2,252 research outputs found

    Event Stream Processing with Multiple Threads

    Full text link
    Current runtime verification tools seldom make use of multi-threading to speed up the evaluation of a property on a large event trace. In this paper, we present an extension to the BeepBeep 3 event stream engine that allows the use of multiple threads during the evaluation of a query. Various parallelization strategies are presented and described on simple examples. The implementation of these strategies is then evaluated empirically on a sample of problems. Compared to the previous, single-threaded version of the BeepBeep engine, the allocation of just a few threads to specific portions of a query provides dramatic improvement in terms of running time

    Clustering-Based Predictive Process Monitoring

    Full text link
    Business process enactment is generally supported by information systems that record data about process executions, which can be extracted as event logs. Predictive process monitoring is concerned with exploiting such event logs to predict how running (uncompleted) cases will unfold up to their completion. In this paper, we propose a predictive process monitoring framework for estimating the probability that a given predicate will be fulfilled upon completion of a running case. The predicate can be, for example, a temporal logic constraint or a time constraint, or any predicate that can be evaluated over a completed trace. The framework takes into account both the sequence of events observed in the current trace, as well as data attributes associated to these events. The prediction problem is approached in two phases. First, prefixes of previous traces are clustered according to control flow information. Secondly, a classifier is built for each cluster using event data to discriminate between fulfillments and violations. At runtime, a prediction is made on a running case by mapping it to a cluster and applying the corresponding classifier. The framework has been implemented in the ProM toolset and validated on a log pertaining to the treatment of cancer patients in a large hospital

    Efficient Parallel Statistical Model Checking of Biochemical Networks

    Full text link
    We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture

    Logical methods for the hierarchy of hyperlogics

    Get PDF
    In this thesis, we develop logical methods for reasoning about hyperproperties. Hyperproperties describe relations between multiple executions of a system. Unlike trace properties, hyperproperties comprise relational properties like noninterference, symmetry, and robustness. While trace properties have been studied extensively, hyperproperties form a relatively new concept that is far from fully understood. We study the expressiveness of various hyperlogics and develop algorithms for their satisfiability and synthesis problems. In the first part, we explore the landscape of hyperlogics based on temporal logics, first-order and second-order logics, and logics with team semantics. We establish that first-order/second-order and temporal hyperlogics span a hierarchy of expressiveness, whereas team logics constitute a radically different way of specifying hyperproperties. Furthermore, we introduce the notion of temporal safety and liveness, from which we obtain fragments of HyperLTL (the most prominent hyperlogic) with a simpler satisfiability problem. In the second part, we develop logics and algorithms for the synthesis of smart contracts. We introduce two extensions of temporal stream logic to express (hyper)properties of infinite-state systems. We study the realizability problem of these logics and define approximations of the problem in LTL and HyperLTL. Based on these approximations, we develop algorithms to construct smart contracts directly from their specifications.In dieser Arbeit beschreiben wir logische Methoden, um über Hypereigenschaften zu argumentieren. Hypereigenschaften beschreiben Relationen zwischen mehreren Ausführungen eines Systems. Anders als pfadbasierte Eigenschaften können Hypereigenschaften relationale Eigenschaften wie Symmetrie, Robustheit und die Abwesenheit von Informationsfluss ausdrücken. Während pfadbasierte Eigenschaften in den letzten Jahrzehnten ausführlich erforscht wurden, sind Hypereigenschaften ein relativ neues Konzept, das wir noch nicht vollständig verstehen. Wir untersuchen die Ausdrucksmächtigkeit verschiedener Hyperlogiken und entwickeln ausführbare Algorithmen, um deren Erfüllbarkeits- und Syntheseproblem zu lösen. Im ersten Teil erforschen wir die Landschaft der Hyperlogiken basierend auf temporalen Logiken, Logiken erster und zweiter Ordnung und Logiken mit Teamsemantik. Wir stellen fest, dass temporale Logiken und Logiken erster und zweiter Ordnung eine Hierarchie an Ausdrucksmächtigkeit aufspannen. Teamlogiken hingegen spezifieren Hypereigenschaften auf eine radikal andere Art. Wir führen außerdem das Konzept von temporalen Sicherheits- und Lebendigkeitseigenschaften ein, durch die Fragmente der bedeutensten Logik HyperLTL entstehen, für die das Erfüllbarkeitsproblem einfacher ist. Im zweiten Teil entwickeln wir Logiken und Algorithmen für die Synthese digitaler Verträge. Wir führen zwei Erweiterungen temporaler Stromlogik ein, um (Hyper)eigenschaften in unendlichen Systemen auszudrücken. Wir untersuchen das Realisierungsproblem dieser Logiken und definieren Approximationen des Problems in LTL und HyperLTL. Basierend auf diesen Approximationen entwickeln wir Algorithmen, die digitale Verträge direkt aus einer Spezifikation erstellen

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose
    corecore