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Departamento de Matemática, Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires & IMAS-CONICET - Argentina.

Abstract

A generalized nonlinear non-autonomous model for the hematopoiesis (cell production) with
several delays and an oscillating circulation loss rate is studied. We prove a fixed point theorem in
abstract cones, from which different results on existence and uniqueness of positive almost periodic
solutions are deduced. Moreover, some criteria are given in order to guarantee that the obtained
positive almost periodic solution is globally exponentially stable.
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1 Introduction

Nonlinear delay differential equations have numerous applications to economics, physics, statistics, biology and
many other fields. An example of such applications is the autonomous delay differential equation proposed by
Mackey and Glass to study the regulation of hematopoiesis, namely

x′(t) =
λxm(t− τ)

1 + xn(t− τ)
− γx(t), (1)

where m = 0 or 1 and n, γ and τ are positive constants (for more details see [22, 23]). Often, the environment
is not temporally constant; thus, it is intuitive to assume that this fact influences many biological dynamical
systems and suggests the need of considering time-dependent parameters (see e.g. [21, 22, 24]). The following
extension of (1) with several delays

x′(t) =

M∑
k=1

λkrk(t)
xm(t− τk(t))

1 + xn(t− τk(t))
− b(t)x(t), (2)

where m ≥ 0, n, λk > 0, and b, rk, τk are positive and continuous functions for k = 1, 2, . . . ,M, was studied for
example in [2, 9, 15,21,32–34].
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It is worthy to notice that there are four possible behaviours for the mapping g(x) := xm

1+xn , namely: strictly
increasing and bounded (n = m > 0), single-humped (n > m > 0), strictly decreasing (m = 0) and strictly
increasing and unbounded (0 < n < m). The latter case does not have biological relevance, although it is of
mathematical interest in order to obtain a complete picture.

Periodic effects for this type of population dynamics have been intensively analysed [1, 2, 4, 6, 19, 26, 27, 34].
In all these works time-dependent parameters and delays have a fixed period T , and sufficient conditions to
ensure the existence of positive T -periodic solutions have been obtained. However, assuming the same period
T for the parameters, delays and solutions may result, in some cases, somewhat artificial from the biological
point of view. From the mathematical point of view, the advantage of T -periodic assumptions is that standard
methods of the nonlinear analysis such as Mawhin’s continuation theorem, Schauder and Kranoselskii’s fixed
point theorems can be used (see e.g. [1, 7, 17,31]).

A more realistic way to avoid the periodicity conditions consists in considering almost periodic effects. This
is interesting for several reasons: on the one hand, these more general effects include periodicity and allow more
realistic assumptions: for example, time-dependent parameters with different periods. On the other hand, since
almost periodicity is more general, a central mathematical issue relies on the fact that the involved operators
are no longer compact. Due to this fact, the aforementioned methods cannot be extended in a direct way for
the almost periodic problem (see [25,28]) and other methods must be employed.

Based on these facts we establish a fixed point theorem in abstract cones without compactness conditions.
It is worthy to mention that the fixed point theorems formulated by Wang et al. in [29] and [30] are direct
consequences of our fixed point theorem, see Corollaries 3.2 and 3.3 below. The same can be said about the
theorem established by Ding et al. in [12], as we show in Corollary 3.4. Moreover, the fixed point presented
in [10] employs a stronger monotonicity assumption than our result and, in consequence, the existence proofs
in the present paper improve some previous ones (see e.g. [11]).

In [5, 32–34] sufficient criteria were established for the existence of positive almost periodic solutions of
(2) with m = 0 (monotone decreasing nonlinearity). In [33], a fixed point theorem was employed to prove
the existence and uniqueness of almost periodic solutions under conditions that can be regarded as particular
applications of Theorem 2.1 and Theorem 2.4 case (a) below. In [34], using the contraction mapping principle,
the authors obtained sufficient criteria for existence in a bounded region under the assumption n > 0. However,
as pointed out in [33], Theorem 3.1 in [34] has a mistake, which invalidates the case n ≤ 1. In [30], the authors
proved a fixed point theorem that allows to deduce the existence and uniqueness of positive almost periodic
solutions of (2) with M,m = 1 and n > m (single-humped nonlinearity) in a bounded region.

More recently, using similar methods to those in [5], criteria for existence and uniqueness were established
in [20] when n ≥ m for 0 ≤ m ≤ 1 (sum of single-humped functions when n > m, or monotone increasing and
bounded nonlinearity when n = m). This case was also considered in [9] by employing a fixed point theorem
in a cone. The results obtained for the several cases treated in [11] using the previously mentioned fixed point
theorem established by Ding et al. in [12] can be regarded as particular applications of Theorems 2.1-2.2 and
Theorem 2.4 below. However, when the nonlinearity is more general, Ding’s fixed point theorem cannot be
applied. Such are the cases of Theorems 2.3 and 2.5 below.

As pointed out in [3], equations with oscillating coefficients appear in linearizations of population dynamics
models with seasonal fluctuations, where during some seasons the death or harvesting rates may be greater than
the birth rate. Based on this fact, some results were considered in [18] for an oscillating loss rate coefficient b(t)
in (2) for m ≤ n.

Besides existence, another relevant matter is to determine whether or not the obtained solutions are sta-
ble. In particular, exponential stability is specially important for two reasons: on the one hand, the rate of
convergence is quantified and, on the other hand, it is robust to perturbations.

For example, in [32] sufficient conditions for the global attractiveness of positive almost periodic solutions
of (2) with m = 0 were established as an answer to a question raised by Gyori and Ladas [15, p.322], although
global exponential stability was not discussed. In [11,33], Gronwall’s inequality was employed to establish global
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exponential stability under restrictions on the delay. In [5,34], authors studied the stability for the case m = 0
and in [20] for 0 ≤ m ≤ 1. Recently, using similar methods to those in [20], authors studied the case 0 ≤ m ≤ n
when b(t) is oscillatory. However, to the best of our knowledge, the global exponential stability has not been
sufficiently studied when m 6= 0, 1.

Motivated by the preceding discussion, we shall consider the following more general nonlinear non-autonomous
model with several delays

x′(t) =
M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
− b(t)x(t), (3)

where rk, τk : R → [0,+∞) are almost periodic functions, λk and nk are positive constants and 0 ≤ mk ≤ 1.
We remark that the different choices of the exponents mk and nk may lead to different behaviours of the terms
in the nonlinearity.

We shall introduce sufficient conditions to guarantee the existence and uniqueness of positive almost periodic
solutions of (3) with an almost periodic oscillating coefficient in the circulation loss rate b(t). To this end, we
prove a new fixed point theorem in abstract cones. In addition, for the particular case when inft∈R b(t) and
mj > nj for some j, we prove the global exponential stability of such solutions. It is worth noticing that our
criteria do not impose restrictions for the delay. By means of a Halanay-type inequality [16, Chapter 4], we
shall establish a simple global exponential stability lemma, which is quite different from the methods employed
in the previous works.

The paper is organized as follows. Sufficient criteria for the existence, uniqueness and global exponential
stability of such almost periodic solutions are presented in Section 2. In Section 3, we introduce some definitions,
lemmas and theorems that shall be employed in Section 4 to prove the main results. Finally, in Section 5 we
give examples to demonstrate the validity of our results obtained in Section 2 and we explain why results in
previous references cannot be applicable. Thus, we show that our results improve and generalize previously
known results.

Throughout the paper, it will be assumed that b(t) is an almost periodic function with

M [b] = lim
t→+∞

1

T

∫ t+T

t
b(s)ds > 0.

For a bounded continuous function f , the supremum and the infimum of f shall be denoted respectively f∗ and
f∗, namely

f∗ = sup
t∈R

f(t), f∗ = inf
t∈R

f(t).

Moreover, we assume that

υ := max
1≤k≤M

{
sup
t∈R

τk(t)

}
> 0 and (rj)∗ > 0 for some j. (4)

In addition, in our existence results we assume that there exist positive constants F i and F s, such that

F ie−
∫ t
s b̃(u)du ≤ e−

∫ t
s b(u)du ≤ F se−

∫ t
s b̃(u)du, (5)

where b̃ : R→ (0,+∞) is a bounded and continuous function with positive infimum.

Remark 1.1 It is worth noticing that, when inft∈R b(t) > 0, inequalities (5) are fulfilled with F i = F s = 1
and b̃(t) ≡ b(t). Thus, the techniques employed in our existence results are applicable when the circulation rate
b(t) is persistent.
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Due to the biological interpretation of the model, we shall consider as an admissible initial condition for
equation (3) only continuous positive functions, namely

x(t0 − t) = ϕ(t), ϕ ∈ C([0, υ], (0,+∞)). (6)

A solution of the initial value problem (3) satisfying (6) shall be denoted by x(t; t0, ϕ).

2 Main results

In this section, we state our results on existence, uniqueness and global exponential stability of positive almost
periodic solutions of (3).

Existence and uniqueness

The main part of our existence and uniqueness analysis shall be based on the study of the behaviour of the
term production.

For simplicity of notation, let us define the constants

V := min
k:nk>mk>0

{(
mk

nk −mk

) 1
nk

}
, (7)

S := min
{nk>1:mk=0}

{(
1

nk − 1

) 1
nk

}
(8)

and
T := min{V, S}. (9)

Theorem 2.1 Assume that nk ≤ mk for all k such that mk > 0 and nk ≤ 1 for all k such that mk = 0.
Furthermore, assume that one of the following conditions is fulfilled:

(a) 0 ≤ mj < 1 for some j.

(b) mk = 1 for all k and (H) :
∫ t
−∞ e

−
∫ t
s b(u)du

∑M
k=1 λkrk(s)ds > 1.

Then (3) has exactly one almost periodic solution with positive infimum.

Theorem 2.2 Assume that nk ≥ mk for all k such that mk > 0 and nk ≤ 1 for all k such that mk = 0.
Moreover, suppose there exists i such that ni > mi > 0. Let∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ V. (10)

Furthermore, assume that one of the following conditions is fulfilled:

(a) 0 ≤ mj < 1 for some j.

(b) mk = 1 for all k and (H) :
∫ t
−∞ e

−
∫ t
s b(u)du

∑M
k=1 λkrk(s)ds > 1.

Then (3) has exactly one almost periodic solution with positive infimum.
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Theorem 2.3 Assume that nk ≤ 1 for all k such that mk = 0. Moreover, suppose there exist i and l such
that ni > mi > 0 and nl < ml. Let∫ t

−∞
e−

∫ t
s b(u)du

 ∑
k:nk<mk

λkrk(s)
V mk

1 + V nk
+

∑
{k:mk=0}∪{k:nk≥mk>0}

λkrk(s)

 ds ≤ V. (11)

Furthermore, assume that one of the following conditions is fulfilled:

(a) 0 ≤ mj < 1 for some j.

(b) mk = 1 for all k and (H) :
∫ t
−∞ e

−
∫ t
s b(u)du

∑M
k=1 λkrk(s)ds > 1.

Then (3) has at least one almost periodic solution with positive infimum.

Theorem 2.4 Assume that nk ≥ mk for all k such that mk > 0. Moreover, supposse that nq > 1 for some
q such that mq = 0 and ∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ T. (12)

Then (3) has exactly one almost periodic solution with positive infimum.

Theorem 2.5 Assume that ni < mi for some i and nq > 1 for some q such that mq = 0. Moreover,
supposse that

∫ t

−∞
e−

∫ t
s b(u)du

 ∑
k:nk<mk

λkrk(s)
Tmk

1 + Tnk
+

∑
{k:mk=0}∪{k:nk≥mk>0}

λkrk(s)

 ds ≤ T. (13)

Then (3) has at least one positive almost periodic solution with positive infimum.

Remark 2.1 In view of Remark 1.1, we clearly have∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds ≤ F s
M∑
k=1

λkr
∗
k

b̃∗
< +∞.

It follows that assumption (10) in Theorem 2.2 is satisfied under the following condition, which is easier to
verify:

M∑
k=1

λkr
∗
k

b̃∗
≤ V

F s
.

Similarly, condition (11) in Theorem 2.3 can be replaced by the stronger assumption∑
k:nk<mk

λkr
∗
k

V mk

b̃∗(1 + V nk)
+

∑
{k:mk=0}∪{k:nk≥mk>0}

λkr
∗
k

1

b̃∗
≤ V

F s
,

and conditions (12) and (13) by

M∑
k=1

λkr
∗
k

b̃∗
≤ T

F s
and

∑
k:nk<mk

λkr
∗
k

Tmk

b̃∗(1 + Tnk)
+

∑
{k:mk=0}∪{k:nk≥mk>0}

λkr
∗
k

1

b̃∗
≤ T

F s
,

respectively. Also, condition (H) can be replaced by
∑M

k=1 λk(rk)∗ > b∗.
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Remark 2.2 (Uniqueness of periodic solution) Sufficient criteria for the existence of positive T -
periodic solutions of (3) were established in [1] by using topological degree methods. It is worth mentioning
that the referred work deals only with existence and multiplicity, and conditions for uniqueness of solutions are
not given.

As remarked above, some properties of T -periodic functions do not hold for the more general case of almost
periodic functions and, consequently, the results on existence of positive T -periodic solutions in [1] cannot be
directly applied to (3). Despite of that, it is still possible to compare Theorem 3.2 in [1] with Theorems 2.1, 2.2
and 2.3 assuming that b, rk and τk are positive T -periodic functions and mk > 0 for all k. The methods used
in the present paper provide also uniqueness of solutions, although more restrictive conditions are needed. For
example, the results in [1] do not impose conditions on the (positive) constants mk, but the uniqueness result
requires that mk ≤ 1 for all k. Moreover, if mk = 1 for all k, then the existence result [1, Thm. 3.2] assumes
that

∑M
k=1 λkrk(t) > b(t), while the existence and uniqueness result provided by this paper employs the stronger

condition
∑M

k=1 λk(rk)∗ > b∗.

Global exponential stability

Let x(t; t0, ϕ) be a solution of (3) with initial condition(6), and x̃(t) an almost periodic solution with positive
infimum of (3), and define

A := {k : nk > mk(3 + 2
√

2)}.

Remark 2.3 As we will see in Section 3 Lemma 3.5, under appropriate conditions it is possible to find
positive constants η and tϕ such that

x(t; t0, ϕ) > η, for all t ≥ tϕ.

Theorem 2.6 Let 0 ≤ mk ≤ 1, nk > 0 for all k = 1, . . . ,M and mj > nj for some j. Let η and tϕ,x̃ be
positive constants such that x̃(t), x(t; t0, ϕ) > η, for all t ≥ tϕ,x̃.

Set

p(t) =
∑
k∈A

ηmk−1λkrk(t)
(nk −mk)

2

4nk
+
∑
k/∈A

ηmk−1λkrk(t)mk,

and suppose that
inf

t≥tϕ,x̃
{b(t)− p(t)} > 0.

Then x̃(t) is globally exponentially stable. i.e., there exist positive constants ρ, Kϕ,x̃ and tϕ,x̃ such that

|x(t; t0, ϕ)− x̃(t)| < Kϕ,x̃e
−ρt for all t ≥ tϕ,x̃.

Remark 2.4 (Uniqueness) Theorem 2.3 and Theorem 2.5 only ensure the existence of at least one positive
almost periodic solutions of (3). However, under extra assumptions, the global exponential stability of such
solutions is ensured. Thus, we can conclude the existence of a unique almost periodic solution of (3) with
positive infimum (see Corollary 3.1 below.)

Remark 2.5 If we allow b(t) to oscillate, then global exponential stability can be obtained when mk ≤ nk
for all k. The proof is similar to that given by Jiang in [18] for and mk = m,nk = n for all k and we omit it.
The method cannot be extended to the case mk > nk for some k, which is left as an interesting open problem to
be studied.
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3 Preliminaries

In this section, we provide preliminary results which will be used in the proofs of our main results. For the
reader’s convenience, we also include a formal definition of almost periodicity.

Definition 3.1 (Corduneanu [8]) Let X be a Banach space. A function f : R → X is called almost
periodic if for any ε > 0 there exists a number l(ε) > 0 such that any interval on R of length l(ε) contains at
least one point ξ with the property that

||f(t+ ξ)− f(t)|| < ε for all t ∈ R.

It is proved that the previous definition is equivalent to the following one due to Bochner, expressed in terms
of sequential convergence of families translates.

Definition 3.2 (Fink [13]) A f : R→ C is almost periodic if from every sequence {α′n} one can extract a
subsequence {αn} such that

lim
n→∞

f(t+ αn)

exists uniformly on the real line.

Definition 3.3 Let X be a real Banach space. A nonempty closed set C ⊂ X is called a cone if the
following conditions are fulfilled:

(a) C + C ⊂ C (b) C ∩ −C = {0} (c) C is convex,

where 0 denotes the zero element of X.
Every cone C induces a partial order ≤ in X given by

x ≤ y if and only if y − x ∈ C.

If x ≤ y and x 6= y, we write x < y. A set {z ∈ X/x ≤ z ≤ y} is called an order interval and shall be
denoted as [x, y]. The interior of C shall be denoted by C◦. A cone C satisfying C◦ 6= ∅ is called a solid cone.
A cone C is called normal if there exists a constant N > 0 such that

0 ≤ x ≤ y implies that ||x|| ≤ N ||y||.

The smaller constant N satisfying the inequality is called the normal constant of C.

The Banach space of almost periodic real functions defined on R, equipped with the usual uniform norm,
shall be denoted as AP (R). Also, we denote

P := {x ∈ AP (R) : x(t) ≥ 0, ∀t ∈ R},

the normal solid cone of nonnegative functions. It is readily verified that

P ◦ = {x ∈ P : ∃ε > 0 such that x(t) ≥ ε, for all t ∈ R}.

Lemma 3.1 Let f, g ∈ AP (C). Suppose that limt→∞ f(t) = 0, then f ≡ 0.
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Proof: Consider the sequence α′n = n ∈ N, by Definition 3.2, there exists an increasing subsequence {αn} such
that f(t + αn) converges uniformly on the real line. Moreover, f(t + αn) converges uniformly to 0, the limit
given by the pointwise convergence.

Thus, defining fαn(t) := f(t+ αn), we get

||f ||∞,R = ||fαn ||∞,R → 0

as n→ +∞. We conclude that f ≡ 0. �

The following Corollary is a direct consequence of Lemma 3.1.

Corollary 3.1 Let f, g ∈ AP (R). Let ε > 0 and assume there exists t0(ε) > 0 such that |f(t) − g(t)| < ε
for all t ≥ t0. Then f ≡ g for all t ∈ R.

Definition 3.4 (Guo and Lakshmikantham [14]) Let (X,≤) be an ordered Banach space and let E ⊂ X.
An operator Φ : E × E → X is called a mixed monotone operator if Φ(x, y) is nondecreasing in x and
nonincreasing in y. An element x̃ ∈ E is called a fixed point of Φ if Φ(x̃, x̃) = x̃.

The following fixed point theorem shall play an important role in Section 4.

Theorem 3.1 Let P be a normal cone in a real Banach space X, and Φ : P ◦ × P ◦ → P ◦. Assume that

(I) there exist u0, v0 ∈ P ◦, u0 ≤ v0, u0 ≤ Φ(u0, v0) and v0 ≥ Φ(v0, u0);

(II) Φ is a mixed monotone operator on [u0, v0]× [u0, v0];

(III) there exists a function φ : (0, 1)→ (0,+∞) such that φ(γ) > γ for all γ ∈ (0, 1), and for any x, y ∈ [u0, v0]

Φ(γx, γ−1y) ≥ φ(γ)Φ(x, y), for all γ ∈ (0, 1).

Then Φ has exactly one fixed point x̃ in [u0, v0]. Moreover, for any initial x0, y0 ∈ [u0, v0], the iterative sequences

xn = Φ(xn−1, yn−1), yn = Φ(yn−1, xn−1), n ∈ N, (14)

satisfy
||xn − x̃||, ||yn − x̃|| → 0 (n→ +∞).

Proof: For n ∈ N, define un := Φ(un−1, vn−1) and vn := Φ(vn−1, un−1). Since Φ is a mixed monotone operator,
by (I) we deduce

u0 ≤ u1 = Φ(u0, v0) ≤ Φ(v0, u0) = v1 ≤ v0,

and inductively we obtain
u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ≤ vn ≤ . . . ≤ v1 ≤ v0. (15)

Since P ◦ is an open set and un ∈ P ◦, there exists a constant δ > 0 such that un − λvn ∈ P ◦ for any λ ∈ (0, δ).
Thus, the constant λn := sup{λ : un ≥ λvn} is well defined and positive. It is clear that

un ≥ λnvn (16)

and the inequality un ≤ vn implies λn ≤ 1. Moreover, since un+1 ≥ un ≥ λnvn ≥ λnvn+1, it is seen that
λn+1 ≥ λn. We claim that λ := limn→+∞ λn = 1. Indeed, if this is not true then λ ∈ (0, 1) and there are two
cases:
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Case 1. There exists n such that λn = λ. Then λn = λ, un ≥ λvn for all n > n which, together with (II), (III)
and (15), yields

un+1 = Φ(un, vn) ≥ Φ(λvn, λ
−1
un) ≥ φ(λ)Φ(vn, un) = φ(λ)vn+1.

Thus λn+1 ≥ φ(λ) > λ, which contradicts the fact that λn+1 = λ.

Case 2. λn < λ, for all n. Then

un+1 = Φ(un, vn) ≥ Φ
(
λnvn, λ

−1
n un

)
= Φ

(
λn

λ
λvn,

λ

λn
λ
−1
un

)

≥ φ
(
λn

λ

)
Φ
(
λvn, λ

−1
un

)
>
λn

λ
φ
(
λ
)

Φ(vn, un) ≥ λn

λ
φ
(
λ
)
vn+1.

Thus λn+1 ≥ λn
λ
φ
(
λ
)
. Letting n→∞, we deduce that λ ≥ φ

(
λ
)
> λ, a contradiction.

Hence λ = 1 and from (15)-(16) it follows that, for any k,

0 ≤ un+k − un ≤ vn − un ≤ vn − λnvn = (1− λn)vn ≤ (1− λn)v0. (17)

By the normality of P and (17),

||un+k − un|| ≤ N(1− λn)||v0|| → 0 as n→∞.

Thus, {un}n∈N is a Cauchy sequence. This implies that there exists x̃ ∈ [u0, v0] such that un → x̃. Similarly,

0 ≤ vn − un ≤ vn − λnvn = (1− λn)vn ≤ (1− λn)v0.

Again, by the normality of P

||vn − un|| ≤ N(1− λn)||v0|| → 0 as n→∞,

and consequently vn → x̃. Hence, since Φ is a mixed monotone operator on [u0, v0], it follows that

un+1 = Φ(un, vn) ≤ Φ(x̃, x̃) ≤ Φ(vn, un) = vn+1.

We conclude that x̃ = Φ(x̃, x̃).
Suppose now that w ∈ [u0, v0] is another fixed point of Φ. Let α := sup{α̃ ∈ (0, 1) : α̃w ≤ x̃ ≤ 1

α̃w}. Then,
αw ≤ x̃ ≤ α−1w and α ∈ (0, 1]. Suppose that α ∈ (0, 1), then φ(α) > α,

x̃ = Φ(x̃, x̃) ≤ Φ(
1

α
w,αw) ≤ φ(α)−1Φ(w,w) = φ(α)−1w,

and

x̃ = Φ(x̃, x̃) ≥ Φ(αw,
1

α
w) ≥ φ(α)Φ(w,w) = φ(α)w.

Thus, by the definition of α we have φ(α) ≤ α, which is a contradiction. We conclude that α = 1 and therefore
w = x̃.

Finally, let be (x0, y0) any initial condition in [u0, v0]× [u0, v0] and (xn, yn) the iterative sequences given by
(14). Since Φ is a mixed monotone operator, we have

u1 = Φ(u0, v0) ≤ x1 = Φ(x0, y0) ≤ Φ(v0, u0) = v1
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and
u1 = Φ(u0, v0) ≤ y1 = Φ(y0, x0) ≤ Φ(v0, u0) = v1,

and inductively we obtain xn, yn ∈ [un, vn]. Thus, it is clear that

||xn − x̃||, ||yn − x̃|| → 0 as n→ +∞.

The proof is complete. �

Remark 3.1 It is worth noticing that the function φ in the previous theorem is not necessarily continuous.

Corollary 3.2 Let P be a normal cone in a real Banach space X, and Φ : P ◦ → P ◦. Assume that

(I) there exist u0, v0 ∈ P ◦, u0 ≤ v0, u0 ≤ Φ(u0) and v0 ≥ Φ(v0);

(II) Φ is a nondecreasing operator on [u0, v0];

(III) there exists a function φ : (0, 1)→ (0,+∞) such that φ(γ) > γ for all γ ∈ (0, 1), and for any x ∈ [u0, v0]

Φ(γx) ≥ φ(γ)Φ(x), for all γ ∈ (0, 1).

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0 ∈ [u0, v0], the iterative sequence

xn = Φ(xn−1), n ∈ N, (18)

satisfies
||xn − x̃|| → 0 (n→ +∞).

Corollary 3.3 Let P be a normal cone in a real Banach space X, and Φ : P ◦ → P ◦. Assume that

(I) there exist u0, v0 ∈ P ◦, u0 ≤ v0, u0 ≤ Φ(v0) and v0 ≥ Φ(u0);

(II) Φ is a nonincreasing operator on [u0, v0];

(III) there exists a function φ : (0, 1)→ (0,+∞) such that φ(γ) > γ for all γ ∈ (0, 1), and for any x ∈ [u0, v0]

Φ(γ−1x) ≥ φ(γ)Φ(x), for all γ ∈ (0, 1).

Then Φ has exactly one fixed point x̃ in [u0, v0].
Moreover, for any initial x0 ∈ [u0, v0], the iterative sequence

xn = Φ(xn−1), n ∈ N, (19)

satisfies
||xn − x̃|| → 0 (n→ +∞).
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Corollary 3.4 Let P be a normal cone in a real Banach space X, and Φ : P ◦×P ◦ → P ◦ a mixed monotone
operator. Assume that there exists a function φ : (0, 1)× P ◦ × P ◦ → (0,+∞) such that for each γ ∈ (0, 1) and
x, y ∈ P ◦, φ(γ, x, y) > γ, φ(γ, ·, y) is nondecreasing in P ◦, φ(γ, x, ·) is nonincreasing in P ◦ and

Φ(γx, γ−1y) ≥ φ(γ, x, y)Φ(x, y).

Assume, in addition, there exists z ∈ P ◦ such that Φ(z, z) ≥ z. Then Φ has a unique fixed point x̃ ∈ P ◦.
Moreover, for any initial (x0, y0) ∈ P ◦ × P ◦, the iterative sequences

xn = Φ(xn−1, yn−1), yn = Φ(yn−1, xn−1), n ∈ N,

satisfy
||xn − x̃||, ||yn − x̃|| → 0 (n→ +∞).

Proof: In the first place, we shall prove the existence of a fixed point of Φ. If z ∈ P ◦ is such that Φ(z, z) = z,
then there is nothing to prove; otherwise, we can choose α ∈ (0, 1) such that

Φ(z, z) ≤ 1

α
z.

Since, φ(α, z, z) > α, there exists N0(α) > 0 such that for all N ≥ N0(α),
(
φ(α,z,z)

α

)N
≥ 1

α , that is,

φN (α, z, z) ≥ αN−1.

Let u0 = αNz, v0 = α−Nz and for n ∈ N define un := Φ(un−1, vn−1) and vn := Φ(vn−1, un−1). Thus,

Φ(u0, v0) = Φ(αNz, α−Nz) ≥ αΦ(αN−1z, α−(N−1)z) ≥ · · · ≥ αNz = u0,

and

Φ(v0, u0) = Φ(α−Nz, αNz) ≤ Φ(α−(N−1)z, α(N−1)z)

φ(α, α−Nz, αNz)

≤ Φ(α−(N−1)z, α(N−1)z)

φ(α, z, z)

≤ Φ(z, z)

φN (α, z, z)
≤ α−Nz = v0.

In addition, Φ is a mixed monotone operator on [u0, v0]×[u0, v0]. Moreover, for each γ ∈ (0, 1) and x, y ∈ [u0, v0],
we have

Φ(γx, γ−1y) ≥ φ(γ, x, y)Φ(γ, x, y)

≥ φ(γ, u0, v0)Φ(γ, x, y)

= φ(γ, αNz, α−Nz)Φ(γ, x, y)

= φ̃(γ)Φ(γ, x, y),

where φ̃ : (0, 1)→ (0,+∞) is defined by φ̃(γ) := φ(γ, αNz, α−Nz). Thus, by Theorem 3.1, Φ has a unique fixed
point x̃ in [u0, v0].

Suppose that ỹ ∈ P ◦ is a fixed point of Φ. Since P ◦ is an open set, there exists a constant β ∈ (0, α) and
M ∈ N, M > N such that

ũ0 := βMz ≤ ỹ ≤ β−Mz := ṽ0.

11



Again, by Theorem 3.1 we can prove that Φ has a unique fixed point on [ũ0, ṽ0]. Thus, the inclusion [u0, v0] ⊂
[ũ0, ṽ0] implies that x̃ = ỹ.

The proof is complete.
�

Remark 3.2 It is worth noticing that Corollaries 3.2, 3.3 and 3.4 are the same results as those fixed point
theorems established by Wang et al. in [30], [29] and by Ding et al. in [12] respectively. Hence, Theorem 3.1
generalizes their results.

Our stability result shall be based on the following result, which is a generalization of [35, Lemma 3] for the
case with time-dependent parameters. Moreover, we shall give explicit bounds for the convergence rate.

Lemma 3.2 Let x(t) be a continuous nonnegative function on t ≥ t0− υ satisfying the following inequality

D+x(t) ≤ −k1(t)x(t) + k2(t)x(t) for t ≥ t0 (20)

where k1(t) and k2(t) are nonnegative, continuous and bounded functions and x(t) = supt−υ≤s≤t x(s). Suppose

α = inf
t≥t0
{k1(t)− k2(t)} > 0.

Then there exists a positive constant ρ̃ > 0 such that

x(t) ≤ x(t0)e
−ρ̃(t−t0)

holds for all t ≥ t0. Moreover, the decay rate ρ̃ is such that

0 < inf
t∈R

{
(k1(t)− k2(t))k1(t)

k1(t)− k2(t) + k2(t)eυk1(t)

}
< ρ̃ < k∗1.

Proof: Define the function f by
f(t, ρ) := −k1(t) + k2(t)e

ρυ + ρ.

For each fixed t, f is a strictly increasing function; in addition, f(t, 0) = −k1(t) + k2(t) < 0 and f(t, k1(t)) =
k2(t)e

k1(t)υ > 0. Thus, for each t there exists a unique ρt ∈ (0, k∗1) which satisfies f(t, ρt) = 0. Moreover,
because f(t, ·) is a convex function we deduce that

ρt >
(k1(t)− k2(t))k1(t)

k1(t)− k2(t) + k2(t)eυk1(t)
. (21)

Now let
ρ̃ := inf{ρt : t ∈ R} (22)

and
y(t) := x(t0)e

−ρ̃(t−t0), t ≥ t0 − υ.

Let c > 1 be an arbitrary constant, then

x(t) < cy(t), t0 − υ ≤ t ≤ t0.

We claim that
x(t) < cy(t) for t > t0. (23)

12



Indeed, suppose that (23) does not hold, then there exists t1 > t0 for which

x(t) ≤ cy(t) for t0 − υ ≤ t ≤ t1 and x(t1 + δ̃) > cy(t1) for all δ̃ ∈ (0, δ). (24)

According to (20) and (24), it follows that

D+x(t1) ≤ −k1(t1)x(t1) + k2(t1)x(t1)

≤ −k1(t1)cy(t1) + k2(t1)cy(t1 − υ)

= c[−k1(t1) + k2(t1)e
ρ̃υ]x(t0)e

−ρ̃(t1−t0)

< c(−ρ̃x(t0)e
−ρ̃(t1−t0)) = cy′(t1), (25)

then (24) contradicts (25). Hence (23) holds for any t > t0. By letting c→ 1 we obtain

x(t) ≤ x(t0)e
−ρ̃(t−t0).

Finally, (21)-(22) yield

inf
t∈R

{
(k1(t)− k2(t))k1(t)

k1(t)− k2(t) + k2(t)eυk1(t)

}
< ρ̃ < k∗1,

and the proof is complete.
�

The following Lemma gives us an integral formula for the almost periodic solutions of (3).

Lemma 3.3 Let x(t) := x(t; t0, ϕ) be a solution of the initial value problem given by(3) and (6). Then for
t1 ≥ t0

x(t) = x(t1)e
−

∫ t
t1
b(u)du

∫ t

t1

e−
∫ t
s b(u)du

M∑
k=1

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
ds, for all t ≥ t1.

Moreover, if x(t) is defined on the whole real line, then

x(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
ds, for all t ∈ R.

Proof: From (3) we have: (
x(t)e

∫ t
t0
b(u)du

)′
= x′(t)e

∫ t
t0
b(u)du

+ x(t)e
∫ t
t0
b(u)du

b(u)

= e
∫ t
t0
b(u)du

M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))

and integrating from t1 to t we obtain

x(t)e
∫ t
t0
b(u)du

= x(t1)e
∫ t1
t0
b(t)du +

∫ t

t1

e
∫ s
t0
b(u)du

M∑
k=1

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
ds

and thus,
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x(t) = x(t1)e
−

∫ t
t1
b(u)du

+

∫ t

t1

e−
∫ t
s b(u)du

M∑
k=1

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
ds.

In addition, if x(t) is defined on the whole real line, taking the limit on the right-hand side of the equality we
deduce that

x(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
ds,

and the proof is now complete. �

Observe that Theorem 2.6 requires the existence of constants η and tϕ,x̃ such that x̃(t), x(t; t0, ϕ) > η. This
fact shall be guaranteed by the following Lemmas.

The following assumptions will be needed throughout the rest of the section:

M∑
k=1

λk(rk)∗ > b∗ and inf
t∈R

b(t) > 0. (26)

Remark 3.3 Let x(t) be a positive solution of (3). Then

x′(t) ≥ −b(t)x(t),

and hence x(t1)
x(t2)

≤ e
∫ t2
t1
b(t)dt for any t1 ≤ t2. In particular, this implies that

x(t− τk(t)) ≤ Lx(t), (27)

where L := maxt∈R e
∫ t
t−υ b(s)ds.

Lemma 3.4 If x(t) := x(t; t0, ϕ) is a solution of the initial value problem given by (3) and (6), then x(t)
is positive and bounded.

Proof: Suppose firstly there exists t̃ such that x(t̃) = 0 and x(t) > 0 for all t ∈ [t0, t̃), then

lim
t→t̃−

x′(t̃) =
M∑
k=1

xmk(t̃− τk(t̃))
1 + xnk(t̃− τk(t̃))

> 0,

a contradiction. Next, suppose that x(t) is unbounded, then there exists a sequence tj → +∞ such that
limtj→+∞ x(tj − υ) = +∞. From Remark 3.3, it follows that x(tj − υ) ≤ Lx(tj) and x(tj − υ) ≤ Lx(tj − τk(tj))
for k = 1, . . . , k, which implies

x(tj), x(tj − τk(tj))→ +∞ as tj → +∞. (28)

Due to (3) and (27) we get

x′(tj) =

[
M∑
k=1

λkrk(tj)
xmk(tj − τk(tj))

x(tj) (1 + xnk(tj − τk(tj)))
− b(tj)

]
x(tj)

≤

[
M∑
k=1

λkrk(tj)L
xmk−1(tj − τk(tj))
1 + xnk(tj − τk(tj))

− b(tj)

]
x(tj).
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Thus, from (28) we deduce the existence of a positive constant J such that x′(tj) < −J < 0 for all j large
enough. In addition,

x(tj) = x(t0) +

∫ tj

t0

x′(s)ds ≤ x(t0)− J(tj − t0), for j large enough.

This yields
x(tj)→ −∞ as j → +∞,

a contradiction.
�

Remark 3.4 If (26) holds, then we may fix a positive constant η > 0 such that

αmj−1

1 + αnj
>

b∗∑M
k=1 λk(rk)∗

, for all α ∈ (0, η] (29)

for all j = 1, . . . ,M . Furthermore, if nk > mk > 0 for some k, then we can observe that the constant η
previously defined can be chosen in such a way that 0 < η < V with V defined in (7) and, consequently, we may
also fix η̃ > η such that ∑

k:nk>mk>0

ηmk

1 + ηnk
=

∑
k:nk>mk>0

η̃mk

1 + η̃nk
, if nj > mj > 0 for some j, (30)

and η̃ = +∞ otherwise.

Lemma 3.5 Let nj < mj for some j and let η and η̃ be defined as in Remark 3.4. Suppose there exists a
positive constant W ∈ (η, η̃] such that

sup
t≥t0

 ∑
k:mk≤nk

λkrk(t) +

 ∑
k:mk>nk

λkrk(t)
(LW )mk−nk

W
− b(t)

W

 < 0. (31)

Then there exists tϕ > t0 such that

x(t; t0, ϕ) < W for all t ≥ tϕ.

Proof: In the first place, suppose that x(t1) < W for some t1 > t0. We claim that x(t) < W for all t > t1.
Indeed, otherwise there exists t ∈ (t1,+∞) such that

x(t) = W and x(t) < W for all t ∈ [t1, t),

which together with (27),(31) and from the fact that

sup
u>0

{
umk

1 + unk

}
≤ 1, for nk ≥ mk ≥ 0 (32)
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implies

0 < x′(t) =

M∑
k=1

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
− b(t)x(t)

≤
∑

k:mk≤nk

λkrk(t) +
∑

k:mk>nk

λkrk(t)x
mk−nk(t− τk(t))− b(t)x(t)

=
∑

k:mk≤nk

λkrk(t) +

 ∑
k:mk>nk

λkrk(t)L
mk−nkWmk−nk−1 − b(t)

W

≤ sup
t>t0

 ∑
k:mk≤nk

λkrk(t) +

 ∑
k:mk>nk

λkrk(t)L
mk−nkWmk−nk−1 − b(t)

W

 := ζ < 0,

a contradiction.
Suppose that x(t0) ≥W , again in view of (27),(31) and (32) we have

x′(t0) ≤
∑

k:mk≤nk

λkrk(t0) +

 ∑
k:mk>nk

λkrk(t0)L
mk−nkxmk−nk−1(t0)− b(t0)

x(t0)

≤
∑

k:mk≤nk

λkrk(t0) +

 ∑
k:mk>nk

λkrk(t0)L
mk−nkWmk−nk−1 − b(t0)

x(t0)

:= ζ < 0.

Furthermore, by continuity, there exists β ≥ t0 such that

x′(t) ≤ ζ < 0 for all t ∈ [t0, β]. (33)

Thus, β can be chosen in such a way that x(β) = W , so there exists t1 > β such that x(t1) < W and the proof
follows.

�

Lemma 3.6 Under the assumptions of Lemma 3.5, there exists a positive constant tϕ ≥ tϕ such that

x(t; t0, ϕ) > η for all t ≥ tϕ.

Proof: The proof is analogous to those given in [20, 33] (see [20, Lemma 2.2] and [33, Lemma 5]) and we omit
it. �

Lemma 3.7 Let m ≥ 0, n > 0 be constants. The function gm,n(u) = m+(m−n)u
(1+u)2

satisfies:

∣∣gm,n(u)
∣∣ ≤ { (n−m)2

4n if n > m(3 + 2
√

2)
m otherwise,

(34)

for all u ≥ 0

Proof: In the case of m ≥ n, the function gm,n is positive, nonincreasing and gm,n(0) = m. In the case m < n, it

is easy to verify that gm,n is nonincreasing on
[
0, n+mn−m

)
and increasing on

(
n+m
n−m ,+∞

)
. Moreover, gm,n(n+mn−m) =

− (n−m)2

4n and limu→+∞ g(u) = 0. Finally, is easy to see that (n−m)2

4n > m if and only if n > m(3 + 2
√

2). This
analysis completes the proof. �
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4 Proofs of the main results

In this section, we shall give a detailed proof of some of the main results of Section 2. The remaining proofs
follow analogously and are consequently omitted.

Proof of Theorem 2.1: First we consider the case 0 ≤ mj < 1 for some j. Let us verify that the assumptions of
Theorem 3.1 are satisfied. Let P ⊂ AP (R) be the cone of nonnegative functions defined in Section 3 and set
the operator

Φ(x, y)(t) :=

∫ t

−∞
e−

∫ t
s b(u)du

 ∑
k:mk>0

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
+

∑
k:mk=0

λkrk(s)
1

1 + ynk(s− τk(s))

 ds (35)

for all t ∈ R.
It is clear that hk(y) := 1

1+ynk is a nondecreasing function. In addition, from the fact that nk ≤ mk, it is

readily seen that gk(x) := xmk
1+xnk is a nondecreasing function. Due to the monotonicity of these functions, the

nonlinear operator Φ is mixed monotone in P ◦ × P ◦. Moreover, by properties of almost periodic functions it
follows that Φ(x, y) ∈ AP (R). Moreover, Φ(P ◦ × P ◦) ⊂ P ◦ . Indeed, for each (x, y) ∈ P ◦ × P ◦ there exist
κ1, κ2 > 0 such that κ1 ≤ x(t), y(t) ≤ κ2 for all t ∈ R. Thus,

Φ(x, y)(t) ≥
∫ t

−∞
e−

∫ t
s b(u)du

 ∑
k:mk>0

λkrk(s)

(
min

κ1≤w≤κ2

wmk

1 + wnk

)
+

∑
k:mk=0

λkrk(s)
1

1 + κnk2

 ds

≥
∑

k:mk>0

λk(rk)∗
b∗

(
min

κ1≤w≤κ2

wmk

1 + wnk

)
+

∑
k:mk=0

λk(rk)∗
b∗

1

1 + κnk2
:= ε̃ > 0.

Next, for K large enough we have∑
k:mk>0

F s
λkr
∗
k

b̃∗

Kmk−1

1 +Knk
+

∑
k:mk=0

F s
λkr
∗
k

b̃∗

1

K
≤ 1. (36)

Let us fix the constant function v0 := K > 1, where K satisfies (36). In addition, we choose a constant
ε ∈ (0,K) such that

λj(rj)∗
b∗

εmj−1

1 + εnj
≥ 1, if 0 < mj < 1 (37)

or such that
λj(rj)∗
b∗

ε−1

1 +Knj
≥ 1, if mj = 0. (38)

Define u0 := ε and, by virtue of (36) and (5) we obtain

Φ(v0, u0) ≤
∫ t

−∞
F se−

∫ t
s b̃(u)du

 ∑
k:mk>0

λkrk(s)
Kmk

1 +Knk
+

∑
k:mk=0

λkrk(s)
1

1 + εnk

 ds

≤
∑

k:mk>0

F s
λkr
∗
k

b̃∗

Kmk

1 +Knk
+

∑
k:mk=0

F s
λkr
∗
k

b̃∗

≤ K = v0,
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and from (37)-(38) it follows that

Φ(u0, v0) ≥
λj(rj)∗
b∗

εmj

1 + εnj
≥ ε := u0, if mj < 1 (39)

and,

Φ(u0, v0) ≥
λj(rj)∗
b∗

1

1 +Knj
≥ ε := u0, if mj = 0. (40)

We conclude that Φ(u0, v0) ≥ u0.
In addition, for each γ ∈ (0, 1) and x, y ∈ [u0, v0], we obtain

Φ(γx, γ−1y)(t) ≥
∫ t

−∞
e−

∫ t
s b(u)du

 ∑
k:mk>0

λkrk(s)
xmk(s− τk(s))

1 + xnk(s− τk(s))
γmk(1 + unk0 )

1 + γnkunk0

+
∑

k:mk=0

λkrk(s)
1

1 + ynk(s− τk(s))
1 + vnk0

1 + γ−nkvnk0

 ds

≥ φ(γ)Φ(x, y)(t),

where φ : (0, 1)→ (0,+∞) is the mapping defined by

φ(γ) = min

{
min

k:mk>0

{
γmk(1 + εnk)

1 + γnkεnk

}
, min
{k:mk=0}

{
1 +Knk

1 + γ−nkKnk

}}
. (41)

Thus,

Φ(γx, γ−1y)(t) ≥ φ(γ)Φ(x, y)(t), for each γ ∈ (0, 1) and x, y ∈ [u0, v0].

Furthermore, it is easy to see that φ(γ) > γ for all γ ∈ (0, 1). Hence, by Theorem 3.1, Φ has a unique fixed
point x̃ ∈ [u0, v0]. Thus, by Lemma 3.3, the operator x̃ is the unique solution of (3) such that ε ≤ x̃(t) ≤ K.

It remains to analyze the case mk = 1 for all k. As before, we choose v0 = K large enough satisfying (36).
By virtue of (H) there is a positive constant ε̃ ∈ (0,K) small enough such that∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
ε̃

1 + ε̃nk
≥ ε̃. (42)

Define, u0 := ε̃ and consider the nondecreasing operator

Φ̃(x)(t) :=

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
x(s− τk(s))

1 + xnk(s− τk(s))
ds (43)

and the function

φ̃(γ) := min
k=1,...,M

{
γ(1 + ε̃nk)

1 + γnk ε̃nk

}
. (44)

It is seen that Φ̃ and φ̃ satisfy all assumptions of Corollary 3.2. Then Φ̃ has a unique fixed point x̃ ∈ [u0, v0]
and, by Lemma 3.3 x̃ is the unique solution of (3) such that ε ≤ x̃(t) ≤ K.

To conclude, observe that, in both cases, the constant function v0 can be chosen arbitrarily large, as well
as u0 can be chosen arbitrarily small. Thus, if z(t) is another almost periodic solution with a positive infimum
of (3), then we may assume that u0 ≤ z(t) ≤ v0. Hence, x̃ = z and the proof is complete.

18



�

Next we shall prove Theorem 2.2. Observe that the assumptions allow not only bounded monotone nonlinear
terms (nk = mk > 0 or mk = 0) but also nonlinear single-humped terms (nk > mk > 0), which are neither
monotone increasing nor decreasing. Thus the fixed point Theorem 3.1 cannot be applied for an arbitrary large
interval as in the aforementioned cases.

Proof of Theorem 2.2: The proof is divided into 2 steps.
Step 1. Let x(t) an almost periodic solution of (3). In view of Lemma 3.3, (10) and (32), we have

x(t) =

∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)
x̃mk(s− τk(s))

1 + x̃nk(s− τk(s))

≤
∫ t

−∞
e−

∫ t
s b(u)du

M∑
k=1

λkrk(s)ds

≤ V, for all t ∈ R.

Step 2. First, we consider the case 0 ≤ mj < 1 for some j. Let v0 := V and define u0 := ε, with ε ∈ (0, V ) such
that

λj(rj)∗
b∗

εmj−1

1 + εnj
≥ 1, if 0 < mj < 1 (45)

or such that
λj(rj)∗
b∗

ε−1

(1 + V nj )
≥ 1, if mj = 0. (46)

Let the operator Φ : P ◦×P ◦× → P ◦ be defined as in (35). Due to the monotonicity of the functions umk
1+unk

on (0, V ) and 1
1+unk on (0,+∞), Φ is a mixed monotone operator on [u0, v0]× [u0, v0].

Moreover, from (37),(38) and (10),(32) we get

Φ(u0, v0) ≥ u0 and Φ(v0, u0) ≤ v0.

Let the mapping ϕ : (0, 1)→ (0,+∞) be given by

ϕ(γ) := min

{
min

k:mk>0

{
γmk(1 + εmk)

1 + γnkεnk

}
, min
k:mk=0

{
1 + V nk

1 + γ−nkV nk

}}
. (47)

Then, it is not difficult to show that ϕ(γ) > γ for each γ ∈ (0, 1). In addition, it is readily verified that for
each γ ∈ (0, 1) and x, y ∈ [u0, v0]

Φ(γx, γ−1y)(t) ≥ ϕ(γ)Φ(x, y).

Hence, by Theorem 3.1, Φ has a unique fixed point x̃ ∈ [u0, v0]. Thus, by Lemma 3.3, x̃ is the unique
solution of (3) such that ε ≤ x̃(t) ≤ V .

For the case mk = 1 for all k, let Φ̃ be the operator defined in (43) and the function φ̃ defined in (44).
Analogously to the preceding proofs, one can show that all the assumptions of Corollary 3.2 are fulfilled.

Then Φ̃ has a unique fixed point x̃ ∈ [u0, v0] and, by Lemma 3.3 x̃ is the unique solution of (3) such that
ε̃ ≤ x̃(t) ≤ K.

To conclude, observe that, in both cases, the positive constant function u0 can be chosen arbitrarily small.
Thus, if z(t) ∈ (0, V ] is another almost periodic solution with a positive infimum of (3), then we may assume
that u0 ≤ z(t) ≤ V . Hence, x̃ = z.

Furthermore, by Step 1 all almost periodic solutions are uniformly bounded by the constant V . We conclude
that x̃ is the unique almost periodic solution with positive infimum and the proof is complete.
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In the previous proof, the existence of a uniform bound for almost periodic solutions of (3) allowed us to
obtain the unique almost periodic solution with positive infimum of problem (3) in the presence of nonlinear
single-humped terms (nk > mk > 0). Observe that the assumptions in Theorem 2.3 admit also unbounded
terms (nk < mk). Thus, uniform bounds cannot be obtained as before and the preceding argument cannot be
applied.

Proof of Theorem 2.3: First we consider the case 0 ≤ mj < 1 for some j. Let Φ : P ◦×P ◦ → P ◦ be the operator
defined in (35). Set v0 = V , with V the constant defined in (7) and u0 = ε < V defined as in (45)-(46). Then,
Φ(u0, v0) ≥ u0 and, in view of (11), we obtain Φ(v0, u0) ≤ v0. Again, it is easy to verify that Φ is a mixed
monotone operator [u0, v0]× [u0, v0] and Φ(P ◦ × P ◦) ⊂ P ◦.

Setting the function φ defined as in (41), with similar arguments as used in the previous theorems it is
easy to see that all remaining assumptions of Theorem 3.1 are fullfilled. Hence, Φ has a unique fixed point
x̃ ∈ [u0, v0]. Thus, by Lemma 3.3 x̃(t) is the unique almost periodic solution of (3) such that ε ≤ x̃(t) ≤ V .

In the case of mk = 1 for all k, we consider the operator Φ̃ and the function φ defined in (35) and (44)
respectively. The remaining proof for this case is similar to that of Theorem 2.2 and we omit it.

To conclude, observe that, in both cases, the positive constant function u0 can be chosen arbitrarily small.
Thus, if z(t) ∈ (0, V ] is another almost periodic solution with a positive infimum of (3), then we may assume
that u0 ≤ z(t) ≤ V . Hence, x̃ = z.

�
The arguments in the proof of Theorem 2.4 are similar to those given in the proof of Theorem 2.2. However,

the assumption nq > 1 for some q such that mq = 0 implies that condition φ(γ) > γ, with φ defined above, is
not fulfilled for all γ ∈ (0, 1) and x, y ∈ [u0, v0]. Thus, more restrictive assumptions are needed.

Proof of Theorem 2.4: The proof is divided into two steps.
Step 1. Let us define the functions hk as follows. If k is such that nk ≤ 1 and mk = 0 then

hk(y) =
1

1 + ynk
,

and if k is such that nk > 1 and mk = 0, then we set

hk(y) =


1

1+ynk if y ≤ T

1
1+Snk if y > T

,

where T is the constant defined in (9).
Let us consider the following associated equation

x′(t) =
∑

k:mk>0

λkrk(t)
xmk(t− τk(t))

1 + xnk(t− τk(t))
+

∑
k:mk=0

λkrk(t)hk(x(s− τk(s)))− b(t)x(t). (48)

Now, similarly to Theorem 2.2 Step 1, in view of (12) one can show that all positive almost periodic solutions
x(t) of equations (3) and (48) satisfy x(t) ≤ T for all t ∈ R. Moreover, note that this statement implies that
equations (3) and (48) have the same positive almost periodic solutions.
Step 2. Set the constant functions v0 = T and u0 = ε, with ε ∈ (0, T ) as in (45), if 0 < mj < 1, or such that

λj(rj)∗
b∗

ε−1

(1 + Tnj )
≥ 1, if mj = 0. (49)
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Define operator Θ by

Θ(x, y)(t) =

∫ t

−∞
e−

∫ t
s b(u)du

 ∑
k:mk>0

λkrk(s)
xmk(t− τk(t))

1 + xnk(t− τk(t))
+

∑
k:mk=0

λkrk(s)hk(y(s− τk(s)))

 ds. (50)

It is readily seen that Θ is mixed monotone in [u0, v0]× [u0, v0] and Θ(P ◦ × P ◦) ⊂ P ◦. In addition, in view of
(12), (45) and (49), we obtain Θ(v0, u0) ≤ v0 and Θ(u0, v0) ≥ u0.

Let the mapping θ : (0, 1)→ (0,+∞) be given by

θ(γ) = min

{
ϕ(γ), min

{nk>1:mk=0}

{
1 + γnkTnk

1 + Tnk

}}
, (51)

where ϕ(γ) is defined as in (47).
By a direct computation it is readily verified that for each k such that nk > 1 and mk = 0,

hk(γ
−1y)

hk(y)
≥ 1 + γnkTnk

1 + Tnk
,

for all γ ∈ (0, 1) and y ∈ [u0, v0], which together with (47) yields that,

Θ(γx, γ−1y) ≥ θ(γ)Θ(x, y).

Similarly to Theorem 2.2 Step 1, one can conclude that Θ has a unique fixed point x̃(t) ∈ [u0, v0] and that
this is the unique almost periodic solution with positive infimum of equation (48) such that x̃(t) ≤ T .

Furthermore, by Step 1, we conclude that x̃(t) is the unique almost periodic solution with positive infimum
of equation (48). Thus, x̃(t) is the unique almost periodic solution with positive infimum of (3) and the proof
is complete. �

In order to prove Theorem 2.6 we employ Lemma 3.2. Moreover, we assume that there exist constants
η, tϕ,x̃ > 0 such that x̃(t), x(t; t0, ϕ) > η for all t ≥ tϕ,x̃. Such bound can be obtained under the conditions of
Lemma 3.5.

Proof of Theorem 2.6: Let x̃(t) be a positive almost periodic solution of (3) and x(t) = x(t; t0, ϕ) the solution
of the initial value problem (3) and (6). Define y(t) := x̃(t)− x(t) with t ∈ [t0 − υ,+∞), then we have

y′(t) =
M∑
k=1

λkrk(t)

[
xmk(t− τk(t))

1 + xnk(t− τk(t))
− x̃mk(t− τk(t))

1 + x̃nk(t− τk(t))

]
− b(t)y(t). (52)

Computing the upper right Dini derivative of |y(t)| and from the mean-value theorem we obtain:

D+|y(t)| ≤
M∑
k=1

λkrk(t)

∣∣∣∣ xmk(t− τk(t))
1 + xnk(t− τk(t))

− x̃mk(t− τk(t))
1 + x̃nk(t− τk(t))

∣∣∣∣− b(t)|y(t)|

=

M∑
k=1

λkrk(t)

∣∣∣∣∣θmk−1(t− τk(t))
[
mk + (mk − nk)θnk(t− τk(t))

]
(1 + θnk(t− τk(t)))2

∣∣∣∣∣ ∣∣x(t− τk(t))− x̃(t− τk(t))
∣∣− b(t)|y(t)|

<
M∑
k=1

λkrk(t)η
mk−1

∣∣gmk,nk (θnk(t− τk(t)))
∣∣∣∣x(t− τk(t))− x̃(t− τk(t))

∣∣− b(t)|y(t)|,
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where θ(t) lies between x(t) and x̃(t). In view of Lemma 3.7 we obtain

D+|y(t)| ≤ p(t)|y(t)| − b(t)|y(t)|, for all t ≥ tϕ,x̃

where |y(t)| := supt−υ≤s≤t{|y(s)|}.
Thus, by Lemma 3.2 there exists ρ > 0 such that

|x̃(t)− x(t)| = |y(t)| ≤ |y(tϕ,x̃)|e−ρ(t−tϕ,x̃) = Kϕ,x̃e
−ρt, for all t ≥ tϕ,x̃

and the proof is complete. �

5 Examples

In this section, we give examples to demonstrate the results obtained in Section 2.

Example 5.1 Consider the following model of hematopoiesis with multiple time-varying delays:

x′(t) =
1

4

(
2 +

1

2
| cos(

√
2t)|
)

x
1
4 (t− 2ecos t)

1 + x
1
2 (t− 2ecos t)

(53)

+
1

4

(
2 +

1

2
| sin(

√
3t)|
)

x
1
4

(
t− 2esin t

)
1 + x

1
2 (t− 2esin t)

− (1.5 + 2 cos(400t))x(t).

It is seen that,

m =
1

4
, n =

1

2
and

M [b] = lim
T→∞

1

T

∫ t+T

t
b(s)ds = 1.5 + lim

T→∞

1

T

1

200
[sin(400(t+ T ))− sin(400t)] = 1.5.

Thus, (53) satisfies the assumptions of Theorem 2.2. Therefore, equation (53) has a unique positive almost
periodic solution with positive infimum.

However, existence and stability results in [18] cannot be applied. It is due to the fact that the following
assumption, employed in the mentioned work,

ηi := inf
t∈R

{
−b̃(t) + F i

M∑
k=1

λkrk(t)

}
> 0

is not satisfied. Indeed,

b̃ = 1.5, F i = e−
1

100 , λ1 = λ2 =
1

4
, (r1)

∗ = (r2)
∗ = 2.5 and

ηi < −1.5 + F i(λ12.5 + λ22.5) ≈ −0.262.

Example 5.2 Consider the following model of hematopoiesis with both bounded and unbounded nonlinear
terms:

x′(t) =
1

2

(
2 +

1

2
| cos(

√
2t)|
)

x
1
2

(
t− 2ecos t

)
1 + x

1
4 (t− 2ecos t)

(54)
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+
1

2

(
2 +

1

2
| sin(

√
3t)|
)

1

1 + x
1
2 (t− 2esin t)

− 1.5x(t).

It is seen that,

m1 =
1

2
, n1 =

1

4
, m2 = 0, n2 =

1

2
, υ = 2e and M [b] = 1.5.

Thus, (54) satisfies the assumptions of Theorem 2.1. Therefore, equation (54) has a unique positive almost
periodic solution with positive infimum.

Moreover, this solution is globally exponentially stable. Indeed, let η = 0.5 and M = 15, by Remark 3.4
η̃ = +∞. Then

2∑
k=1

λk(rk)∗ = 2 > 1.5 = b∗, L = e
∫ υ
0 1.5 = e3e

sup
t∈R

{
λ2r2(t) +

(
λ1r1(t)L

m1−n1Wm1−n1−1 − b(t)
)
W
}
≤ λ2r∗2 +

(
λ1r
∗
1e

3e
4 W−

3
4 − 1.5

)
W ≈ −2.3555 < 0,

inf
α∈(0,η]

αm1−1

1 + αn1
≥
(
1
2

) 1
2
−1

1 +
(
1
2

) 1
4

≈ 0.76822 > 0.75 =
b∗∑2

k=1 λk(rk)∗

inf
α∈(0,η]

αm2−1

1 + αn2
≥

(
1
2

)−1
1 +

(
1
2

) 1
2

≈ 1.1715 > 0.75 =
b∗∑2

k=1 λk(rk)∗
,

inf
t∈R

{
b(t)−

2∑
k=1

ηmk−1λkrk(t)mk

}
≥ 1.5− η−

1
2λ1(r1)

∗m1 ≈ 0.6161 > 0

which imply that (54) satisfies the assumptions of Lemma 2.6. Thus, the unique almost periodic solution with
positive infimum is globally exponentially stable.

6 Conclusions and open problems

It is worth to notice that the authors in [5,9,18,20,30,33] only considered the hematopoiesis model for mk ≤ nk.
Moreover, in these works, the term production is assumed to be the sum of functions with the same behaviour,
that is mk = m and nk = n for all k. Thus, the results in [5, 9, 18, 20, 30, 33] and references therein cannot be
applied to prove the existence and global exponential stability of the positive almost periodic solution of (3).

By applying a new fixed point theorem, this paper provides sufficient conditions for existence and uniqueness
of positive almost periodic solutions for a generalized hematopoiesis model. For the global exponential stability
we apply a Halanay-type inequality. We remark that this method is quite different from those employed by
other authors. The results are new and complement previously known results.

However, it is difficult to establish sufficient criteria ensuring global exponential stability of the positive
almost periodic solution of (3) when the loss rate b(t) is oscillatory and mj > nj for some j. In addition,
condition 0 ≤ mk ≤ 1 for all k has been adopted as fundamental for the existence and stability analysis of (3).
The approach used in this paper and in [5,9,18,20,30,33] cannot be applied to equation (3). We find that these
open problems might be of interest for scientists who plan to start future research in this field.
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