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Abstract In stably stratified flows vertical movement of eddies is limited by the fact that
kinetic energy is converted into potential energy, leading to a buoyancy displacement scale zB .
Our new mixing-length concept for turbulent transport in the stable boundary layer follows
a rigid-wall analogy, in the sense that we assume that the buoyancy length scale is similar
to neutral length scaling. This implies that the buoyancy length scale is: �B = κB zB , with
κB ≈ κ , the von Karman constant. With this concept it is shown that the physical relevance of
the local scaling parameter z/� naturally appears, and that the α coefficient of the log-linear
similarity functions φm,h = 1 + αz/� is equal to c/κ2, where c is a constant close to unity.
The predicted value α ≈ 1/κ2 = 6.25 lies within the range found in observational studies.
Finally, it is shown that the traditionally used inverse linear interpolation between the mixing
length in the neutral and buoyancy limits is inconsistent with the classical log-linear stability
functions. As an alternative, a log-linear consistent interpolation method is proposed.

Keywords Mixing length · Local similarity · Stable boundary layer

1 Introduction

1.1 Monin–Obukhov Theory

The chaotic nature of turbulence prevents exact analytical solutions to describe turbulent
transport in the atmospheric boundary layer. Instead, the cornerstone of the description of
turbulent exchange near the surface is based on Monin–Obukhov (MO) similarity theory
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104 B. J. H. van de Wiel et al.

(Monin and Obukhov 1954; see also: Businger and Yaglom 1971; Obukhov 1971). This
predicts ‘universal’ relations for the dimensionless gradients of the velocity U and tempera-
ture θ in terms of the dimensionless height parameter z/L ,

∂U

∂z

(
κz

u∗0

)
= φm = fm

( z

L

)
, (1)

∂θ

∂z

(
κz

θ∗0

)
= φh = fh

( z

L

)
(2)

with u∗0 the surface friction velocity and θ∗0 the surface temperature scale (θ∗0 ≡ −w′θ ′
0/

u∗0), and where κ is the von Karman constant and L ≡ (θ/(κg))(u2∗0/θ∗0), the Obukhov
length scale. Because surface fluxes are used, (1) and (2) are valid only in the atmospheric
surface layer.

1.2 Monin–Obukhov Versus Local Similarity

For the stable boundary layer a solid physical basis for (1) and (2) was found by Nieuwstadt
(1984). He showed that the relevant dimensionless groups need not come from dimensional
analysis alone, but can be inferred from a physical model, by analyzing parameterized equa-
tions for the turbulent variances and covariances. This finally leads to a system of seven
coupled algebraic equations with eight unknown dimensionless groups. Consequently, spec-
ification of one of the groups fixes the other groups. Thus all dimensionless combinations
can be expressed in terms of a single parameter z/� and for the dimensionless gradients of
wind and temperature he obtained:
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)
, (4)

where � is the local Obukhov length, expressed in terms of local fluxes u∗ and θ∗, � ≡
(θ/(κg))(u2∗/θ∗). As such (3) and (4) are generalizations of (1) and (2), because they are also
valid outside the surface layer. Though very elegant, the approach of Nieuwstadt (1984) uses
a rather complex system of coupled equations (with specific closure assumptions on mixing
lengths, to be discussed in Sect. 4). The physical relevance of z/� can also be found more
easily from simple mixing-length considerations, as will be shown in the present work.

1.3 The ‘Log-Linear Law’

For weak to moderate stability (say z/� < O(1)) observational studies, see e.g. Högström
(1996), suggest a linear character of the stability functions in (3) and (4):

φm = 1 + αm
z

�
, (5)

φh = 1 + αh
z

�
, (6)

so that wind and temperature profiles show so-called ‘log-linear behaviour’. In the litera-
ture, αm,h typically ranges from 4 to 8 (Högström 1996, and references herein). Contrary to
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Local Similarity in the Stable Boundary Layer 105

the results for weak stability, observational studies diverge considerably for large stability
z/� > O(1), so that presently there is no conclusive result on φmor φh in this range (Mahrt
1999). This lack of ‘universality’ may be due to a number of factors, including:

• In strong stratification fluxes are often very weak and intermittent (Mahrt 1999), so that
it is difficult to obtain accurate flux estimates from the observations (flux errors strongly
affect z/�, because � scales as 1/u3∗ (Baas et al. 2006).

• With non-stationarity and horizontal heterogeneity, and as fluxes become small, the rela-
tive contribution of non-stationary mesoscale fluxes to the total turbulent flux increases,
which makes the results very sensitive to the time-averaging procedure (Vickers and
Mahrt 2006). Generally speaking, non-stationarity causes a ‘leveling-off’ of φm and φh

(Mahrt 2007).
• Non-turbulent processes, such as gravity-wave transport and longwave radiative cooling,

become more important as stability increases.

A new theoretical perspective (A.F. Moene, personal communication 2008) uses direct numer-
ical simulation (DNS: Appendix A) of the Navier–Stokes equations for stably stratified flow
with a relatively low Reynolds number (O(104), compared to Re in the atmospheric stable
boundary layer O(108)). The study found strong evidence for ‘Re-similar’ flow with results
apparently insensitive to the large difference in Re. From this, it was concluded that similarity
relations such as (3) and (4) could be determined directly from the DNS, with its obvious
advantage over observations with respect to stationarity and homogeneity. We summarize
the DNS results with respect to Eqs. 3 and 4 in Fig. 1.

A clear linear dependence appears over a large stability range (0 < z/� < 5), and
although a marginal difference between φm and φh is found, both curves seem to be rather
well represented by the function φm,h = 1 + 4.5 z/�, which implies a turbulent Prandtl-
number ≈ 1.0. As such this study supports log-linear dependence over a large stability range
in an ‘idealized stationary, homogeneous atmosphere’. We note that re-analysis of Fig. 1 for
non-stationary cases (not shown) clearly showed a leveling-off, an effect that is well-known
for atmospheric studies on the non-stationary stable boundary layer (SBL), (Mahrt 2007).
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Fig. 1 Dimensionless gradients as a function of the stability parameter z/�, as obtained from DNS (see:
Appendix A). For comparison the line φm,h = 1 + 4.5z/� is given
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106 B. J. H. van de Wiel et al.

The αm,h coefficient (4.5) lies within the atmospherically observed range 4 ≤ αm,h ≤ 8
(Högström 1996); we later provide a physical reason for this particular αm,h range, based on
mixing length considerations.

As characteristics of the φ functions can be inferred from mixing-length considerations,
the reverse is also true: observed φ functions may help determine mixing length approaches
that are consistent with atmospheric observations. As such, both concepts are inherently
connected, and an interesting study on a similar connection in relation to closure constants
in the turbulent kinetic energy (TKE) equation was given recently by Baas et al. (2008). We
illustrate our point by referring to the well-known classical approach to find the master length
scale from simple inverse linear interpolation between the neutral and the buoyancy length
scales:

1

�
= 1

�N
+ 1

�B
. (7)

Although this approach is both practically attractive and provides the correct physical limits
it lacks observational evidence, and it is unclear why Eq. 7 should be preferred over inverse
quadratic or other interpolation methods. In fact, we show below that the inverse linear inter-
polation in (7) is inconsistent with a log-linear behaviour of the φ functions, and we provide
an alternative fully consistent interpolation.

2 Local Scaling from a Mixing-Length Model: A Rigid-Wall Analogy

2.1 Basic Assumptions

We adopt a rigid wall analogy for the buoyancy length scale and show that the physical rel-
evance of the stability parameter z/� directly follows from a mixing-length approach. The
following assumptions are made:

(1) Validity of K-theory: this implies that local fluxes can be related directly to the local
gradients of the mean variables.

(2) The turbulent diffusivities for heat and momentum: we assume Kh = Km

Assumption (1) is often made in the stable boundary layer since non-local transport of turbu-
lent kinetic energy is usually small in stably stratified conditions (Derbyshire 1999). Without
a priori knowledge, (2) is assumed for simplicity. With (1) the momentum and heat fluxes
can be expressed as:

u2∗ = Kt
∂U

∂z
, (8)

θ∗u∗ = Kt
∂θ

∂z
, (9)

where Kt is modelled in terms of velocity and length scales:

Kt = u∗�. (10)

Note that local fluxes and ensemble averaged variables are used unless stated otherwise.
Now the problem is reduced to finding the correct length scale �.
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Fig. 2 The buoyancy length scale from an apparent rigid wall perspective

2.2 The Rigid-Wall Analogy

The governing length scale of turbulence closure is related to the displacement of turbulent
eddies, and in the neutral limit the displacement of eddies is limited by the distance to the wall
(Fig. 2). At maximum the displacement equals the height z, but on average, the displacement
will be less than this maximum. From observations in neutral conditions, the turbulent length
scale is directly related to the maximum displacement by:

�N = κN zN = κz (11)

with κ the von Karman constant. Equation 11 is well-founded in the fluid mechanics literature
(Kundu 1990), and in accordance with vast observational evidence we take κ = 0.4.

Also in the limit of extreme stratification it is possible to define a typical length scale: the
buoyancy length scale. To this end we first derive a maximum displacement height zB , which
is considered to be the distance between the level under consideration and an apparent ‘wall’
(Fig. 2). Then by analogy to neutral wall flows the buoyancy length scale is readily found
via: �B ≡ κB zB (where the subscribt ‘B’ indicates ‘buoyancy’).

The maximum displacement height is diagnosed from energy conservation arguments.
Due to energy conservation, the vertical displacement of an eddy is limited by stratification
(Brost and Wyngaard 1978, Hunt et al. 1985) and maximum displacement is reached when
all vertical kinetic energy of the eddy motion is transferred into potential energy (friction-
less):�EPOT = −�EKIN .The mean vertical kinetic energy of the eddies (per volume) is
represented by 1

2ρσ 2
w and potential energy that can be gained due to ‘Archimedes-effects’ is

|�ρ| zB g, with zB the displacement (defined as a positive number), and �ρ the difference in
density between the final and the reference height. Thus:

|�ρ| zB g = 1

2
ρσ 2

w, (12)

and with the Boussinesq approximation we replace density variations by temperature vari-
ations: |�θ/θ0| zB g = 1

2σ 2
w. |�θ | is replaced by zB∂θ/∂z (in the stable limit, profiles are
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108 B. J. H. van de Wiel et al.

approximately linear), and finally, an expression for the maximum displacement (apparent
wall distance) zB is found:

zB =
√

1

2

(σw

N

)
, (13)

with N 2 = (∂θ/∂z)(g/θ0), N being the buoyancy frequency. Next, we eliminate σw, by using
the fact that all dimensionless groups have to reach constant values in the strong stability limit
(Nieuwstadt 1984, Basu et al. 2006). Hence we have σw = Cu∗, with C a proportionality
constant, which leads to:

zB =
√

1

2
C

(u∗
N

)
. (14)

Now, from the rigid-wall analogy, we assume, as with neutral wall flows, the buoyancy mixing
length is directly related to the ‘wall’ distance via �B = κB zB :

�B = κB

√
1

2
C

(u∗
N

)
. (15)

Below it will be shown that the physical relevance of z/� directly follows from this length
scale.

2.3 From Buoyancy Length Scale to z/�

First, we combine (8) and (10) and (15) :

u2∗ = Kt
∂U

∂z
= κBu∗zB

∂U

∂z
= κBu∗

√
1

2
C

u∗
N

∂U

∂z
. (16)

In (16) the temperature gradient can be replaced by a wind speed gradient, using (8) and (9).
Then, after isolating the wind speed gradient, we have:

(
∂U

∂z

)
κz

u∗
=

(
2

κ2
BC2

)
zθ∗
u2∗

(κg

θ

)
=

(
2

κ2
BC2

)
z

�
(17)

and the scaling behaviour at the stable limit is now identical to the classical log-linear limit
with the constants related as: (

2

C2

)
1

κ2
B

= α. (18)

In this way the local Obukhov length is derived from a physical length-scale model.

3 Predicting the Value of α

In principle, α in (5) and (6) is a free constant that can only be determined from experiment.
On the other hand, with the physical model above (Eq. 18), it is possible to obtain a direct
estimate of α, by using (empirical) information on the ratio σw/u∗.

(A) From atmospheric and wind-tunnel observations and large-eddy simulations, Basu et al.
(2006) show that σw/u∗ is rather close to the value 1.4–1.5 at the large stability limit
(and in fact surprisingly constant with respect to stability). Here, for simplicity, we
take C = σw/u∗ ≈ √

2, so that C2 = 2.
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Local Similarity in the Stable Boundary Layer 109

(B) A true analogy of buoyancy as a ‘pseudo-wall’ effect implies that: κB ≈ κN = κ . The
consequence of this statement is evaluated below.

With assumptions (A) and (B) the value of α becomes: α = 1/κ2 = 6.25. This first-order
estimate lies well within the observed range of 4 to 8 (Sect. 1).

In principle, assumption (B) gives an upper bound estimate for α (lower bound for κB ).
This can be understood by considering the fact that in neutral wall flows turbulence has a
typical three-dimensional character as compared to the more two-dimensional character of
turbulence in the stably stratified case. As such, the vortex-stretching mechanism and the
energy dissipation is more effective in the first case. Consequently, the reduction of the mix-
ing length when compared to the wall distance is somewhat larger in neutral than in stably
stratified cases (κB ≥ κN ). On the other hand, the direct analogy κB ≈ κN seems to give
realistic α values and so the difference between κB and κN cannot be too large.

The α value of 6.25 has implications in terms of the turbulent kinetic energy equation.
First, it can be shown (Sect. 5) that α is related to the critical Richardson number via 1/α =
RiC = R fC , the critical flux Richardson number (as before, we assume Kh = Km). Thus
α = 6.25 implies R fC = 0.16, which in turn implies that in the stable limit 84% of the
turbulent kinetic energy by shear production is still dissipated by internal friction. This 84%
is not very different from the 100% under neutral conditions: changes due to the effect of
buoyancy on the relative importance of the terms in the turbulent kinetic energy budget (as
compared to the total shear production), seem to be small. Of course the absolute magnitude
of all terms is strongly affected by stability.

In other words: all terms in the TKE budget equation are affected by the fact that zB

decreases strongly with stability, but the efficiency κB remains rather constant, i.e. close to
its neutral value. The a posteriori argument of small perturbations in the TKE budget could
be related to the fact that σw/u∗ is rather constant with respect to stability, though this is
difficult to prove from first principles.

Our concept also provides a direct quantitative link between the apparent wall distance zB

and the local Obukhov length �: zB = �/α, a useful rule of thumb. With B) this statement
immediately implies: φm,h = z/zB , in the stable limit and in our framework (5) and (6)
simply become: φm,h = 1 + z/zB .

Related to this, an interesting result was mentioned by Derbyshire (1990, his Fig. 1)
who found a “close association between the local Obukhov length � and the vertical dis-
placement scale”. From LES simulations he found that the vertical profiles of σw/N were
virtually identical to profiles of �/5. Thus σw/N ≈ �/5, whereas our analysis predicts
σw/N ≈ �κ2/

√
1/2 = �/4.4, which is surprisingly close to the LES findings.

4 φ Functions and Interpolation of Mixing Lengths: Consistency of Concepts

4.1 A Physical Picture

Both the neutral and the buoyancy length scales �N and �B have to be combined in a sin-
gle master length scale � in order to arrive at flux-profile relationships. In order to derive a
mathematical form of such a relationship, we use physical arguments based on the schematic
in Fig. 2, which shows the virtual maximum eddy size due to separate wall and buoyancy
effects. It is clear that the actual maximum size will be determined by the most limiting
process, i.e. by the smallest maximum, leading to wall-limited size close to the wall and
buoyancy limited size higher up.
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110 B. J. H. van de Wiel et al.

Wall dominated
eddy size 

Buoyancy dominated 
 eddy size 

‘Actual’
 eddy size 

Fig. 3 ‘Actual’ maximum eddy size as a combined result of wall (grey) and buoyancy (black) effects. In the
first two frames virtual eddies are drawn. Note that the virtual, large eddy in the second frame only indicates
that buoyancy is non-limiting near the ground. The actual eddy close to the ground is limited by wall effects
(grey eddy, third frame). The dashed eddy is limited by both wall and buoyancy effects

Also, at a certain height both limiting effects are equally important. From the analysis
above it is clear that the cross-over occurs at z = zN = zB , i.e. at z/� = 1/α, and with the
physical picture of Fig. 3, a natural way to combine �N and �B in � is by inverse interpolation:

1

�δ
= 1

�δ
N

+ 1

�δ
B

, (19)

where the exponent δ is a free parameter. Now consider the extreme case: δ → ∞. In this
limit � = M I N (�N , �B) as in the simplified picture in Fig. 3. In reality however, it is more
likely that both wall and buoyancy effects become relevant once they are of comparable
magnitude, so that there is a smoother transition between both processes. This is achieved
by choosing a lower value for δ. In virtually all studies reported δ is set equal to 1 yielding
inverse linear interpolation (e.g. Brost and Wyngaard 1978, Nieuwstadt 1984):

1

�
= 1

�N
+ 1

�B
(20)

whose consequences for φ are evaluated below. By inserting (20) in (16) it can be shown
(Appendix B) that inverse linear interpolation implies:

φm,h = 1 + 1

2
α

z

�
+ 1

2

((
α

z

�

)2 + 4
(
α

z

�

)) 1
2

, (21)

which is not the traditional log-linear φ function. Consequently, the traditional interpolation
in (20) seems to deviate from observational evidence. As an alternative, it is tempting to
take the observed φ functions as a point of departure and then find the interpolation function
from inverse calculation. Such alternative interpolation would have a direct foundation in
observational data. If we start with the log-linear φ functions φm,h = 1 + αz/� this leads to
(Appendix B):

1

�TOT
= 1

2�N
+

(
1

4�2
N

+ 1

�2
B

) 1
2

. (22)
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Local Similarity in the Stable Boundary Layer 111

This interpolation between �N and �B should be used in mixing length studies if one aims
to represent the log-linear stability functions.

4.2 Consistency of Concepts

In the section above the mixing-length concept and the concept of similarity functions were
linked. We could go one step further by also taking into account the flux-gradient relations
that use the stability functions based on the gradient Ri number f (Ri), since all these concepts
apply to K-theory:

Kt = �2 ∂U

∂z
, (23a)

Kt = �2
N

1

ϕ2
m,h

∂U

∂z
, (23b)

Kt = �2
N f (Ri)

∂U

∂z
, (23c)

with Ri ≡ (g/θ0) (∂θ/∂z) / (∂U/∂z)2. All these concepts should in principle be fully equiv-
alent (Derbyshire 1999), and in Table 1 the relationships between the three concepts for
specific choices of the formulations are shown. In this way the consequences of a certain
choice in the mixing-length formulation are immediately clear and explicit. The results of
Table 1 are visualized in Fig. 4a, b.

From Fig. 4a it appears that (at first glance) the three alternative mixing-length formu-
lations of Table 1 produce similar φm,h . The log-linear consistent relation lies in between
the inverse linear and inverse quadratic interpolation (and is not very different from an
inverse 3/2-power interpolation, i.e. δ = 3/2). However, Fig. 4b shows that the impact of the
mixing-length formulation is significant. This paradox is resolved by realizing that:

(a) In Fig. 4a differences are significant for z/� smaller than say 0.5;
(b) z/� = 0.5 already corresponds to αRi ≈ 0.7 (using α ≈ 5), i.e. almost the full scale

in Fig. 4a.

So, figures with a large scale on the z/� axis (as in Fig. 1) can be misleading from a Ri
perspective.

Table 1 Assumed mixing-length formulations with explicit consequences for φm,h and f (Ri)

MO log-linear consistent Inverse linear (classical) Inverse quadratic

1
�TOT

= 1
2�N

+
(

1
4�2

N
+ 1

�2
B

) 1
2 1

�TOT
= 1

�N
+ 1

�B
1

�2
TOT

= 1
�2

N
+ 1

�2
B

φm,h = 1 + α z
�

φm,h = 1 + 1
2 α z

�
φm,h = 1

2 α z
�

+ 1
2

√(
α z

�

)2 + 4

+ 1
2

√(
α z

�

)2 + 4
(
α z

�

)
f (Ri) = (1 − αRi)2 f (Ri) = (1 − √

αRi)2 f (Ri) = (1 − αRi)
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Fig. 4 (a) Graphical presentation
of the φm,h functions in Table 1
(here αm,h = 4.5). (b) Graphical
presentation of the f (Ri)m,h
functions in Table 1
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5 Discussion

5.1 Mixing-Length Interpolation

At this point it goes beyond the scope of this text to discuss all the observational evidence for
the particular mixing-length formulation to be used. Nevertheless, some comments are made
below. In our analysis, the DNS results do not a priori exclude either the log-linear consis-
tent or the inverse linear interpolation (compare Figs. 1 and 4a). However, for consistency
(e.g. with the Businger–Dyer formulations) the slightly more complex method is preferred
over the traditional interpolation method. At this point we mention that the inverse quadratic
interpolation does not seem to be supported by typical atmospheric observations (compare
Fig. 4b with observations by Duynkerke and De Roode 2001).
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Local Similarity in the Stable Boundary Layer 113

As mentioned in the introduction, since Nieuwstadt (1984) some studies have used higher
order turbulence closure models to arrive at explicit local-scaling functions. Often, the choice
of closure constants is discussed at length, but not the choice of mixing-length formulation
itself. In the present work we show that this latter choice is not trivial, and deserves validation
against observational data in order to give physically reliable results.

5.2 The Critical Richardson Number

From Table 1 it appears that no turbulent flux exists whenever Ri ≥ 1/α = Ric. This con-
clusion is also elegantly derived by considering equation (16) in the stable limit (Derbyshire,
personal communication, 2007):

u∗
∂U/∂z

= �B = κB

√
1

2
σw/N , (24)

which can be written as:

Ri = 1

2
κ2

B(σw/u∗)2. (25)

Thus, in the stable limit Ri reaches a constant, denoted as Ric = 1
2κ2

B(σw/u∗)2 = 1/α, due
to (18). However, it must be realized that the existence of a critical Ri is a direct consequence
of our assumption Prt ≈ 1. This analogy between momentum and heat is non-trivial in the
sense that pressure–gradient fluctuations can play a systematic role. This is an important
difference in the equations governing u′(and hence Km) as opposed to θ ′ (and hence Kh).

For this reason the RiC issue remains an open question and the physics behind the critical
Richardson number concept is still under debate (Zilitinkevich et al. 2007, Van de Wiel et al.
2007). On the other hand, we note that Prt ≈ 1 is supported by our DNS results in the stable
limit (Fig. 1). In the case of Prt 
= 1 the analysis could be extended without loss of generality.

6 Conclusions

From the present work the following conclusions are drawn:

• The physical relevance of the local scaling parameter z/� naturally appears from the
buoyancy length scale by following a mixing length approach using a rigid wall analogy.
As such we support the findings of Derbyshire (from LES simulations) that � ∝ �B .

• With the present approach an estimation for the ‘free’ parameter α in the flux-gradient
relationships can be anticipated based on physical arguments: α = 2/((σ 2

w/u2∗)κ2) ≈
1/κ2 = 6.25. This value lies within the range reported in observational studies.

• The full mixing length approach requires some interpolation between the mixing length
in the neutral and the buoyancy limits: �N and �B . It is shown that the classical inverse
linear interpolation is inconsistent with the classical log-linear stability functions. As an
alternative, a log-linear consistent interpolation method is proposed.
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the manuscript. Also our colleagues Prof. Bert Holtslag and Dr. Gert-Jan Steeneveld are acknowledged for
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Appendix A: Some Characteristics of Direct Numerical Simulation

Our model results in Fig. 1 result from a direct numerical simulation (DNS), which, in princi-
ple, does not need subgrid modelling of turbulence as does large-eddy simulation. Instead, the
Navier–Stokes equations are solved directly in their discretized form. The flow configuration
is similar to that in Nieuwstadt (2005): a stably stratified smooth channel flow with height h.
In the present simulation the characteristic forcing parameters are Re∗ = u∗0h/ν = 720
(as opposed to Re∗ = 360 in Nieuwstadt) and h/L = 0.4 (defined with the Von Karman
constant in L contrary to the definition in Nieuwstadt). Here u∗0 is a forcing parameter based
on the pressure gradient: u∗0 ≡ √− (1/ρ) (∂ P/∂x) h. A frictional Reynolds number equal
to 720 implies a bulk Reynolds number O(14000). Elaborate studies showed that the flow
was very similar to atmospheric stratified flow. Further characteristics of the simulation are:

• Periodic boundary conditions in the x and y directions.
• Boundary conditions in the z direction.

– Prescribed temperature at the channel top.
– Prescribed surface heat flux.
– No slip at the surface and free slip at the channel top.
– Zero vertical velocity at top and bottom.

• 2003 grid cells and a domain size of 5h in the x and y directions and h in the z directions.
• Pressure gradient forcing in the x direction.

The simulation was run for 102t∗ (with t∗ = h/u∗), and the results of Fig. 1 are based on
statistics derived from fields from the last 2t∗. Implementation details of the model are similar
to those of the LES model used in Moene (2003): second-order finite volume discretization in
space and the second-order Adams–Bashforth method is used for time integration. Features
not used in the present simulation comprise system rotation around an arbitrary axis, gravity
working in an arbitrary direction, periodic boundary conditions in the z direction and forcing
of velocities and scalars with a linear gradient (useful for the simulation of homogeneous
turbulence).

Appendix B: Derivations

We provide a general derivation to find consistent ϕm,h and f (Ri) from the mixing-length
interpolation for any δ. The specific cases from Table 1 (δ = 1, 2) can be found directly from
this solution. Realizing that u∗ = �∂U/∂z, the following relations are found from K-theory:

(
�B

�

)2

= k̃2
B

1

Ri
, (26)

(
�B

�

)2

= k̃2
B

ϕ

(z/�)
. (27)

For convenience we defined k̃2
B ≡ (1/2)C2κ2

B . From Kt = �2∂U/∂z = �2
N f (Ri)∂U/∂z

and ϕ:

f (Ri) = (�/�N )2, (28)

ϕ = �N /�. (29)

- From length scales to f (Ri) and ϕ
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The general interpolation 1/�δ = 1/�δ
N + 1/�δ

B is rewritten as:

(
�

�B

)δ

+
(

�

�N

)δ

= 1, (30)

and with (26) and (28) we write (30) in terms of f (Ri):

f (Ri) =
(

1 −
(

Ri

Ric

)δ/2
)2/δ

. (31)

With, as before, Ric = k̃2
B = 1/α. Likewise with (27) and (29), (30) becomes:

(
z/�

ϕk̃2
B

)δ/2

+ ϕ−δ = 1, (32)

and after multiplication by ϕδ , one can solve a second-order equation in ϕδ/2 yielding:

ϕ =
⎛
⎝

(
α z

�

)δ/2 +
√(

α z
�

)δ + 4

2

⎞
⎠

2/δ

. (33)

- From ϕ to f (Ri) and �

With φ = 1 + αz/� = 1 + (1/k̃2
B)z/� inserted in (27), and using (29):

(
�B

�

)2

= ϕ

ϕ − 1
= �N

�N − �
. (34)

This result may be rewritten as a second-order equation in 1/�, which yields the interpola-
tion formula given in the main text (Eq. 22). In terms of Ri we have((26), (27) and (34)):
αϕ/(ϕ − 1) = 1/Ri or ϕ = 1/(1 − αRi), which via (28) and (29) gives:

f (Ri) = (1 − αRi)2 = (1 − Ri/Ric)
2. (35)
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