227 research outputs found

    On the existence and exponential attractivity of a unique positive almost periodic solution to an impulsive hematopoiesis model with delays

    Full text link
    In this paper, a generalized model of hematopoiesis with delays and impulses is considered. By employing the contraction mapping principle and a novel type of impulsive delay inequality, we prove the existence of a unique positive almost periodic solution of the model. It is also proved that, under the proposed conditions in this paper, the unique positive almost periodic solution is globally exponentially attractive. A numerical example is given to illustrate the effectiveness of the obtained results.Comment: Accepted for publication in AM

    New results on the positive pseudo almost periodic solutions for a generalized model of hematopoiesis

    Get PDF
    The main purpose of this paper is to study the existence and global exponential stability of the positive pseudo almost periodic solutions for a generalized model of hematopoiesis with multiple time-varying delays. By using the exponential dichotomy theory and fixed point theorem, some sufficient conditions are given to ensure that all solutions of this model converge exponentially to the positive pseudo almost periodic solution, which improve and extend some known relevant results. Moreover, an example and its numerical simulation are given to illustrate the theoretical results

    Positive Almost Periodic Solution for a Model of Hematopoiesis with Infinite Time Delays and a Nonlinear Harvesting Term

    Get PDF
    A generalized model of Hematopoiesis with infinite time delays and a nonlinear harvesting term is investigated. By utilizing a fixed point theorem of the differential equations and constructing a suitable Lyapunov functional, we establish some conditions which guarantee the existence of a unique positive almost periodic solution and the exponential convergence of the system. Finally, we give an example to illustrate the effectiveness of our results

    On the global dynamic behaviour for a generalized haematopoiesis model with almost periodic coefficients and oscillating circulation loss rate

    Get PDF
    A generalized non-linear nonautonomous model for the haematopoiesis (cell production) with several delays and an oscillating circulation loss rate is studied. We prove a fixed point theorem in abstract cones, from which different results on existence and uniqueness of positive almost periodic solutions are deduced. Moreover, some criteria are given to guarantee that the obtained positive almost periodic solution is globally exponentially stable.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Balderrama, Rocio Celeste. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentin

    Stability Analysis of Cell Dynamics in Leukemia

    Get PDF
    Cataloged from PDF version of article.In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations
    • …
    corecore