100 research outputs found

    Isogeometric Approximation of Variational Problems for Shells

    Get PDF
    The interaction of applied geometry and numerical simulation is a growing field in the interplay of com- puter graphics, computational mechanics and applied mathematics known as isogeometric analysis. In this thesis we apply and analyze Loop subdivision surfaces as isogeometric tool because they provide great flexibility in handling surfaces of arbitrary topology combined with higher order smoothness. Compared with finite element methods, isogeometric methods are known to require far less degrees of freedom for the modeling of complex surfaces but at the same time the assembly of the isogeo- metric matrices is much more time-consuming. Therefore, we implement the isogeometric subdivision method and analyze the experimental convergence behavior for different quadrature schemes. The mid-edge quadrature combines robustness and efficiency, where efficiency is additionally increased via lookup tables. For the first time, the lookup tables allow the simulation with control meshes of arbitrary closed connectivity without an initial subdivision step, i.e. triangles can have more than one vertex with valence different from six. Geometric evolution problems have many applications in material sciences, surface processing and modeling, bio-mechanics, elasticity and physical simulations. These evolution problems are often based on the gradient flow of a geometric energy depending on first and second fundamental forms of the surface. The isogeometric approach allows a conforming higher order spatial discretization of these geometric evolutions. To overcome a time-error dominated scheme, we combine higher order space and time discretizations, where the time discretization based on implicit Runge-Kutta methods. We prove that the energy diminishes in every time-step in the fully discrete setting under mild time-step restrictions which is the crucial characteristic of a gradient flow. The overall setup allows for a general type of fourth-order energies. Among others, we perform experiments for Willmore flow with respect to different metrics. In the last chapter of this thesis we apply the time-discrete geodesic calculus in shape space to the space of subdivision shells. By approximating the squared Riemannian distance by a suitable energy, this approach defines a discrete path energy for a consistent computation of geodesics, logarithm and exponential maps and parallel transport. As approximation we pick up an elastic shell energy, which measures the deformation of a shell by membrane and bending contributions of its mid-surface. BĂ©zier curves are a fundamental tool in computer-aided geometric design. We extend these to the subdivision shell space by generalizing the de Casteljau algorithm. The evaluation of BĂ©zier curves depends on all input data. To solve this problem, we introduce B-splines and cardinal splines in shape space by gluing together piecewise BĂ©zier curves in a smooth way. We show examples of quadratic and cubic BĂ©zier curves, quadratic and cubic B-splines as well as cardinal splines in subdivision shell space

    IgA-BEM for 3D Helmholtz problems using conforming and non-conforming multi-patch discretizations and B-spline tailored numerical integration

    Get PDF
    An Isogeometric Boundary Element Method (IgA-BEM) is considered for the numerical solution of Helmholtz problems on 3D bounded or unbounded domains, admitting a smooth multi-patch representation of their finite boundary surface. The discretization spaces are formed by C0 inter-patch continuous functional spaces whose restriction to a patch simplifies to the span of tensor product B-splines composed with the given patch NURBS parameterization. Both conforming and non-conforming spaces are allowed, so that local refinement is possible at the patch level. For regular and singular integration, the proposed model utilizes a numerical procedure defined on the support of each trial B-spline function, which makes possible a function-by-function implementation of the matrix assembly phase. Spline quasi-interpolation is the common ingredient of all the considered quadrature rules; in the singular case it is combined with a B-spline recursion over the spline degree and with a singularity extraction technique, extended to the multi-patch setting for the first time. A threshold selection strategy is proposed to automatically distinguish between nearly singular and regular integrals. The non-conforming C0 joints between spline spaces on different patches are implemented as linear constraints based on knot removal conditions, and do not require a hierarchical master-slave relation between neighbouring patches. Numerical examples on relevant benchmarks show that the expected convergence orders are achieved with uniform discretization and a small number of uniformly spaced quadrature nodes

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm

    Glosarium Matematika

    Get PDF

    The Devil's Invention: Asymptotic, Superasymptotic and Hyperasymptotic Series

    Full text link
    Singular perturbation methods, such as the method of multiple scales and the method of matched asymptotic expansions, give series in a small parameter ε which are asymptotic but (usually) divergent. In this survey, we use a plethora of examples to illustrate the cause of the divergence, and explain how this knowledge can be exploited to generate a 'hyperasymptotic' approximation. This adds a second asymptotic expansion, with different scaling assumptions about the size of various terms in the problem, to achieve a minimum error much smaller than the best possible with the original asymptotic series. (This rescale-and-add process can be repeated further.) Weakly nonlocal solitary waves are used as an illustration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41670/1/10440_2004_Article_193995.pd

    A sharp interface isogeometric strategy for moving boundary problems

    Get PDF
    The proposed methodology is first utilized to model stationary and propagating cracks. The crack face is enriched with the Heaviside function which captures the displacement discontinuity. Meanwhile, the crack tips are enriched with asymptotic displacement functions to reproduce the tip singularity. The enriching degrees of freedom associated with the crack tips are chosen as stress intensity factors (SIFs) such that these quantities can be directly extracted from the solution without a-posteriori integral calculation. As a second application, the Stefan problem is modeled with a hybrid function/derivative enriched interface. Since the interface geometry is explicitly defined, normals and curvatures can be analytically obtained at any point on the interface, allowing for complex boundary conditions dependent on curvature or normal to be naturally imposed. Thus, the enriched approximation naturally captures the interfacial discontinuity in temperature gradient and enables the imposition of Gibbs-Thomson condition during solidification simulation. The shape optimization through configuration of finite-sized heterogeneities is lastly studied. The optimization relies on the recently derived configurational derivative that describes the sensitivity of an arbitrary objective with respect to arbitrary design modifications of a heterogeneity inserted into a domain. The THB-splines, which serve as the underlying approximation, produce sufficiently smooth solution near the boundaries of the heterogeneity for accurate calculation of the configurational derivatives. (Abstract shortened by ProQuest.
    • …
    corecore