9,578 research outputs found

    Bridging the specification protocol gap in argumentation

    Get PDF
    As multi-agent systems (MAS) have become more mature and systems in general have become more distributed, it is necessary for those who want to build large scale systems to consider, in some computational depth, how agents can communicate in large scale, complex and distributed systems. Currently, some MAS systems have been developed to use an abstract specification language for argumentation. This as a basis for agent communication; to provide effective decision support for agents and yield better agreements. However, as we build complete MAS that involve argumentation, there is a need to produce concrete implementations in which these abstract specifications are realised via protocols coordinating agent behaviour. This creates a gap between standard argument specification and deployment of protocols. This thesis attempts to close this gap by using a combination of automated synthesis and verification methods. More precisely, this thesis proposes a means of moving rapidly from argument specification to protocol implementation using an extension of the Argument Interchange Format (AIF is a generic specification language for argument structure) called a Dialogue Interaction Diagram (DID) as the dialogue game specification language and the Lightweight Coordination Calculus (LCC is an executable specification language used for coordinating agents in open systems) as an implementation language. The main contribution of this research is to provide approaches for enabling developers of dialogue game argumentation systems to use specification languages (in our case AIF/DID) to generate agent protocol systems that are capable of direct implementation on open infrastructures (in our case LCC)

    Bounded Situation Calculus Action Theories

    Full text link
    In this paper, we investigate bounded action theories in the situation calculus. A bounded action theory is one which entails that, in every situation, the number of object tuples in the extension of fluents is bounded by a given constant, although such extensions are in general different across the infinitely many situations. We argue that such theories are common in applications, either because facts do not persist indefinitely or because the agent eventually forgets some facts, as new ones are learnt. We discuss various classes of bounded action theories. Then we show that verification of a powerful first-order variant of the mu-calculus is decidable for such theories. Notably, this variant supports a controlled form of quantification across situations. We also show that through verification, we can actually check whether an arbitrary action theory maintains boundedness.Comment: 51 page

    Specification Techniques for Multi-Modal Dialogues in the U-Wish Project

    Get PDF
    In this paper we describe the development of a specification\ud technique for specifying interactive web-based services. We\ud wanted to design a language that can be a means of\ud communication between designers and developers of interactive services, that makes it easier to develop web-based services fitted to the users and that shortens the pathway from design to implementation. The language, still under development, is based on process algebra and can be\ud connected to the results of task analysis. We have been\ud working on the automatic generation of executable prototypes\ud out of the specifications. In this way the specification\ud language can establish a connection between users, design\ud and implementation. A first version of this language is\ud available as well as prototype tools for executing the specifications. Ideas will be given as to how to make the connection between specifications and task analysis

    Proving soundness of combinatorial Vickrey auctions and generating verified executable code

    Full text link
    Using mechanised reasoning we prove that combinatorial Vickrey auctions are soundly specified in that they associate a unique outcome (allocation and transfers) to any valid input (bids). Having done so, we auto-generate verified executable code from the formally defined auction. This removes a source of error in implementing the auction design. We intend to use formal methods to verify new auction designs. Here, our contribution is to introduce and demonstrate the use of formal methods for auction verification in the familiar setting of a well-known auction

    Progression and Verification of Situation Calculus Agents with Bounded Beliefs

    Get PDF
    We investigate agents that have incomplete information and make decisions based on their beliefs expressed as situation calculus bounded action theories. Such theories have an infinite object domain, but the number of objects that belong to fluents at each time point is bounded by a given constant. Recently, it has been shown that verifying temporal properties over such theories is decidable. We take a first-person view and use the theory to capture what the agent believes about the domain of interest and the actions affecting it. In this paper, we study verification of temporal properties over online executions. These are executions resulting from agents performing only actions that are feasible according to their beliefs. To do so, we first examine progression, which captures belief state update resulting from actions in the situation calculus. We show that, for bounded action theories, progression, and hence belief states, can always be represented as a bounded first-order logic theory. Then, based on this result, we prove decidability of temporal verification over online executions for bounded action theories. © 2015 The Author(s

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    An Abstract Formal Basis for Digital Crowds

    Get PDF
    Crowdsourcing, together with its related approaches, has become very popular in recent years. All crowdsourcing processes involve the participation of a digital crowd, a large number of people that access a single Internet platform or shared service. In this paper we explore the possibility of applying formal methods, typically used for the verification of software and hardware systems, in analysing the behaviour of a digital crowd. More precisely, we provide a formal description language for specifying digital crowds. We represent digital crowds in which the agents do not directly communicate with each other. We further show how this specification can provide the basis for sophisticated formal methods, in particular formal verification.Comment: 32 pages, 4 figure

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized
    • …
    corecore