation is uniformly regular. Let N be the max-
imum number of elements containing a vertex. When a tri-
angulation is uniformly regular, this number is bounded
independently of hT and we have

kcurlkSk20;X 6 CN
X

Si

k2SðSiÞ;

where the summation is done on all the vertices of the
mesh. In our particular case, k2SðSiÞ is zero except when Si

is on CmnCh. So we have

kcurlkSk20;X 6 CN
X

NðT;CmnhÞ

i¼1

k2SðSiÞ

and the result is a consequence of Lemma 20. h

Let us now analyse a term which will appear as a consis-
tency error in the sequel (for more details on consistency
see [20]).

Proposition 22 (General estimate of the consistency
error). Let us assume that the triangulation T is uniformly

regular and that the pressure p solution of the Stokes

problem belongs to W1,1(X). Then, for all vS in X S
T
, there

exists a strictly positive constant C independent of hT such

that

jðp; divvSÞj 6 C
ffiffiffiffiffiffi

hT
p

jpj1;1;XkvSk0;X: ð49Þ



Proof. The argument of the proof is the same as the one
Scholz [21] used for the biLaplacian operator. First, we
observe that any function vS has a support reduced to the
set of triangles which are connected with CmnCh, say RT.
So, we have

ðp; divvSÞ ¼
X

K2RT

Z

K

pdivvS dx

¼
X

K2RT

Z

K

ðp ÿP0
T
pÞdivvS dx

with Lemma 16. We recall that P0
T

is the L2 projection
operator on space YT. Moreover, if p belongs to
W1,1(X), there exists a strictly positive constant C, inde-
pendent of hK, such that for all triangle K (see e.g. [17])

kp ÿP0
T
pk0;K 6 CjKj1=2hK jpj1;1;K :

Then, we obtain

jðp; divvSÞj 6
X

K2RT

kp ÿP0
T
pk0;KkdivvSk0;K

6
X

K2RT

CjKj1=2hK jpj1;1;KkdivvSk0;K

6 Cjpj1;1;X

X

K2RT

jKj1=2hKkdivvSk0;K

6 Cjpj1;1;X

X

K2RT

jKj1=2kvSk0;K ;

using the inverse inequality (which is possible as the trian-
gulation is uniformly regular). Finally, using the Cauchy–
Schwarz inequality, we deduce

jðp; divvSÞj 6 Cjpj1;1;X

X

K2RT

jKj
 !1=2

kvSk0;RT
;

which leads to the announced result as, first, kvSk0;RT
and

kvSk0,X are equal and, second:
P

K2RT
jKj ¼ jRTj ¼

OðhTÞ. h

3.2. A new convergence result

First of all, we can prove that the stabilized discrete
problem (42) is well-posed.

Proposition 23 (Well-posedness of the stabilized varia-
tional formulation). Let X be polygonal, bounded, and

simply connected domain. Let us recall the two partitions of

the boundary

C ¼ Cm [ Cp ¼ Ch [ Ct:

Then, we assume that Cm has a strictly positive measure and

that Ch is contained in Cm. Finally, we suppose that the mesh

T belongs to a uniformly regular family of triangulation.

Then, the discrete problem which consists in finding

ðxT; uRT þ uS ; pTÞ in W T � XT � X S
T
� YT such that

8u 2 W T; ðxT;uÞ ÿ ðcurlu; uRT Þ ÿ ðcurlu; uSÞ
¼ hr0; cuiC

8vRT 2 XT; ðcurlxT; vRT Þ ÿ ðp
T
; divvRT Þ

¼ ðf ; vRT Þ ÿ hP0; vRT � niC
8vS 2 X S

T
; ðcurlxT; vSÞ þ ½divuS ;divvS� ¼ ðf ; vSÞ

8q 2 YT; ðdivuRT ; qÞ ¼ 0;
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>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

has a unique solution.

Proof. The proof is very close to the one we did in [7] for
the non-stabilized problem (27). First, let us observe that
the hypotheses are such that the two inf–sup conditions
(28) and (29) are true. Second, as we consider a finite-
dimensional square linear system, the only point is to prove
that the solution associated with r0, f and P0 equal to zero,
is zero. For this, in the above system, we choose u ¼ xT,
vRT = uRT, vS = uS and q ¼ p

T
, and we add the four equa-

tions. We obtain

ðxT;xTÞ þ ½divuS ; divuS � ¼ 0;

which implies xT ¼ 0 and divuS = 0. So uS is also equal to
zero because of (43). Then, the second equation becomes

ðp
T
; divvRT Þ ¼ 0 8vRT 2 XT:

Then, using the inf–sup condition (28), we deduce that
p
T
¼ 0. Finally, the last equation shows that uRT belongs

to the kernel V T, and the first one becomes

ðcurlu; uRT Þ ¼ 0 8u 2 W T

as xT ¼ 0. So uRT is zero thanks to the inf–sup condition
(29). h

We can now study the stability of the stabilized discrete
problem. So, let (x,u,p) be the solution inW · X · Y of the
continuous problem

ðx;uÞ ÿ ðcurlu; uÞ ¼ hr0; cuiC 8u 2 W ;

ðcurlx; vÞ ÿ ðp; divvÞ ¼ ðf ; vÞ ÿ hP0; v � niC 8v 2 X ;

ðdivu; qÞ ¼ 0 8q 2 Y ;

8

>

<

>

:

and ðxT; uRT þ uS; pTÞ in W T � XT � X S
T
� YT the solu-

tion of the stabilized discrete problem

8uT 2W T; ðxT;uTÞÿ ðcurluT;uRT Þÿ ðcurluT;uSÞ ¼ hr0;cuTiC;
8vRT 2 XT; ðcurlxT;vRT Þÿ ðp

T
;divvRT Þ ¼ ðf ;vRT Þÿ hP0;vRT � niC;

8vS 2 X S
T
; ðcurlxT;vSÞþ ½divuS ;divvS � ¼ ðf ;vSÞ;

8q
T
2 YT; ðdivuRT ;qTÞ ¼ 0:

8

>

>

>

>

>

<

>

>

>

>

>

:

As the discrete spaces W T, XT, X
S
T
and YT are respectively

contained in the continuous ones W, X (twice) and Y, we
can take u ¼ uT, v = vRT, v = vS and q ¼ q

T
in the contin-

uous problem. It means that the second equation of the
continuous problem is written for each type of velocity vec-
tor field. Then, subtracting each corresponding equations
in the two systems, we obtain



ðxÿxT;uTÞÿðuÿuRT ;curluTÞþðuS ;curluTÞ¼ 0 8uT 2W T;

ðcurlðxÿxTÞ;vRT Þÿðpÿp
T
;divvRT Þ¼ 0 8vRT 2XT;

ðcurlðxÿxTÞ;vSÞÿ ½divuS ;divvS �ÿðp;divvSÞ¼ 0 8vS 2X S
T
;

ðdivðuÿuRT Þ;qTÞ¼ 0 8q
T
2 YT

8

>

>

>

>

>

<

>

>

>

>

>

:

The term (p,divvS) which appears in the third equation is
the consistency error term. Let us now introduce the inter-
polants on the mesh T of each field. Let us remark that we
assume that the solution is smooth enough in order that
these interpolants are well-defined. For the vorticity field,
we denote byP1

T
the classical Lagrange interpolation oper-

ator. For the velocity field, the interpolation operator in
H(div,X) is Pdiv

T
(see Definition 3). Finally, the pressure

field is interpolated by the use of the L2-projection operator
on space YT, say P0

T
. Then, we have for each equation:

• First equation. For all u
T

in W T

ðxT ÿP1
T
x;uTÞ ÿ ðuRT ÿPdiv

T
u; curluTÞ ÿ ðuS ; curluTÞ

¼ ðxÿP1
T
x;uTÞ ÿ ðuÿPdiv

T
u; curluTÞ:

• Second equation. For all vRT in XT:

ðcurl ðxT ÿP1
T
xÞ; vRT Þ ÿ ðp

T
ÿP0

T
p; divvRT Þ

¼ ðcurl ðxÿP1
T
xÞ; vRT Þ ÿ ðp ÿP0

T
p; divvRT Þ:

• Third equation. For all vS in X S
T
:

ðcurl ðxT ÿP1
T
xÞ; vSÞ þ ½divuS ; divvS �

¼ ðcurl ðxÿP1
T
xÞ; vSÞ ÿ ðp; divvSÞ:

• Fourth equation. For all q
T

in YT:

ðdiv ðuRT ÿPdiv
T
uÞ; q

T
Þ ¼ ðdiv ðuÿPdiv

T
uÞ; q

T
Þ:

Let us remark that this last equation becomes

ðdiv ðuRT ÿPdiv
T
uÞ; q

T
Þ ¼ 0

for all q
T

in YT because ðdiv ðuÿPdiv
T
uÞ; q

T
Þ ¼ 0 (see

Proposition 7). Let us observe that it supposes that u be-
longs to (H1(X))2, which is also needed for the existence
of the interpolant. This regularity condition on u can be
relaxed as long as the result of Proposition 7 remains (see
[16,7]). Nevertheless, in the following, for the error esti-
mates, we shall assume that u belongs to (H1(X))2. Finally,
the following auxiliary problem appears:

Find ðhT;wRT ;wS; rTÞ in W T � XT � X S
T
� YT such

that:

8u
T
2 W T; ðhT;uT

Þ ÿ ðwRT ; curluT
Þ ÿ ðwS; curluT

Þ
¼ ðf ;uTÞ þ ðg; curluTÞ;

8vRT 2 XT; ðcurlhT; vRT Þ ÿ ðrT; divvRT Þ
¼ ðk; vRT Þ þ ðl; divvRT Þ;

8vS 2 X S
T
; ðcurlhT; vSÞ þ ½divwS ; divvS �

¼ ðk; vSÞ ÿ ðp; divvSÞ;
8q

T
2 YT; ðdivwRT ; qTÞ ¼ 0;
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>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

ð50Þ

where we have set

• f ¼ xÿP1
T
x, which belongs to L2(X);

• g ¼ ÿuþPdiv
T
u, which belongs to (L2(X))2;

• k ¼ curl ðxÿP1
T
xÞ, which is in (L2(X))2;

• l ¼ ÿp þP0
T
p, which is in L2(X).

Now, we can prove a partial stability result, in the gen-
eral case.

Proposition 24 (Partial stability of the discrete variational
formulation). Let X be a polygonal, bounded, and simply

connected domain of R2. Let us recall the two partitions of

the boundary: C = Cm [ Cp = Ch [ Ct. Then, we assume that

Cm has a strictly positive measure and that Ch is contained in

Cm:

Ch � Cm:

Finally, we suppose that the mesh T belongs to a uniformly

regular family of triangulation and that the pressure p, solu-

tion of the Stokes problem, belongs to W1,1(X).

Then, the problem (50) is well-posed and there exists a

strictly positive constant C, independent of the mesh, such

that

khTk20;X þ kwRTk2X þ kwSk20;X

6 C

�

kf k20;X þ kkk20;X þ kgk20;X þ hTjpj21;1;X

þ
kgk0;Xkkk0;X

ffiffiffiffiffiffi

hT
p þ

kgk20;X
hT

þ kgk0;Xjpj1;1;X

!

:

Proof. We observe that the hypotheses are such that the
two inf–sup conditions (28) and (29) are true. Then, exactly
as in Proposition 23, the problem (50) is well-posed. More-
over, the fourth equation of (50) shows that wRT is diver-
gence free (see Proposition 17). Then, we have:
kwRTkX = kwRTk0,X. Finally, we recall that, in two dimen-
sion, we have

khTk2W ¼ khTk20;X þ kcurlhTk20;X:

So, the proof of the inequality is given in four steps, in
which, as usual, C will denote various constants, indepen-
dent of the mesh.

First step. We take uT ¼ hT, vRT = wRT, vS = wS and
qT ¼ rT in (50). As wRT is divergence free, after adding the
four equations, we obtain

khTk20;X þ ½½divwS ��2 ¼ ðf ; hTÞ þ ðg; curlhTÞ þ ðk;wRT Þ
þ ðk;wSÞ ÿ ðp; divwSÞ

6 kf k0;XkhTk0;X þ kkk0;XkwRTk0;X
þ kkk0;XkwSk0;X þ jðg; curlhTÞj
þ jðp; divwSÞj:



Then, using the classical inequality: ab 6 1
2
ða2 þ b2Þ, and

the equivalence between the two norms [[divwS]] and
kwSk0,X (see (43)), we deduce

khTk20;X þ kwSk20;X

6 C kf k20;X þ kkk20;X þ kkk0;XkwRTk0;X þ jðg; curlhTÞj
�

þ ðp; divwSÞjj
�

: ð51Þ

Second step. We apply the inf–sup condition (29) to wRT,
which is divergence free, in the first equation of (50). We
deduce

bkwRTkX 6 sup
u2W T

ðwRT ; curluÞ
kukW

6 sup
u2W T

ðhT;uÞ ÿ ðf ;uÞ ÿ ðg; curluÞ ÿ ðwS ; curluÞ
kukW

:

As the norm in W is the norm in H1(X), we obtain

kwRTkX 6 CðkhTk0;X þ kf k0;X þ kgk0;X þ kwSk0;XÞ; ð52Þ
where the constant C is equal to 1/b, in this case.

Third step. The previous inequality and (51) lead to:

khTk20;X þ kwSk20;X 6 Cðkf k20;X þ kkk20;X þ kkk0;XðkhTk0;X
þ kf k0;X þ kgk0;X þ kwSk0;XÞ
þ jðg; curlhTÞj þ jðp; divwSÞjÞ

or else, using the classical inequality: 2ab 6 a2

e
þ eb2, true

for all strictly positive number e, we obtain

khTk20;X þ kwSk20;X

6 C kf k20;X þ kkk20;X þ kgk20;X þ 1

2e
khTk20;X þ kwSk20;X
� �

�

þ jðg; curlhTÞj þ jðp; divwSÞj
�

:

Finally, choosing e equal to C in the above inequality,
we have

khTk20;X þ kwSk20;X

6 C kf k20;X þ kkk20;X þ kgk20;X þ jðg; curlhTÞj
�

þ jðp; divwSÞj
�

: ð53Þ

So, the two inequalities (52) and (53) lead to:

khTk20;X þ kwSk20;X þ kwRTk2X

6 C kf k20;X þ kkk20;X þ kgk20;X þ jðg; curlhTÞj
�

þ jðp; divwSÞj
�

: ð54Þ

Now, we use the result, obtained in the analysis of the
consistency error term (see (49)), which is

jðp; divwSÞj 6 C
ffiffiffiffiffiffi

hT
p

jpj1;1;XkwSk0;X:

Then, inequality (54) becomes

khTk20;X þ kwSk20;X þ kwRTk2X
6 C kf k20;X þ kkk20;X þ kgk20;X þ jðg; curlhTÞj

�

þ
ffiffiffiffiffiffi

hT
p

jpj1;1;XkwSk0;X
�

and, using classical arguments, we obtain

khTk20;X þkwSk20;X þkwRTk2X
6 C kf k20;X þkkk20;X þkgk20;X þ hTjpj21;1;X þ jðg; curlhTÞj

� �

:

ð55Þ
Fourth step. This step is the longest. We have to study

and overestimate the term: jðg; curlhTÞj. First, we split
hT as hT ¼ h0

T
þ hb

T
, where h0

T
is the ‘‘interior’’ part of

hT; more precisely, h0
T
ðSÞ is equal to 0 if the node S is

on the part of the boundary CmnCh and, in the other case,
h0
T
ðSÞ ¼ hTðSÞ. So hb

T
can be seen as the ‘‘boundary’’ part

of hT. Now, we can take vRT ¼ curlh0
T
in the second equa-

tion of (50), as curlh0
T
belongs to XT (see [7]). And, curlh0

T

being divergence free, we obtain

ðcurlhT; curlh0TÞ ¼ ðk; curlh0
T
Þ: ð56Þ

Then, in the third equation of (50), we choose for vS the ex-
tra velocity field associated with hb

T
. We shall denote it by:

vS ¼ Bcurlhb
T
, and we obtain

ðcurlhT;BcurlhbTÞ þ ½divwS ; div ðBcurlhbTÞ�
¼ ðk;Bcurlhb

T
Þ ÿ ðp;div ðBcurlhb

T
ÞÞ: ð57Þ

Let us observe that we have

ðcurlhT;BcurlhbTÞ ¼
X

K2RT

Z

K

curlhTBcurlh
b
T
dx

¼
X

K2RT

Z

K

curlhTcurlh
b
T
dx

¼ ðcurlhT; curlhbTÞ
as hT and hb

T
are first order polynomial functions and the

‘‘bubble’’ function B has been chosen as its integral on any
triangle is equal to 1. We deduce that

ðcurlhT;BcurlhbTÞ þ ðcurlhT; curlh0TÞ
¼ ðcurlhT; curlhbT þ curlh0

T
Þ ¼ kcurlhTk20;X:

Finally, by adding equalities (56) and (57), the previous
equation gives

kcurlhTk20;X ¼ ðk; curlh0
T
þ Bcurlhb

T
Þ ÿ ðp;div ðBcurlhb

T
ÞÞ

ÿ ½divwS ;div ðBcurlhbTÞ�
¼ ðk; curlhTÞ þ ðk; ðBÿ 1Þcurlhb

T
Þ

ÿ ðp;div ðBcurlhb
T
ÞÞ ÿ ½divwS ;div ðBcurlhbTÞ�:

Then, using the Cauchy–Schwarz inequality, the fact that
(B ÿ 1) is bounded independently of hT, the analysis of
the consistency error term again (see (49)) and the equiva-



lence between the two norms [[divwS]] and kwSk0,X, we ob-
tain the following inequality:

kcurlhTk20;X
6 C kkk0;XkcurlhTk0;X þ kkk0;XkcurlhbTk0;X

�

þ hTjpj1;1;XkcurlhbTk0;X þ kwSk0;XkcurlhbTk0;X
q �

:

ð58Þ
Moreover, applying Proposition 21 to hb

T
, we deduce that

kcurlhb
T
k0;X 6

C
ffiffiffiffiffiffi

hT
p khb

T
k0;C 6

C
ffiffiffiffiffiffi

hT
p khTk0;C

because, on the part of the boundary CmnCh, h
b
T
and hT are

equal, while the first one is zero on the other part of the
boundary. Next, using the continuity of the trace applica-
tion from H1(X) to L2(C), there exists a constant C inde-
pendent of the mesh size such that

kcurlhb
T
k0;X 6

C
ffiffiffiffiffiffi

hT
p khTk1;X:

Introducing this result in (58), we obtain

kcurlhTk20;X

6C kkk0;XkcurlhTk0;Xþ
khTk1;X
ffiffiffiffiffiffi

hT
p kkk0;Xþ

ffiffiffiffiffiffi

hT
p

jpj1;1;XþkwSk0;X
� �

� �

6C
e

2
kkk20;Xþ

1

2e
kcurlhTk20;Xþ

1

2e
khTk21;X

�

þ e

2hT
kkk0;Xþ

ffiffiffiffiffiffi

hT
p

jpj1;1;XþkwSk0;X
� �2

�

:

With an appropriate choice of e, and using the definition of
the norm in H1(X), we finally deduce

kcurlhTk20;X

6 C kkk20;X þ khTk20;X þ 1

hT
kkk20;X þ hTjpj21;1;X þ kwSk20;X
� �

� �

;

which leads to:

kcurlhTk0;X 6 C kkk0;X þ khTk0;X þ
kkk0;X
ffiffiffiffiffiffi

hT
p þ jpj1;1;X þ

kwSk0;X
ffiffiffiffiffiffi

hT
p

� �

:

ð59Þ
Now, it is easy to overestimate the term jðg; curlhTÞj
jðg;curlhTÞj6kgk0;XkcurlhTk0;X

6C kgk0;Xkkk0;X 1þ 1
ffiffiffiffiffiffi

hT
p

� �

þkgk0;Xjpj1;1;X

�

þ gk0;XkhTk0;Xþkgk0;X
kwSk0;X
ffiffiffiffiffiffi

hT
p









�

6C kgk0;Xkkk0;X 1þ 1
ffiffiffiffiffiffi

hT
p

� �

þkgk0;Xjpj1;1;X

�

þ 1

2e
ðkhTk20;XþkwSk20;XÞþ

e

2
kgk20;X 1þ 1

hT

� ��

:

This inequality given in the proposition is an obvious
consequence of (55) and this result. h

We can now state a partial convergence result, related to
the previous proposition.

Theorem 25 (Convergence of the discrete variational for-
mulation). Let X be a polygonal, bounded, and simply

connected domain of R2. Let us recall the two partitions of

the boundary: C = Cm [ Cp = Ch [ Ct. Then, we assume that

Cm has a strictly positive measure and that Ch is contained in

Cm

Ch � Cm:

Finally, we suppose that the mesh T belongs to a uniformly

regular family of triangulations and that the mesh size hT is

small enough: hT 6 1.
Let (x, u,p) be the solution in W · X · Y of the

continuous problem (19) and ðxT; uRT þ uS ; pTÞ in

W T � XT � X S
T
� YT the solution of the stabilized discrete

problem (42). We suppose that the solution is such that:

x 2 H2(X), u 2 (H1(X))2 and p 2 W1,1(X). Then, there

exists a strictly positive constant C, independent of the

mesh, such that

kxÿ xTk0;X þ kuÿ uRTkdiv;X þ kuSk0;X 6 C
ffiffiffiffiffiffi

hT
p

: ð60Þ
Moreover, we have also

kcurlxÿ curlxTk0;X 6 C; ð61Þ
kp ÿ p

T
k0;X 6 C; ð62Þ

where C are various strictly positive constants independent of

the mesh.

Proof. First, let us recall the basic inequalities

kxÿ xTk1;X 6 kxÿP1
T
xk1;X þ kP1

T
xÿ xTk1;X;

kuÿ uRTkdiv;X 6 kuÿPdiv
T
ukdiv;X þ kPdiv

T
uÿ uRTkdiv;X;

kp ÿ p
T
k0;X 6 kp ÿP0

T
pk0;X þ kP0

T
p ÿ p

T
k0;X:

ð63Þ
In these relations, the first terms are well-known: they are
the classical interpolation errors. And the second terms
are precisely the solutions of the auxiliary problem (50)
where we have

hT ¼ xT ÿP1
T
x; wRT ¼ uRT ÿPdiv

T
u; rT ¼ p

T
ÿP0

T
p

and wS = uS. Moreover, in (50), we had set: f ¼ xÿP1
T
x,

g ¼ ÿuþPdiv
T
u, k ¼ curl ðxÿP1

T
xÞ and l ¼ ÿp þP0

T
p.

Then, using the interpolation errors recalled in Theorems
2, 4 and 6, we obtain the existence of a constant C, inde-
pendent of the mesh size, such that

kf k0;X þ kgk0;X þ kkk0;X þ klk0;X 6 ChT: ð64Þ
We can notice that the pressure p belongs to H1(X) since it
belongs to W1,1(X) and X is bounded. So Theorem 6 is
true. Using this inequality in Proposition 24 ensures that
there exists a strictly positive constant C, independent of
the mesh, such that

khTk20;X þ kwRTk2X þ kwSk20;X 6 C h2
T
þ h

3=2
T

þ hT

� �

6 ChT

ð65Þ



as hT is assumed smaller than 1. This inequality can also be
written as

kxT ÿP1
T
xk20;X þ kuRT ÿPdiv

T
uk2X þ kuSk20;X 6 ChT:

Finally, using (63) and Theorems 2 and 4, we obtain

kxÿ xTk20;X þ kuÿ uRTk2X þ kuSk20;X 6 ChT;

which obviously leads to the inequality (60) given in the
theorem, as u, uRT and Pdiv

T
u are divergence free.

Second, let us recall the following inequality, obtained in
the proof of Proposition 24

kcurlhTk0;X

6 C kkk0;X þ khTk0;X þ
kkk0;X
ffiffiffiffiffiffi

hT
p þ jpj1;1;X þ

kwSk0;X
ffiffiffiffiffiffi

hT
p

� �

:

Then, we deduce from (60), (64) and (65) that

kcurlhTk0;X 6 C hT þ
ffiffiffiffiffiffi

hT
p

þ jpj1;1;X þ 1
� �

:

The inequality (61) is a direct consequence of the definition
of hT, the first inequality of (63) and this result, as hT is
smaller than 1.

Finally, let us use the inf–sup condition (28) in the
second equation of (50). We obtain

akrTk0;X 6 sup
v2XT

ðdivv; rTÞ
kvkX

6 sup
v2XT

ðcurlhT; vÞ ÿ ðl; divvÞ ÿ ðk; vÞ
kvkX

:

Using the fact that the norm in X is the norm in H(div,X),
we deduce that

krTk0;X 6 C kcurlhTk0;X þ klk0;X þ kkk0;X
� �

: ð66Þ

Let us recall that: rT ¼ p
T
ÿP0

T
p. Then, using the third

inequality (63), (60) and (64), we obtain

kp ÿ p
T
k0;X 6 C hT þ kcurlhTk0;X

� �

; ð67Þ

which lead to the inequality (62). h

To conclude this subsection, let us observe that this
result is far to be optimal. By the way, a convergence of
Oð

ffiffiffiffiffiffi

hT
p

Þ for the vorticity in quadratic norm is very classical
on a convex domain (see [17,21]). The only point we have
improved is the fact that we do not need the convexity
and that curl ðxÿ xTÞ is bounded. It seems to be very poor
but the numerical results are much better, as it will appear
in the next section. Finally, some complements to this the-
orem will be given further.

4. Numerical experiments

4.1. Bercovier–Engelman test case

The first numerical experiments have been performed on
a unit square with an analytical solution proposed by
Bercovier and Engelman [18]. The velocity is zero on the
whole boundary C and there is no boundary condition
on the pressure and the vorticity. So, Cm = C has a strictly
positive measure and Ch, which is empty, is contained in
Cm. Then, the hypothesis on the boundary, needed in the
previous theorem, is true. Finally, the exact pressure p is
a polynomial function equal to

pðx; yÞ ¼ xÿ 1

2

� �

y ÿ 1

2

� �

;

on the domain, so obviously belongs to W1,1(X).
Fig. 4 gives the numerical results we obtained on trian-

gular unstructured meshes, with the classical numerical
scheme, while Fig. 5 gives the results we obtained on the
same meshes with our stabilization. If the convergence rate
on the velocity remains the same, it varies from 0.41 to 1.36
for the quadratic norm of the vorticity, and from 0.40 to
0.65 for the pressure. Very surprisingly, the curl of the vor-
ticity, which is not bounded in the classical case, becomes
convergent with a slope close to 1, with the stabilized
scheme! Moreover, as far as numerical values of the fields
are concerned, we had noticed in [7] that both vorticity
and pressure explode along the boundary. More precisely,
for the vorticity, the numerical maximum is 27.8 instead of
16, which is the analytical solution. And, pressure varies

Mesh size = 1/sqrt(nelt)
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Vorticity – slope coefficient = 0.41
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Pressure – slope coefficient = 0.40

Fig. 4. Convergence order without stabilization – Bercovier–Engelman’s test.



between ÿ7.67 and 6.44 instead of ÿ0.25 and 0.25, while
the quadratic error on the pressure remains at a very
important level: more than 200%. With the stabilized
scheme, these numerical explosions disappear: the maxi-
mum of the vorticity becomes 15.97, the pressure varies
from ÿ0.18 and 0.19 and the error on the finest mesh is
close to 10%.

4.2. Ruas test case

Then, we have worked on a circle with an analytical
solution proposed by Ruas [22]. The boundary conditions
are exactly the same as in the previous case and the exact
pressure p is constant (equal to 1) on the whole domain,
so is as regular as needed. For sake of symmetry, we work
on a quarter of the domain. Then, the ‘‘bubble’’ velocities
are added only on the circular part of the boundary. The
numerical results, we obtained with the classical scheme,
are given in Fig. 6.

Then, Fig. 7 gives the results of the stabilized scheme.
Here again, we observe that the curl of the vorticity, which
is not bounded in the classical case (Fig. 6), is convergent
with a slope close to 1, with the stabilized scheme! More-
over, there is also a kind of super-convergence on the veloc-
ity and on the pressure (slope close to 2). We shall try to
explain these results in the next sections.

5. Extensions and particular cases

5.1. An improved convergence result

As we have seen previously on the convergence curves,
the curl of the vorticity is numerically convergent, with a
slope close to 1, with the stabilized scheme, even if we
have not obtained any convergence result. To try to
understand this surprising behaviour, we were induced
to make a new hypothesis. To do that, let us recall
two results we obtained during the proof of Proposition
24

khTk20;X þ kwSk20;X þ kwRTk2X
6 C kf k20;X þ kkk20;X þ kgk20;X þ hTjpj21;1;X þ jðg; curlhTÞj

� �

ð68Þ

and

kcurlhTk20;X
6 C kkk0;XkcurlhTk0;X þ kkk0;XkcurlhbTk0;X

�

þ
ffiffiffiffiffiffi

hT
p

jpj1;1;XkcurlhbTk0;X þ kwSk0;XkcurlhbTk0;X
�

:

ð69Þ
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Fig. 5. Convergence order with stabilization – Bercovier–Engelman’s test.
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Let us also recall that we have split hT as hT ¼ h0
T
þ hb

T
,

where h0
T

is the ‘‘interior’’ part of hT while hb
T

can be seen
as the ‘‘boundary’’ part of hT.

Now, we will assume that there exists a strictly positive

constant C, independent of the mesh, such that

kcurlhb
T
k0;X 6 CkcurlhTk0;X: ð70Þ

Thanks to this inequality, the result (69) leads to:

kcurlhTk0;X 6 C kkk0;X þ
ffiffiffiffiffiffi

hT
p

jpj1;1;X þ kwSk0;X
� �

; ð71Þ

which allows to obtain a new overestimate of jðg; curlhTÞj.
Using classical arguments, with (68), we finally have

khTk20;X þ kwSk20;X þ kwRTk2X
6 C kf k20;X þ kkk20;X þ kgk20;X þ hTjpj21;1;X

� �

:

Then, following the proof of Theorem 25, and under the
same assumptions, we obtain the existence of a strictly po-
sitive constant C, independent of the mesh, such that

kxÿ xTk1;X þ kuÿ uRTkdiv;X þ kuSk0;X þ kp ÿ p
T
k0;X

6 C
ffiffiffiffiffiffi

hT
p

: ð72Þ
Compared to Theorem 25, the gain does not seem very

obvious. Nevertheless, we have obtained the convergence
on the curl of the vorticity and on the pressure, even if it
is not optimal. Moreover, this convergence result can
appear as more relevant when we examine Fig. 5: the
numerical convergence rate on the pressure is close to
0.65, and the rate, which is obtained for the vorticity, is
close to 1.36. This last result could be interpreted as a con-
sequence of the Aubin–Nitsche lemma as the domain X is
convex (see e.g. Ciarlet [14]).

Remark 26. Let us discuss briefly on hypothesis (70). First,
even if the numerical convergence may lead us to this
assumption, we cannot suppose that: kcurlhb

T
k0;X 6 ChT,

with C independent of the mesh. If this inequality was true,
because of (67), the convergence rate on the pressure
should also be 1 and it is far to be the case. Second, an
inequality as (70) is certainly not true in the general case: it
is enough to take hT equal to a constant. Nevertheless, this

case, which is the worst for (70), is the best for the
convergence theory (we have then: kcurlhTk0;X ¼ 0!).
Moreover, the study of the numerical convergence on the
vorticity shows that the numerical problems occur near the
boundary (see [7]). Then assuming that the ‘‘interior’’ part
of hT is negligible leads to something like (70).

5.2. Choice of the numerical coefficient of the term

[divuS, div vS]

An interesting consequence of the previous theory deals
with the choice of the numerical coefficient D, which was
introduced in the definition (40) as

½divuS ; divvS � ¼ D
X

K2T
jKj
Z

K

divuS divvS dx;

and had no influence until now. To understand the way to
chose it, let us recall some estimates, which were proved
above and in which we shall make the scalar D appear.
First, we had (see (54))

khTk20;X þ DkwSk20;X þ kwRTk2X
6 C kf k20;X þ kkk20;X þ kgk20;X þ jðg; curlhTÞj þ jðp; divwSÞj

� �

:

ð73Þ

In a similar manner, under the hypothesis (70), the
inequality (71) becomes

kcurlhTk0;X 6 C kkk0;X þ
ffiffiffiffiffiffi

hT
p

jpj1;1;X þ DkwSk0;X
� �

:

Finally, we recall the result, obtained in the analysis of the
consistency error term (see (49))

jðp; divwSÞj 6 C
ffiffiffiffiffiffi

hT
p

jpj1;1;XkwSk0;X:
Introducing this two inequalities in (73), we obtain

khTk20;X þ DkwSk20;X þ kwRTk2X
6 C kf k20;X þ kkk20;X þ kgk20;X þ

ffiffiffiffiffiffi

hT
p

jpj1;1;XkwSk0;X
�

þ
ffiffiffiffiffiffi

hT
p

jpj1;1;Xkgk0;X þ DkwSk0;Xkgk0;X
�

:

Ruas test case

Vorticity –  slope coefficient = 1.97

Curl of vorticity – slope coefficient = 1.02

Velocity – slope coefficient = 0.99

Pressure – slope coefficient = 1.93
10–4

10–5

10–3

10–2

10–2

10–1

10–1

100

R
e
la

ti
v
e
 e

rr
o
r 

in
 L

2
–
n
o
rm

Mesh size = 1/sqrt(nelt)

Fig. 7. Convergence with stabilization – test proposed by Ruas.



Now, let us remark that f, g and k are connected to the
interpolation error (see (64)). Then, the previous inequality
becomes

khTk20;X þ DkwSk20;X þ kwRTk2X

6 C h2
T
þ h

3=2
T

jpj1;1;X þ DhTkwSk0;X
�

þ
ffiffiffiffiffiffi

hT
p

jpj1;1;XkwSk0;X
�

:

We can use again the classical overestimate: 2ab 6 a2

e
þ eb2,

true for all strictly positive number e, and we obtain

khTk20;X þ DkwSk20;X þ kwRTk2X

6 C h2
T
þ h

3=2
T

jpj1;1;X þ Dh2
T
þ
hTjpj21;1;X

D

 !

:

Then, if we chose D equal to ha
T
, it is easy to see that the

optimal value of a, to obtain the best convergence rate, is
ÿ1/2. So, following again the proof of Theorem 25, and
under the same assumptions, we obtain the existence of a
strictly positive constant C, independent of the mesh, such
that

kxÿ xTk0;X þ kuÿ uTkdiv;X þ
kuSk0;X
h
1=4
T

6 Ch
3=4
T

ð74Þ

and

kcurlxÿ curlxTk0;X þ kp ÿ p
T
k0;X 6 C

ffiffiffiffiffiffi

hT
p

: ð75Þ

Numerical experiments have been performed again on
the unit square with the analytical solution proposed by
Bercovier and Engelman [18]. The numerical results we
obtained on triangular unstructured meshes, with the stabi-
lized numerical scheme and the previous choice of D are
given on Fig. 8.

Compared with Fig. 4 (classical scheme) and Fig. 5 (sta-
bilized scheme with D = 1), we observe a real improvement
of the convergence orders on the vorticity and the pressure
(from 1.36 to 1.81 and from 0.65 to 1.26).

5.3. Particular case of a constant pressure along the

boundary

In the case of the test proposed by Ruas, the stabilized
scheme exhibits an optimal convergence behaviour, with
super-convergence on the pressure (see Fig. 7). To under-
stand this phenomenon, we were led to examine again the
consistency error term. Before, we have proved that the
term (p,divvS) is in Oð

ffiffiffiffiffiffi

hT
p

Þ if the triangulation is uni-
formly regular and the exact pressure p belongs to
W1,1(X). Let us study again this term when the pressure
p is constant along the boundary.

Proposition 27 (Estimate of the consistency error in a
particular case). Let us assume that the triangulation T is

uniformly regular. Moreover, we suppose that the pressure p

solution of the Stokes problem belongs to H2(X) and that it is

constant on CmnCh. Then, for all vS in X S
T
, there exists a

strictly positive constant C independent of hT such that

jðp; divvSÞj 6 ChTjpj2;XkvSk0;X: ð76Þ

Proof. Let us introduce the P1
T

interpolate of the
pressure, which is well defined as p belongs to H2(X). So,
we have

ðp; divvSÞ ¼ ðp ÿP1
T
p; divvSÞ þ ðP1

T
p; divvSÞ:

We shall study successively each term of the right-hand
side of this equality.

First, introducing the support RT of any function vS,
we obtain with the Cauchy–Schwarz inequality

jðp ÿP1
T
p; divvSÞj 6

X

K2RT

kp ÿP1
T
pk0;KkdivvSk0;K :

Moreover, as p belongs to H2(X), using the classical inter-
polation result (see [14]), there exists a strictly positive con-
stant C, independent of hK, such that for any triangle K

kp ÿP1
T
pk0;K 6 Ch2K jpj2;K :

Bercovier – Engelman (1) test case

Vorticity – slope coefficient = 1.81

Curl of vorticity – slope coefficient = 0.98

Velocity – slope coefficient = 0.99

Pressure – slope coefficient = 1.26

Mesh size = 1/sqrt(nelt)
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Fig. 8. Convergence order with stabilization – D ¼ h
ÿ1=2
T

– Bercovier–Engelman’s test.



Then, we deduce

jðp ÿP1
T
p;divvSÞj 6

X

K2RT

Ch2K jpj2;KkdivvSk0;K

6 ChT
X

K2RT

jpj22;K

 !1
2
X

K2RT

h2KkdivvSk
2
0;K

 !1
2

6 ChTjpj2;X
X

K2RT

kvSk20;K

 !1
2

¼ ChTjpj2;XkvSk0;X
using the inverse inequalities, which is possible as the trian-
gulation is uniformly regular.

Let us observe that the above inequality leads to the
announced result, if we prove that the second term is zero.
This is what we do now. So, we have

ðP1
T
p; divvSÞ ¼

X

K2RT

Z

K

P1
T
pdivvS dx:

Let us recall that on each triangle K, we have:
vS = BcurlkS. As kS is a first degree polynomial function,
curlkS is constant on K. Moreover the ‘‘bubble’’ function
B is null on the edges of K and satisfies

R

K
Bdx ¼ jKj. Then,

integrating by parts, we obtain for any triangle K
Z

K

P1
T
pdivvS dx ¼ ÿ

Z

K

BrP1
T
p � curlkS dx

¼ ÿjKjrP1
T
p � curlkS

¼ ÿ
Z

K

rP1
T
p � curlkS dx

¼
Z

oK

oP1
T
p

ot
kSdc;

where
oP1

T
p

ot
is the tangential derivative of P1

T
p along oK.

Let us now examine each edge of K. Three cases appear:
When the intersection between the edge and CmnCh is

empty, kS is zero on this edge as it is associated with
vertices of CmnCh. So, the associated boundary integral
vanishes.

When this intersection is reduced to one vertex, the edge
belongs to two triangles of RT. As P1

T
p is continuous on

the mesh, the boundary integrals on such edges will appear
twice and will cancel two by two.

When this intersection is equal to the edge, the associ-
ated boundary integral remains.

Finally, we deduce that

ðP1
T
p; divvSÞ ¼

Z

CmnCh

oP1
T
p

ot
kS dc:

So, when p is constant on CmnCh, we have P
1
T
p ¼ p on this

part of the boundary. Then,
oP1

T
p

ot
vanishes there and the

previous integral is equal to zero, which achieves the
proof. h

With the previous result, the inequality (68) becomes

khTk20;X þ kwSk20;X þ kwRTk2X
6 C kf k20;X þ kkk20;X þ kgk20;X þ h2

T
jpj22;X þ jðg; curlhTÞj

� �

;

while the inequality (71) can be written

kcurlhTk0;X 6 C kkk0;X þ hTjpj2;X þ kwSk0;X
� �

;

if we make the hypothesis (70). Then, it is easy to obtain

khTk20;X þ kwSk20;X þ kwRTk2X
6 C kf k20;X þ kkk20;X þ kgk20;X þ h2

T
jpj22;X

� �

:

Finally, following the proof of Theorem 25, under the
assumptions of this Theorem, of Proposition 27 and (70),
we obtain the existence of a strictly positive constant C,
independent of the mesh, such that

kxÿ xTk1;X þ kuÿ uRTkdiv;X þ kuSk0;X þ kp ÿ p
T
k0;X 6 ChT;

which is optimal.
This convergence result explains the convergence curves

we obtained for the test proposed by Ruas (see Fig. 7),
except the superconvergence on pressure. But, in this case,
the pressure is identically constant. To check that it is suf-
ficient for the pressure to be constant along the boundary,
we built a new test from Bercovier–Engelman’s one. The

Bercovier – Engelman (2) test case

Vorticity – slope coefficient = 0.41

Curl of vorticity

Velocity – slope coefficient = 0.99

Pressure – slope coefficient = 0.40
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Fig. 9. Convergence without stabilization – P = 0 along the boundary – modified Bercovier–Engelman’s test.



surfacic loading f is changed in such a way that the exact
pressure p is given by

pðx; yÞ ¼ sinðpxÞ sinðpyÞ

on the domain X, which is in this case: X = ]0,1[ · ]0, 1[.
Let us recall that the boundary conditions are ‘‘velocity
equal to zero along the whole boundary’’. First, we check
that the convergence problems we have on triangular
unstructured meshes for the classical scheme are the same

as in the case of the classical Bercovier–Engelman’s test
(see Fig. 9).

Then, the stabilized scheme is used and exhibits results
which are in complete accordance with the above theoreti-
cal result (see Fig. 10). Let us observe that, here, there is no
superconvergence on the pressure field. This lead us to
think that this one is linked with the fact that the pressure
is constant on the whole domain in the case of the test sug-
gested by Ruas.
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Bercovier − Engelman (2) test case

Vorticity − slope coefficient = 2.02

Curl of vorticity − slope coefficient = 0.99

Velocity − slope coefficient = 0.99

Pressure − slope coefficient = 1.02

Fig. 10. Convergence order with stabilization – P = 0 along the boundary – modified Bercovier–Engelman’s test.

Ruas test case

Vorticity – slope coefficient = 1.62

Curl of vorticity – slope coefficient = 0.94

Velocity – slope coefficient = 0.99

Pressure – slope coefficient = 1.57

Mesh size = 1/sqrt(nelt)
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Fig. 12. Convergence order with stabilization – D ¼ h
ÿ1=2
T

– test proposed by Ruas.
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Bercovier − Engelman (2) test case

Vorticity − slope coefficient = 1.86

Curl of vorticity − slope coefficient = 0.98

Velocity − slope coefficient = 0.99

Pressure − slope coefficient = 1.04

Fig. 11. Convergence order with stabilization – D ¼ h
ÿ1=2
T

– P = 0 along the boundary – modified Bercovier–Engelman’s test.



Remark 28. A last question we may ask is what happens
when we use the stabilized scheme with the optimal choice
of coefficient D and when the pressure is constant along the
boundary. A careful examination of the estimates leading
to (74) and (75) allows to see that, if the consistency error
due to the pressure is in hT instead of

ffiffiffiffiffiffi

hT
p

, the ‘‘best’’
choice of D is 1 and not h

ÿ1=2
T

. To illustrate this, we give
below the convergence curves, obtained for the modified
Bercovier–Engelman’s test and for the Ruas test, with D

equal to h
ÿ1=2
T

. As expected, compared with Fig. 10, Fig. 11
exhibits a small lack of convergence. The conclusions are
the same when we compare Fig. 7 with Fig. 12.

6. Conclusion

We have introduced in [7] a vorticity–velocity–pressure
variational formulation of the bidimensional Stokes prob-
lem. For this formulation, we have defined a natural
numerical scheme which can be viewed as an adaptation
of the popular MAC scheme on triangular meshes. We
have numerically studied this scheme and observed that it
is not stable in the general case of boundary conditions.
If it gives correct results on structured meshes, improvable
ones are obtained on unstructured meshes.

In this paper, we have introduced a stabilization using
‘‘bubble’’ functions, which are added only along a part of
the boundary: their numerical cost is then negligible. For
this scheme, a general theoretical convergence result is
given which is not optimal. But numerical experiments
show a very good behaviour of this new scheme, in
particular when the exact pressure is constant along the
boundary. To try to understand this surprisingly good con-
vergence, we had to make a new hypothesis which allows to
improve the convergence and explain the optimal conver-
gence we have obtained. Up to now, the complete compre-
hension of the convergence of this stabilized scheme is not
achieved. It seems to be possible to get rid of the consis-
tency error term by using arguments of Pierre [20]. Work
is in progress and hopefully the scheme will be better
understood soon.
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[5] O. Génevaux, A. Habibi, J.-M. Dischler, Simulating fluid-solid

interaction, in: A.K. Peters (Ed.), Graphics Interface, CIPS, Cana-

dian Human–Computer Communication Society, 2003, pp. 31–38,

iSBN 1-56881-207-8, ISSN 0713-5424.

[6] F. Dubois, Une formulation tourbillon–vitesse–pression pour le

problème de Stokes, CR Acad. Sci. Paris 314 (1992) 277–280.

[7] F. Dubois, M. Salaün, S. Salmon, First vorticity–velocity–pressure

numerical scheme for the Stokes problem, Comput. Methods Appl.

Mech. Engrg. 192 (2003) 4877–4907.

[8] P.-A. Raviart, J.-M. Thomas, A mixed finite element method for 2-nd

order elliptic problems, Lect. Notes Math. 306 (1977) 292–315.

[9] D. Arnold, F. Brezzi, M. Fortin, A stable finite element for the Stokes

equations, Calcolo 21 (1984) 337–344.

[10] L. Franca, S. Oliveira, Pressure bubbles stabilization features in the

Stokes problem, Comput. Methods Appl. Mech. Engrg. 192 (2003)

1929–1937.

[11] R. Adams, Sobolev spaces, Pure and Applied Mathematics, vol. 65,

Academic Press, New York, London, 1975.

[12] F. Dubois, Vorticity–velocity–pressure formulation for the Stokes

problem, Math. Methods Appl. Sci. 25 (2002) 1091–1119.
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