

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Bridging the Specification Protocol Gap in

Argumentation

Ashwag Omar Magrhaby

Doctor of Philosophy

Centre for Intelligent Systems and their Applications

School of Informatics

University of Edinburgh

2013

Abstract

As multi-agent systems (MAS) have become more mature and systems in general

have become more distributed, it is necessary for those who want to build large scale

systems to consider, in some computational depth, how agents can communicate in

large scale, complex and distributed systems. Currentely, some MAS systems have

been developed to use an abstract specification language for argumentation. This as a

basis for agent communication; to provide effective decision support for agents and

yield better agreements. However, as we build complete MAS that involve

argumentation, there is a need to produce concrete implementations in which these

abstract specifications are realised via protocols coordinating agent behaviour. This

creates a gap between standard argument specification and deployment of protocols.

This thesis attempts to close this gap by using a combination of automated synthesis

and verification methods. More precisely, this thesis proposes a means of moving

rapidly from argument specification to protocol implementation using an extension

of the Argument Interchange Format (AIF is a generic specification language for

argument structure) called a Dialogue Interaction Diagram (DID) as the dialogue

game specification language and the Lightweight Coordination Calculus (LCC is an

executable specification language used for coordinating agents in open systems) as

an implementation language.

The main contribution of this research is to provide approaches for enabling

developers of dialogue game argumentation systems to use specification languages

(in our case AIF/DID) to generate agent protocol systems that are capable of direct

implementation on open infrastructures (in our case LCC).

Acknowledgements

I wish to thank, first and foremost, my God (Allah) for given me the power to believe

in myself and giving me the strength to complete this work.

Thank you to everyone who has helped me in completing this work. Above all, I am

eternally grateful to my beloved family. My parents Omar Maghraby and Khadiyja

Alsolimani for their unconditional love, their faith in me, endurance and

encouragement. I express my deep gratitude for the support they have provided to me

over the years without which this work would not have been completed. Also, a

special gratitude and love goes to my sisters and brothers for their concern, their

advice and their unfailing support. Thank you for believing in me.

I would like to express my special appreciation and thanks to my primarysupervisor,

Prof. David Robertson, for his guidance, motivation, support and encouragement

throughout the course of my research. His positive attitude and confidence in my

research inspired me and gave me confidence.

I would also like to thank my second supervisor, Dr.Michael Rovatsos, for his sound

advice and encouragement. Additionally, I would like to express my deepest

gratitude to Adela Grando for her suggestions, understanding, encouragement and

personal attention.

I cannot forget to express my deep and sincere thanks to Umm Al-Qura University

for their financial support.

Last but not least, special thanks should be given to my friends (too many to list here

but you know who you are!) for providing support and friendship that I needed

during my research.

(Ashwag Omar Maghraby)

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has

not been submitted for any other degree or professional qualification except as

specified.

(Ashwag Omar Maghraby)

Table of Contents

CHAPTER 1: INTRODUCTION .. 1

1.1 THE CHALLENGE .. 2

1.2 THE PROPOSED APPROACH ... 3

1.3 APPROACH ARCHITECTURE .. 4

1.4 CLAIMS OF NOVELTY .. 4

1.5 THESIS STRUCTURE ... 5

CHAPTER 2: BACLGRPIMD AND LITERATURE REVIEW ... 1

2.1 AGENT PROTOCOL DEVELOPMENT LANGUAGE .. 9

2.1.1. LCC SYNTAX .. 120

2.1.2. LCC EXAMPLE ... 122

2.2 DESIGN PATTERN.. 15

2.2.1 SOFTWARE ENGINEERING DESIGN PATTERN .. 16

2.2.2 AGENT PROTOCOL DESIGN PATTERN .. 16

2.2.3 LOGIC PROGRAMMING PATTERNS (LOGIC PROGRAMMING TECHNIQUES) ... 19

2.2.3.1 Prolog Programming Techniques .. 19

2.2.3.2 Techniques editing .. 21

2.2.3.3 A Structural Synthesis System for LCC Protocols ... 22

2.2.3.4 COMPARING LCC-ARGUMENT PATTERNS WITH LOGIC PROGRAMMING TECHNIQUES 24

2.3 VERIFICATION METHOD BASED ON SML AND COLOURED PETRI NET 25

2.3.1 COLOURED PETRI NETS (CPNS) .. 26

2.3.1.1 CPNs Model Elements ... 26

2.3.1.2 CPNs Hierarchical Structure .. 30

2.3.1.3 CPN Tool Components .. 33

2.3.2 COMPARING OUR APPROACH WITH VERIFICATION APPROACHES BASED ON SML AND CPN MODEL 38

2.3.2.1 A Transformational Approach to CPN Model ... 38

2.3.2.2 A Verification Method based on SML ... 39

2.3.2.3 LCC Verification Approaches based on Model Checking ... 41

2.4 SUMMARY .. 42

CHAPTER 3:ARGUMENTATION, DIALOGUE GAMES AND MULTI-AGENT SYSTEMS 43

3.1 ARGUMENT AND ARGUMENTATION .. 43

3.2 DIALOGUE GAMES (ARGUMENTATION-BASED DIALOGUES) ... 44

3.3 ARGUMENTATION FOR AGENT COMMUNICATION .. 47

3.4 DIALOGUES GAMES TERMINOLOGY ... 48

3.5 TYPES OF DIALOGUES ... 51

3.6 EMBEDDED DIALOGUES ... 56

3.6.1 FIRST TYPE: SHIFT FROM ONE TYPE TO ANOTHER TYPE ... 56

3.6.2 SECOND TYPE: INTERNAL EMBEDDED ... 56

3.7 ARGUMENTATION SHARING PROBLEM AND ARGUMENT INTERCHANGE FORMAT 57

3.7.1 AIF DEFINITION ... 57

3.7.2 AIF ELEMENTS .. 57

3.7.3 AIF EXAMPLE .. 58

3.7.4 AIF IMPLEMENTATION PROBLEM .. 59

3.7.5 AIF EXTENSION ... 60

3.8 SUMMARY .. 67

CHAPTER 4: DIALOGUE GAME ARGUMENT SPECIFICATION LANGUAGE ... 69

4.1 AGENT PROTOCOL CONCEPTS FOR ARGUMENTATION BETWEEN TWO AGENTS 70

4.2 DIALOGUE INTERACTION DIAGRAM (AN EXTENSION OF AIF) .. 71

4.2.1 DID ELEMENTS ... 72

4.2.2 HOW TO DRAW A DID DIAGRAM.. 74

4.2.3 EXAMPLE (PERSUASION DIALOGUE) .. 78

4.2.4 DID FOR TWO AGENTS FORMAL DEFINITION... 82

4.3 DIALOGUE INTERACTION DIAGRAM FOR EMBEDDING DIALOGUE .. 92

4.3.1 DID FOR EMBEDDING DIALOGUE .. 92

4.3.2 DFSL FOR EMBEDDING DIALOGUE .. 92

4.3.3 EXAMPLE ... 93

4.4 DIALOGUE INTERACTION DIAGRAM FOR ARGUMENTATION BETWEEN N-AGENTS 106

4.4.1 NEED FOR DIALOGUE GAMES AMONG N-AGENTS ... 106

4.4.2 ISSUES OF DIALOGUE GAMES AMONG N-AGENTS ... 106

4.4.3 METHOD FOR DIALOGUE GAMES AMONG N-AGENTS .. 109

4.4.4 DID FOR N-AGENTS ... 113

4.4.5 PROBLEMS AND SOLUTIONS OF DID FOR N-AGENTS ... 114

4.5 SUMMARY .. 1167

CHAPTER 5:SYNTHESIS OF CONCRETE PROTOCOLS .. 119

5.1 LCC-ARGUMENT PATTERNS .. 120

5.2 AGENT PROTOCOL AUTOMATED SYNTHESIS TOOL ... 148

5.2.1 AUTOMATED SYNTHESIS STEPS FOR GENERATING AGENT PROTOCOL BETWEEN TWO AGENTS................... 149

5.2.2 AUTOMATED SYNTHESIS STEPS FOR GENERATING AGENT PROTOCOL FOR N-AGENTS 151

5.3 SUMMARY .. 153

CHAPTER 6:VERIFICATION METHOD BASED ON COLOURED PETRI NETS AND SML 155

6.1 STEP ONE: AUTOMATED TRANSFORMATION FROM LCC TO CPNXML 157

6.1.1 DECLARATION OF COLOUR SETS AND FUNCTIONS ... 157

6.1.2 GENERATION OF A CPN SUBPAGE ... 161

6.1.3 GENERATION OF A CPN SUPERPAGE .. 174

6.2 STEP TWO: CONSTRUCTION OF STATE SPACE ... 178

6.3 STEP THREE: AUTOMATED CREATION OF DID PROPERTIES FILES .. 180

6.4 STEP FOUR: APPLYING VERIFICATION MODEL .. 181

6.5 SUMMARY .. 193

CHAPTER 7:DESIGN AND IMPLEMENTATION .. 155

7.1 ARCHITECTURE ... 196

7.1.1 PART ONE: SYNTHESIS OF CONCRETE PROTOCOLS ARCHITECTURE ... 196

7.1.2 PART TWO: VERIFICATION MODEL ARCHITECTURE ... 196

7.2 AN EXAMPLE SCENARIO ... 198

7.3 SUMMARY .. 208

CHAPTER 8:EVALUATION AND DISCUSSION ... 209

8.1 SYNTHESIS OF CONCRETE PROTOCOLS ... 209

8.1.1 RELATION BETWEEN DID AND AIF .. 209

8.1.2 THE DIFFERENCE BETWEEN DID AND AIF EXTENSION ... 215

8.1.3 DID LIMITATION .. 222

8.1.4 LCC-ARGUMENT PATTERNS LIMITATIONS ... 224

8.2 VERIFICATION METHOD BASED ON COLOURED PETRI NET AND SML 227

8.2.1 LIMITATIONS OF TRANSFORMING THE LCC SPECIFICATION INTO AN EQUIVALENT CPNXML FILE 228

8.2.2 LIMITATIONS OF CONSTRUCTING OF THE STATE SPACE ... 228

8.2.3 LIMITATIONS OF THE VERIFICATION METHOD ... 229

8.3 GENERATELCCPROTOCOL TOOL .. 229

8.3.1 TASK ONE: SYNTHESIS OF CONCRETE PROTOCOLS .. 229

8.3.2 TASK TWO: MODEL VERIFICATION .. 230

8.4 SUMMARY .. 232

CHAPTER 9:CONCLUSION AND FUTURE WORK ... 209

9.1 SUMMARY OF CONTRIBUTIONS ... 233

9.2 IMPROVEMENTS AND FUTURE WORK ... 235

9.2.1 DID FUTURE WORK ... 235

9.2.2 AUTOMATED SYNTHESIS METHOD FUTURE WORK ... 236

9.2.3. SEMI-AUTOMATED VERIFICATION METHOD FUTURE WORK .. 237

9.2.4. OTHER FUTURE WORK... 238

APPENDIX A:NEGOTIATION DIALOGUE .. 239

A.1 NEGOTIATION DIALOGUE EXAMPLE ... 239

A.2 DID FORMAL DEFINITION OF THE NEGOTIATION DIALOGUE .. 240

A.3 DID OF THE NEGOTIATION DIALOGUE .. 246

A.4 THE PICTURE HANGING EXAMPLE .. 246

A.5 LCC SYNTHESIS PROTOCOL OF THE NEGOTIATION DIALOGUE .. 253

A.6 VERIFICATION MODEL OF THE LCC SYNTHESIS PROTOCOL OF THE NEGOTIATION DIALOGUE 256

APPENDIX B:N-AGENTS DIALOGUE... 273

B.1 DID FOR N-AGENTS FORMAL DEFINITION ... 273

B.2 DID FOR N-AGENTS EXAMPLE .. 281

B.3 GENERAL N-AGENTS PATTERNS .. 295

B.3.1 GENERAL LCC-ARGUMENT N-AGENTS PATTERNS .. 295

B.3.2 AUTOMATED SYNTHESIS STEPS FOR GENERATING AGENT PROTOCOL FOR GENERAL N-AGENTS

AUTOMATICALLY………313

B.3.3 AN EXAMPLE OF AN LCC PROTOCOL BEGIN GENERATED FOR GENERAL N-AGENTS DIALOGUE 316

APPENDIX C:PERSUASION DIALOGUE ... 323

C.1 AN EXAMPLE OF AN LCC PROTOCOL BEGIN GENERATED FOR TWO AGENTS 323

C.2 AN EXAMPLE OF LCC PROTOCOL BEGIN GENERATED FOR N-AGENTS 335

C.3 VERIFICATION MODEL OF THE PERSUASION DIALOGUE .. 338

APPENDIX D:CPN FUNCTIONS .. 362

APPENDIX E:GENERATE LCC PROTOCOL TOLL GRAPHICAL USER INTERFACE 3625

E.1 GRAPHICAL USER INTERFACE FOR SYNTHESIS OF CONCRETE PROTOCOLS (PART ONE) 365

E.1.1 DIALOGUE INTERACTION DIAGRAM ... 365

E.1.2 SYNTHESISING CONCRETE LCC PROTOCOLS FROM DID SPECIFICATIONS .. 378

E.2 A GRAPHICAL USER INTERFACE FOR VERIFICATION MODEL (PART TWO) 379

APPENDIX F:PUBLISHED PAPERS .. 362

BIBLIOGRAPHY ... 385

List of Figures

1.1: SYSTEM ARCHITECTURE .. 5

2.1: THE SLAVE CLASS ... 18

2.2: CPNS MODEL ELEMENTS EXAMPLE .. 28

2.3: A HIERARCHICAL CPN .. 32

2.4: CPN TOOL .. 34

2.5 (A): CPNXML FILE STRUCTURE EXAMPLE .. 36

2.5 (B): CPNXML FILE STRUCTURE EXAMPLE ... 37

2.6: STATE SPACE GRAPH ... 38

3.1: PERSUASION DIALOGUE EXAMPLE (CAR SAFETY CASE) ... 53

3.2: DETERMINING THE TYPE OF DIALOGUE .. 55

3.3: SPECIFICATION IN AIF OF THE ARGUMENTS EXCHANGED BY AGENTS DISCUSSING THE FLYING
ABILITIES OF THE "P" BIRD ... 58

3.4: A DIALOGUE GRAPH REPRESENTED IN THE AIF ... 61

3.5: ILLUSTRATING THE LINK BETWEEN ARGUMENT (AIF NODES) AND DIALOGUE GAMES (AIF
+

NODES) .. 65

4.1: MISSING CONCEPTS BETWEEN AIF AND AGENT PROTOCOL .. 69

4.2: LOCUTION ICON .. 73

4.3 DID STRUCTURE OF A PERSUASION DIALOGUE ... 79

4.4: THE COMPLEX CAR SAFETY EXAMPLE .. 81

4.5: THE PERSUASION DIALOGUE LEGAL MOVES .. 91

4.8: THE INQUIRY DIALOGUE LEGAL MOVES .. 100

4.9: DID STRUCTURE OF AN INQUIRY DIALOGUE ... 102

4.10(A): INQUIRY DIALOGUE LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS 103

4.10 (B): INQUIRY DIALOGUE LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS.................. 104

4.10 (C): INQUIRY DIALOGUE LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS 105

4.11: EMBEDDED INQUIRY DIALOGUE EXAMPLE .. 107

4.12: DIALOGUE AMONG N-AGENTS .. 110

4.13: EXAMPLE TWO OF DIALOGUE AMONG N-AGENTS. ... 111

4.14: EXAMPLE THREE OF DIALOGUE AMONG N-AGENTS. ... 112

4.15: LOCUTION ICON FOR N-AGENTS .. 115

4.16: BLACK BOX OF DID FOR N-AGENTS .. 116

4.17: DIALOGUE INTERACTION DIAGRAM FOR N-AGENTS (DIDN) .. 117

5.1: BROADCASTING PATTERN SOLUTION (STEP ONE) ... 130

5.2: BROADCASTING PATTERN SOLUTION (STEP TWO) ... 132

5.3: BROADCASTING PATTERN SOLUTION (STEP THREE: DIVIDE) .. 133

5.4: BROADCASTING PATTERN SOLUTION (STEP THREE: TERMINATION) 134

5.5 : STRUCTURE (PROPOSALSENDERPROPOSAL AND PROPSALRECEIVERRECEIVER ROLES) 136

5.6 : STRUCTURE (REPLYTOPROPSALSENDER AND REPLYTOPRPOSALRECEIVERPROPOSAL ROLES) ... 137

5.7 : STRUCTURE (RESULTSENDERPROPOSAL , SENDREACHAGREEMENT PROPOSAL, DIVIDEGROUPPROPOSAL
AND RESULTRECEIVER ROLES) ... 138

5.8: SOLUTION OF RECURS-TO-N-DIALOGUE PATTERN ... 146

5.9: AGENT PROTOCOL AUTOMATED SYNTHESIS TOOL .. 149

5.10: TWO AGENTS PROTOCOL AUTOMATED SYNTHESIS ALGORITHM .. 150

5.11: N-AGENTS' PROTOCOL AUTOMATED SYNTHESIS ALGORITHM .. 152

6.1: VERIFICATION PROCESS ... 156

6.2: STATE SPACE TOOL PALETTE .. 178

6.3: PROPERTY 1 AS A STANDARD ML FUNCTION ... 183

6.4: PROPERTY 2 AS A STANDARD ML FUNCTION ... 185

6.5: PROPERTY 3 AS A STANDARD ML FUNCTION ... 188

6.6: PROPERTY 4 AS A STANDARD ML FUNCTION ... 191

6.7: PROPERTY 5 AS A STANDARD ML FUNCTION ... 192

7.1: GENERATELCCPROTOCOL TOOL ... 195

7.2: OVERALL ARCHITECTURE ... 197

7.3: AN EXAMPLE SCENARIO OF GENERATELCCPROTOCOL TOOL ... 199

7.4: CREATE NEW DIALOGUE INTERACTION DIAGRAM EXAMPLE (CLAIM LOCUTION ICON) 200

7.5: CREATE NEW DIALOGUE INTERACTION DIAGRAM EXAMPLE (ADD LOCUTION FORMAL
DEFINITION TO DID) .. 200

7.6: OPEN DID FILE DIALOGUE BOX .. 201

7.7: THE DID TEXTUAL REPRESENTATION OF THE PERSUASION DIALOGUE 202

7.8: SYNTHESISES OF LCC PROTOCOL OF THE PERSUASION DIALOGUE... 203

7.9: SPECIFYING AGENTS KNOWLEDGE BASE SCREENS ... 204

7.10: TRANSFORMING LCC PROTOCOL INTO AN EQUIVALENT CPN MODEL SCREENS 206

7.11: INSTRUCTION SCREEN ... 207

7.12: VERIFICATION MODEL RESULT SCREEN .. 208

8.1:THE RELATIONSHIP BETWEEN AIF AND DID LOCUTIONS ICON .. 211

8.2 (A) : ILLUSTRATING THE LINK BETWEEN ARGUMENT (AIF NODES) AND DID LOCUTIONS 212

8.2 (B): ILLUSTRATING THE LINK BETWEEN ARGUMENT (AIF NODES) AND DID LOCUTIONS 213

8.3: LOCUTION CONCEPTS .. 216

8.4 (A): DIALOGUE GAMES CONCEPTS .. 218

8.4 (B): DIALOGUE GAMES CONCEPTS .. 219

8.5: MODGIL AND MCGINNIS EXAMPLE OF DIALOGUE GAMES CONCEPTS 219

8.6: AIF+ DESCRIPTION OF PERSUASION DIALOGUE GAMES... 220

8.7: DID PROTOCOL IMPLEMENTATION CONCEPTS .. 221

8.8: PARTIAL DID DIAGRAM ... 225

8.9: POSSIBLE SEQUENCE OF REPLY MOVES ... 225

A.1: THE NEGOTIATION DIALOGUE LEGAL MOVES ... 245

A.2: DID STRUCTURE OF A NEGOTIATION DIALOGUE ... 247

A.3(A): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS 248

A.3 (B): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS 249

A.3 (C): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS 250

A.3 (D): NEGOTIATION DIALOGUE LOCUTIONS PRECONDITIONS AND POSTCONDITONS 251

A.4: THE PICTURE HANGING EXAMPLE ... 252

A.5(A): GENERATED LCC PROTOCOL FOR NEGOTIATION DIALOUGE ... 254

A.5(B): GENERATED LCC PROTOCOL FOR NEGOTIATION DIALOUGE ... 255

A.6: THE REQUESTSENDERA CPN SUBPAGE .. 258

A.7:THE REQUESTRECEIVERB CPN SUBPAGE .. 258

A.8: THE REPLYTOREQUESTSENDERB CPN SUBPAGE .. 259

A.9: THE REPLYTOREQUESTSENDERB CPN SUBPAGE .. 260

A.10: THE REPLYTOCHALLENGESENDERA CPN SUBPAGE .. 260

 A.11: THE REPLYTOCHALLENGERECEIVERB CPN SUBPAGE ... 260

A.12: THE REPLYTOJUSTIFYSENDERB CPN SUBPAGE ... 261

A.13: THE REPLYTOJUSTIFYRECEIVERA CPN SUBPAGE .. 261

A.14: THE REPLYTOPROMISESENDERA CPN .. 262

A.15:THE REPLYTOPROMISERECEIVERB CPN .. 262

A.16: THE PROTOCOL CPN SUPERPAGE .. 263

A.17: THE STATE SPACE GRAPH .. 264

A.18: POSSIBLE LOCUTIONS FILE .. 264

A.19: REPLY LOCUTIONS FILE .. 264

A.20: STARTING LOCUTIONS FILE ... 264

A.21: INTERMEDIATE LOCUTIONS FILE ... 265

A.22: TER,OMATOPM LOCUTIONS FILE .. 265

A.23: TERMINATION LOCUTIONS EFFECT CS AND EFFECTIVE CS FILES .. 265

A.24: PLAYER TYPES FILE .. 265

A.25: PLAYER IDS FILE ... 265

A.26: TERMINATION ROLE NAMES FILE .. 266

A.27: THE VERIFICATION RESULT OF THE FIVE BASIC PROPERTIES .. 266

2.8: SUCCESSFUL AND UNSUCCESSFUL DIALOGUE EXAMPLES .. 268

2.9: C-SUCCESSFUL DIALOGUE EXAMPLE .. 269

A.30: PROPERTY 6 (SUCCESSFUL DIALOGUE) AS AN STANDARD ML FUNCTION 269

A.31: PROPERTY 7 (C-SUCCESSFUL DIALOGUE) AS AN STANDARD ML FUNCTION 271

A.32: PROPERTY 6 (SUCCESSFUL DIALOGUE) VERIFICATION RESULT .. 272

A.33: PROPERTY 7 (C-SUCCESSFUL DIALOGUE) VERIFICATION RESULT ... 272

B.1: PERSUASION DIALOGUE BETWEEN N-AGENTS ... 282

B.2:THE PERSUASION DIALOUGE BETWEEN N-AGENTS LEGAL MOVES ... 287

B.3: DIALOGUE INTERACTION DIAGRAM FOR N-AGENTS (DIDN) .. 289

B.4(A): DIDN LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS ... 290

B.4(B): DIDN LOCUTIONS PRE-CONDITIONS AND POST-CONDITIONS ... 291

B.4(C): DIDN LOCUTIONS PRE-CONDITIONS AND POST-CONDITONS .. 292

B.5: THE COMPLEX CAR SAFETY EXAMPLE AMONG N-AGENTS .. 294

B.6: RECURSIVE STARTING(SENDING) PATTERN SOLUTION ... 297

B.7: RECURSIVE TERMINATION-RECUR PATTERN (TERMINATION) SOLUTION 304

B.8: RECURSIVE TERMINATION-DIVIDED PATTERN STRUCTURE ... 310

B.9: N-AGENTS PROTOCOL AUTOMATED SYNTHESIS ALGORITHM ... 314

B.10(A): GENERATED LCC PROTOCOL FOR N-AGENTS DIALOGUE ... 317

B.10(B): GENERATED LCC PROTOCOL FOR N-AGENTS DIALOGUE ... 318

B.10(C): GENERATED LCC PROTOCOL FOR N-AGENTS DIALOGUE .. 319

B.10(D): GENERATED LCC PROTOCOL FOR N-AGENTS DIALOGUE ... 320

C.1(A): GENERATED LCC PROTOCOL FOR PERSUSAION DIALOGUE (PART 1) 327

C.1(B): GENERATED LCC PROTOCOL FOR PERSUASION DIALOGUE (PART 2) 328

C.2 (A): STEP 3 OF PROTOCOL GENERATION (MATCHING THE STARTING PATTERN) 329

C.2 (B): STEP 3 OF PROTOCOL GENERATION (COMPLETING THE RECURSIVE ROLES) 330

C.3 (A): STEP 5 AND 6 OF PROTOCOL GENERATION .. 331

C.3 (B): STEP 7 OF PROTOCOL GENERATION (MATCHING THE TERMINATION-INTERMEDIATE
PATTERN) ... 332

C.3 (C): STEP 7 OF PROTOCOL GENERATION (COMPLETE THE RECURSIVE ROLES) 333

C.3 (D): STEP 8 OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF THE
TERMINATION-INTERMEDIATE PATTERN ... 334

C.8(A): GENERATED LCC PROTOCOL FOR PERSUASION DIALGOUE (PART 1) 339

C.8(B): GENERATED LCC PROTOCOL FOR PERSUASION DIALGOUE (PART 2) 340

C.8(C): GENERATED LCC PROTOCOL FOR PERSUASION DIALGOUE (PART 3) 341

C.8(D): GENERATED LCC PROTOCOL FOR PERSUASION DIALGOUE (PART 4) 342

C.8(E): GENERATED LCC PROTOCOL FOR PERSUASION DIALGOUE (PART 5) 343

C.8(F): GENERATED LCC PROTOCOL FOR PERSUASION DIALGOUE (PART 6) 344

C.9 (A): STEP 2 OF PROTOCOL GENERATION (MATCHING THE MOVE-TO-DIALOGUE PATTERN) .. 345

C.9 (B): STEP 2 OF PROTOCOL GENERATION (MATCHING THE MOVE-TO-DIALOGUE PATTERN) ... 346

C.9 (C): STEP 3 (PART 1) OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF
THE RECURS-TO-N-DIALOGUE PATTERN) .. 347

C.9 (D): STEP 3 (PART 2) OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF
THE RECURS-TO-N-DIALOGUE PATTERN) .. 348

C.9 (E): STEP 3 (PART 3) OF PROTOCOL GENERATION (MATCHING THE REWRITING METHODS OF
THE RECURS-TO-N-DIALOGUE PATTERN) .. 349

C.10: THE CLAIMSENDERP CPN SUBPAGE .. 350

C.11: THE CLAIMRECEIVERO CPN SUBPAGE ... 351

C.12: THE REPLYTOCLAIMSENDERO CPN SUBPAGE ... 351

C.13: THE REPLYTOCLAIMRECEIVERP CPN SUBPAGE ... 352

C.14: THE REPLYTOWHYSENDERP CPN SUBPAGE .. 352

C.15: THE REPLYTOWHYRECEIVERO CPN SUBPAGE ... 353

C.16: THE REPLYTOARGUESENDERO CPN SUBPAGE .. 353

C.17: THE REPLYTOARGUERECEIVERP CPN SUBPAGE .. 354

C.18: THE PROTOCOL CPN SUPERPAGE .. 355

C.19: THE STATE SPACE GRAPH .. 356

C.20: DIALOGUE OPENING PROPERTY PAGE ... 359

C.21: TERMINATION OF A DIALOGUE PROPERTY PAGE .. 360

C.22: TURN TAKING BETWEEN AGENTS PROPERTY PAGE ... 360

C.23:MESSAGE SEQUENCING PROPERTY PAGE ... 360

C.24: RECURSIVE MESSAGE PROPERTY PAGE ... 361

C.25: THE VERIFICATION RESULT OF THE FIVE BASIC PROPERTIES .. 361

E.1: GENERATE LCC PROTOCOL TOOL MAIN SCREEN .. 366

E.2: DIALOGUE INTERACTION DIAGRAM LIBRARY SCREEN ... 366

E.3: CREATE NEW DIALOGUE INTERACTION DIAGRAM SCREEN .. 366

E.4: SIMPLE DID GRAPHICAL REPRESENTATION OF A PERSUASION DIALOGUE.......................... 368

E.5: DID FORMAL REPRESENTATION OF AN INQUIRY DIALOGUE .. 368

E.6: FULL DID GRAPHICAL REPRESENTATION OF A PERSUASION DIALOGUE 370

E.7 (A): HOW TO READ DID... 372

E.7 (B): HOW TO READ DID ... 373

E.8: ADD NEW ARGUMENT SUBSCREEN ... 374

E.9: ADD NEW CONDITION SUBSCREEN .. 374

E.10: DID TEXTUAL REPRESENTATION .. 375

E.11: DID TEXTUAL REPRESENTATION OF CLAIM LOCUTION... 377

E.12: CREATE NEW DIALOGUE INTERACTION DIAGRAM SCREEN .. 378

E.13: OPEN DID FILE DIALOG BOX ... 378

E.14: GENERATES CONCRETE LCC PROTOCOLS FOR PERSUASION DIALOGUE 380

E.15: GENERATES CONCRETE LCC PROTOCOLS FOR PERSUASION DIALOGUE AMONG N-AGENTS 381

E.16: SHOW GENERATED LCC PROTOCOLS SCREEN .. 382

List of Tables

2.1: THE ABSTRACT SYNTAX OF LCC ... 11

3.1: DIALOGUE TYPES ... 52

5.1 : BROADCASTING PATTERN ROLES ARGUMENTS .. 140

5.2 (A): BROADCASTING PATTERN FUNCTIONS .. 141

5.2 (B): BROADCASTING PATTERN ROLES FUNCTIONS .. 142

5.3: RELATIONSHIP BETWEEN LOCUTION TYPE AND PATTERNS ... 149

6.1: LCC-CPNXML AUTOMATIC TRANSFORMATION TABLE (ROLE) .. 161

6.2:LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (SEND A MESSAGE) 162

6.3: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE(RECEIVE A MESSAGE) 163

6.4: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (THEN KEYWORD AND CHANGE
ROLE) .. 165

6.5:LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (OR KEYWORD) 166

6.6: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (DIALOGUE TOPIC) 167

6.7: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (STARTER ROLE ARGUMENTS) ... 169

6.8: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (END STATEMENT) 170

6.9 (A):LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (GET AN ARGUMENT
CONDITION) ... 172

6.9 (B):LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (GET AN ARGUMENT CONDITION)
 ... 173

6.9 (C):LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (GET AN ARGUMENT CONDITION)
 ... 174

6.10: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (ROLE IN THE CPN SUPERPAGE).175

6.11: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (DIALOGUE TOPIC IN THE
SUPERPAGE) ... 176

6.12: LCC-CPNXML AUTOMATICALLY TRANSFORMATION TABLE (AGENT'S STARTER ROLE
ARGUMENTS IN SUPERPAGE) ... 177

 8.1 DIFFERENCES BETWEEN MODGIL AND MCGINNIS [MODGIL AND MCGINNIS, 2007], REED ET
AL. [REED ET AL., 2008] AND DID .. 216

B.1 RELATIONSHIP BETWEEN LOCUTION TYPE AND PATTERNS .. 314

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 1

Chapter 1

Introduction

An argument offers a reason for believing a statement, taking an action, changing a

goal, etc. Recently, argumentation has been an important area of research in natural

language processing, knowledge representation, and construction of automated

reasoning systems [Maudet et al., 2007]. It also has merged with multi-agent

systems (MAS), in particular for modelling the communication between agents,

where it supports mechanisms for designing, implementing, and analyzing models of

the interaction among agents. However, a wide ranging approach of this kind carries

with it various challenges. An important challenge is to ensure that agent arguments

can be communicated in a reliable way by using argument-based protocols.

The Argument Interchange Format (AIF) [Chesnevar et al.,2007;Willmott et al.,

2006] is an approach that has been used successfully to tackle this challenge.

Recognizing that no single style of argumentation fits all circumstances, the AIF

stipulates a layered style of specification in which a high-level language is used to

specify the argument which is then implemented as a protocol.

Interaction protocols in AIF [Chesnevar et al.,2007;Willmott et al., 2006] can be

represented using a protocol language called the Lightweight Coordination Calculus

(LCC) [Robertson, 2004; Hassan et.al., 2005], an executable specification language

which is at the core of an overall architecture for coordination of MAS.

The goal of this research is to develop a useful tool that can enable designers to build

an efficient LCC program in the easiest and quickest manner. The aim is to propose a

high-level control flow specification language, called a Dialogue Interaction

Diagram (DID) between AIF and LCC, for designers to build an agent by reusing

common LCC argumentation patterns. The selection and instantiation of these

patterns is performed automatically given a high-level specification ideally written in

the DID.

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 2

1.1 The Challenge

Today, argumentation [Rahwan and Moraitis, 2009] is gaining more prominence

because it is being used as a key form of interaction among agents in MAS.

However, the argumentation community encounters various problems, such as the

lack of a shared interchange format for arguments. Arguments [Rahwan and

Moraitis, 2009] are represented in many different ways depending on the particular

approach people used. To solve this problem, the argumentation community

developed the AIF [Chesnevar et al.,2007;Willmott et al., 2006], which provides an

abstract language to exchange argumentation concepts among agents in a MAS.

However, AIF [Chesnevar et al.,2007;Willmott et al., 2006] is an abstract language

that does not capture some concepts that are needed to support the interchange of

arguments between agents (e.g. sequence of argument, locutions and pre- and post-

conditions for each argument). Rather, AIF only specifies the properties that define

an argument without prescribing how that argument may be made operational. An

example of this problem occurs in one of the basic dialogue games stereotypes: A1

and A2 are reasoning about whether a particular penguin, Tweety, can fly:

A1) Tweety flies. (making a claim);

A2) Why does Tweety fly? (asking for grounds for a claim);

 A1) Tweety is a bird, birds generally fly. (arguing: offering grounds for a claim);

 A2) Tweety does not fly because Tweety is a penguin, penguins do not fly. (stating a

counterargument);

A1) You are right.(conceding an argument).

In this dialogue game each agent responds in turn to the argument made by other

agent. This flow of the dialogue is not captured by AIF (e.g. AIF does not record that

a given argument has been made in response to an earlier argument). AIF only

captures argument structures (e.g. it connect "Tweety flies" with its premises

"Tweety is a bird, birds generally fly"). (See chapter 3 for a detailed discussion of

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 3

this problem). This means that there is a gap between argument specification

languages and multi-agent implementation languages. The objective of this thesis is

to fill this gap using a combination of automated synthesis and verification methods.

The following sections provide an introduction to these methods.

1.2 The Proposed Approach

The main research question is:

"Can we automatically synthesise multi-agent protocols (LCC as an

operational specification language) from high-level dialogue game argument

specification languages (AIF/DID as a high-level specification language)?"

This research presents an approach to solve the described argument implementation

challenge. It demonstrates how a generic dialogue game argumentation

representation (acting as a high-level specification language) can be used to automate

the synthesis of executable specifications in a protocol language capable of

expressing a class of multi-agent social norms. As our argumentation language we

have chosen AIF/DID. As our protocol language we have chosen LCC.

This approach has two main tasks (parts):

(1) Bridging the gap between AIF and LCC by using transformational synthesis

methods:

a) Extending the AIF diagrammatic notation (since AIF is an abstract language

and fully automated synthesis starting only from the AIF is not possible) to

give a new, intermediate recursive visual high-level language called a DID

between the AIF and LCC. The new high-level specification language

remedies the AIF problem and represents the dialogue game protocol rules in

an abstract way.

b) Implementing a tool which automatically synthesises concrete LCC protocols

from the new high-level specification language using a new pattern-based

synthesis method.

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 4

(2) Checking the semantics of the new high-level specification language, used as a

starting point, against the semantics of the synthesised LCC protocol.

1.3 Approach Architecture

Our approach attempts to close the gap between standard argument specification and

deployable protocols by automating the synthesis of protocols, in LCC, from

argument specifications, ideally written in the AIF. It consists of two parts (as shown

in Figure 1.1):

Part one which is used to bridge the gap between AIF and LCC by using a

transformational synthesis. Part one was built in two stages:

(1) Proposing a new high-level specification language, between the AIF and LCC,

for multi-agent protocols called a DID;

(2) Synthesising concrete LCC protocols from DID specifications (automatically

synthesising LCC protocols from DID specifications by recursively applying LCC-

Argument patterns).

Part two provides a verification methodology based on Standard functional

programming language (SML) and Colored Petri Net (CPNs) to verify the semantics

of the original DID specification against the semantics of the synthesised LCC

protocol.

1.4 Claims of Novelty

This thesis contributes to the area of multi-agent argumentation protocol

implementation. Firstly, it extends the AIF diagrammatic notation to give a new,

intermediate recursive visual dialogue game high-level language between the AIF

and LCC called a DID. It does this to remedy the AIF obstacle (AIF is not an

executable language). The goal is to be able to represent, in an abstract way, dialogue

game protocol rules. Second, it introduces LCC-Argument patterns. It uses LCC-

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 5

 Figure 1.1: System Architecture

Argument patterns with DID to fully automated the synthesis of multi-agent

protocols. Finally, it introduces verification methods to verify the semantics of the

DID specification, used as a starting point, against the semantics of the synthesised

LCC protocol. The remaining chapters of this thesis illustrate how this may be

accomplished.

1.5 Thesis Structure

The rest of this thesis is structured as follows:

Part 1(Synthesis of Concrete Protocols)

1
2

Synthesis

Tool

Resulting LCC

Protocol

(LCC =

Multi-agents

Development

Language)

DID

(Argument

Specification

Language)

Input Output

Part 2 (Verification Model)

Verification

Tool

Result

True /False

Input Input

Output

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 6

 Chapter 2: Background and Literature Review. This chapter reviews research

related to our representation approach.

 Chapter 3: Argumentation, Dialogue Games and MAS. This chapter

introduces the basic concepts of arguments, argumentation, dialogue games

and AIF. It also summarises the advantages of using argumentation for

modelling agent communication, as well as the sharing and the

implementation problems faced by the argumentation community and the

requirements we need in order to solve these problems.

 Chapter 4: Dialogue Game Argument Specification Language. This chapter

proposes a new high-level specification language, between the AIF and LCC,

for multi-agent protocols called a DID, which is used to specify the dialogue

game protocol in an abstract way.

 Chapter 5: Synthesis of Concrete Protocols. This chapter proposes a set of

LCC–Argument patterns and describes a fully automated synthesis method

which can automatically synthesise LCC protocols from DID specifications

by recursively applying LCC-Argument patterns.

 Chapter 6: Verification Method based on Standard functional programming

language (SML) and Colored Petri Net (CPNs). This chapter proposes a

verification methodology based on SML and CPNs used to evaluate the

research hypothesis.

 Chapter 7: Design and Implementation. This chapter presents the architecture

and the prototype implementation of the represented approach, that is used to

synthesise concrete LCC protocols from DID specifications by recursively

applying LCC-Argument patterns.

 Chapter 8: Evaluation and Discussion. This chapter discusses and summarises

the main contributions of this thesis. It is also points out limitations of the

thesis.

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 7

 Chapter 9: Conclusions and Future work. This chapter summarises the thesis

and discusses the main significance, contribution and limitations of the

current work. It also outlines future research work.

Bridging the Specification Protocol Gap in Argumentation

Chapter 1 Introduction 8

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 9

 Chapter 2

Background and Literature Review

This chapter provides an overview and background of previous work on topics

related to this thesis. Given the extensive literature on these topics, we limit the

discussion to areas that are most relevant to later chapters.

We open this chapter with a summary of agent protocol development language

related works in Section 2.1. This is followed by a description of research on design

patterns in Section 2.2. Section 2.3 introduces research on relevant verification

methods. Lastly, Section 2.4 summarises this chapter.

2.1 Agent Protocol Development Language

The approaches presented in this thesis began with Argument Interchange Format

(AIF) which provides a common language to exchange argumentation concepts

among agents in a MAS.

To support formal analysis and verification, the AIF community [Willmott et al.,

2006; Modgil and McGinnis, 2007] (see chapter 3 for more information about AIF)

suggests using a process
1
 and declarative

2
 language to implement the dialogue games

protocol. For this reason we chose the Lightweight Coordination Calculus (LCC)

[Robertson, 2004; Hassan et.al., 2005], a declarative, process calculus-based,

1
 Process language: Process calculi [Baeten,2005] provide a tool to describe the behaviour of agents or

processes interactions or communications by algebraic means in a high-level way. It allows formal

reasoning and process verification.

2
 Declarative language: According to Lloyd [Lloyd, 1994] "declarative programming involves stating

what is to be computed, but not necessarily how it is to be computed".

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 10

executable specification language for choreography
3
 which is based on logic

programming and is used for specifying the message-passing behaviour of MAS

interaction protocols.

LCC is based on process calculus, in the sense that it determines when and what

actions the agent can perform and under what circumstances these actions may be

carried out. In other words, LCC restricts each agent's behaviour in the dialogue by

specifying the rules of the dialogue game. It controls what messages can be received

or sent, in what order these messages may be received or sent, and under what pre-

conditions and post-conditions these messages may be sent or received [Grivas,

2005].

In addition, LCC is a declarative language, in the sense that it only describes the

interaction between agents (what to do, not how to do it) and can be understood

independently from any specific execution architecture. It also contains few

operators, which make LCC a compact language for agent interaction [Willmott et

al., 2006; Modgil and McGinnis, 2007].

LCC is also an executable specification language (a very high-level executable

programming language) in the sense that there is a deployment mechanism for LCC

agent protocols [Grivas, 2005].

2.1.1 LCC Syntax

The abstract syntax of an LCC clause [Robertson, 2004; Hassan et.al., 2005] is

shown in Table 2.1. In an LCC framework each of the N ≥ 2 agents is defined with a

unique identifier Id and plays a Role. Each agent, depending on its Role, is assigned

an LCC protocol.

3 Choreography: According to Dijkman and Dumas [Dijkman and Dumas, 2004] "Choreography is

collaboration between some service providers and their users to achieve a certain goal. It only

describes tasks that involve communication between the parties involved, and not tasks performed

internally."

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 11

 Meaning

Framework := {Clause,….}

Clause := Agent ::= Dn

Agent := a(Role, Id)

Dn := Agent | Message | null Constraint | Dn then Dn | Dn or Dn

Message := M => Agent | M => Agent Constraint | M <= Agent |

Constraint M <= Agent

Constraint := Term | Constraint and Constraint | Constraint or Constraint

Role := Term

M := Term

Term:= Constant (Argument,........)

Id Constant | Variable

Constant Character sequence made up of letters or numbers beginning with a lower

case letter

Variable Character sequence made up of letters or numbers beginning with an upper

case character

Argument Term | Constant | Variable

Table 2.1: The abstract Syntax of LCC

An LCC protocol can be recursively defined as a sequential composition (denoted as

then) or choice (denoted as or) of LCC protocols. In an LCC protocol, agents can

change roles, exchange (receive or send) messages and exit the dialogue under

certain constraints C (null C). Null represents an event (a do-nothing event) that

does not involve role changing or message exchanging. A constraint is defined as a

propositional formula specified over terms connected by or and and operators.

Messages M are the only way to exchange information between agents. An agent can

send a message M to another agent (M => Agent), and receive a message from

another agent (M <= Agent). There are two types of constraints over the messages

exchanged: pre-condition and post-condition. Pre-conditions (M => Agent C)

specify the required conditions for an agent to send a message. Post-conditions (C

M <= Agent) explain the states of the receiver after receiving a message. An agent

can test the satisfaction of the constraints either privately (by using the internal

agent's mechanism) or by using shared knowledge transferred via messages.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 12

An agent can play more than one role during several interactions. In LCC, recursion

can be achieved by repeating the same role either to process a list or to loop it until

the recursive condition fails.

LCC has a Prolog like syntax [Besana, 2009]:

(1) Constraints name are character sequence made up of letters or numbers

beginning with a lower case letter;

(2) Variables are character sequence made up of letters or numbers beginning with

an upper case character;

(3) Constraints are analogues to Prolog queries (Although LCC itself does not

assume that the constraint solver must be a Prolog system);

(4) Some of the role parameters are input and others are output parameters. The

values of output parameters are set when the role ends;

(5) The semantics of the assignment and the comparison of variables is taken from

Prolog: an assignment to an un-instantiated variable always succeeds by putting

the value in the variable (simple assignment action), whereas an assignment to

an instantiated variable succeeds if, and only if, the values of the two variables

are the same (comparison action).

2.1.2 LCC Examples

This section illustrates three simple and complex examples, which demonstrate the

use of LCC as a specification language for specifying the message-passing behaviour

of MAS interaction protocols:

Example 1: Simple Persuasion Protocol

This is the simplest example of a persuasion protocol between two agents P and O.

P and O have arguments for and against Topic. Agent P sends a claim message Topic

and agent O receives this claim message Topic. A fragment of LCC protocol for the

interchange in this argument is:

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 13

a(R1,P)::=

 claim(Topic) => a(R2, O)

 then

a(R3,P).

a(R2,O)::=

 claim(Topic) <= a(R1, P)

 then

a(R4,O).

This is read as: role R1 of agent P sends a claim message to the role R2 of agent O

and role R2 of agent O receives the claim message from role R1 of agent P. Then P

changes its role to R3 and O changes its role to R4.

Example 2: Buying and Selling

In this example (adapted from [Besana, 2009]), there are two parties: buyer and

seller. The buyer wants to buy an item R.

a(buyer, A)::=

request(R) => a(seller, B) need(R)

then

 price(Y) <= a(seller, B)

 or

 failure <= a(seller, B).

a(seller, B)::=

request(R) <= a(buyer, A)

then

price(Y) => a(buyer, A) find(R,Y)

 or

 failure => a(buyer, A).

This is read as: the buyer role of agent A satisfies the constraint need(R) (the request

for the item that the seller needs to provide), and then sends the request message with

the needed item to the seller of agent B and waits for agent A to reply (the buyer

waits for one of the two messages: price(Y) or failure). Then, the seller, receives the

request message, tries to satisfy the constraint find(R,Y) (finds the item), and then

either replies with the item price or sends a failure message if the constraint find(R,Y)

cannot be satisfied.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 14

Example 3: An Auction

In this example (adapted from [Besana and Barker, 2009]), there are N agents: A

which is considered to be an auctioneer and more than one agent B, which are

considered as bidders.

 a(auctioneer(Product,Bidders), A) ::=

 a(caller(Product, Bidders),A)

 then

 a(waiter(Bidders, Bids, curwinner(nul, 0),A)

 then

 sold(Product,Price) => a(bidder,WB) curwinner(WB, Price) = Winner.

 a(caller(Product,Bidders), A) ::=

 null Bidders = [] %no bidders left

 or

 invite_bid(Product) => a(bidder, BH) Bidders = [BH|BT]

 then

 a(caller(Product, BT), A). %recursion

 a(waiter(Bidders, Bids, curwinner(WinBidder, WinBid), A) ::=

 null allarrived(Bids, Bidders) and Winner = curwinner(WinBidder, WinBid)

 or

 null timeout() and Winner = curwinner(WinBidder, WinBid)

 or

 bid(Product,Offer) <= a(bidder, B)

 then

 a(waiter(Bidders, [B|Bids], curwinner(B, Offer), A) Offer > WinBid

 or

 a(waiter(Bidders, [B|Bids], curwinner(WinBidder, WinBid), A)

 or

 a(waiter(Bidders, Bids, curwinner(WinBidder, WinBid), A) sleep(1000).

 a(bidder, B) ::=

 invite_bid(Product) <= a(caller, A)

 then

 bid(Product, Offer) => a(waiter, A) bid_at(Product, Offer)

 then

 sold(Product, Price) <= a(auctioneer(Product,Bidders), A).

The auctioneer role of agent A has two input parameters: Product to sell and the list

of Bidders. The auctioneer role starts by changing its role to caller. The caller role of

agent A recurses over the Bidders list. If the list is empty, it returns null, otherwise, it

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 15

sends the invite_bid message to one bidder (at the head of the Bidders' list) and then

it recurses over the remaining bidders. The caller role ends once the invite_bid

message is sent to all the bidders (Bidders = []).

Afterwards, the control changes to the auctioneer role which then changes its role to

waiter. The waiter role of agent A has one input parameter: Bidders, and two output

parameters: (1) Bids (Bids represents the list of replied bidders); (2) Winner

(Winner=curwinner(WinBidder,WinBid) where WinBidder represents bidder's ID

and WinBid represents bidder's offer). The values of output parameters are set when

the role waiter ends. The waiter role begins by checking if all the replies have

arrived (all the bidders have replied to the invite_bid message) or if the period has

expired (timeout() = true). If either condition is true, then the waiter role assigns the

current winner as the final winner. Otherwise, the waiter role receives a message

from a bidder (there is a message in the receiving message queue) and checks if the

bidder's offer is higher than the current highest offer. If this condition is true, the

waiter role recurses to make the current bidder the current winner, otherwise it

simply recurses. The waiter role then waits for a second (sleep(1000)) and recurses,

if there is no message in the receiving message queue.

At the same time, the bidder role of agent B receives the request to bid, and sends the

offer to the waiter role of agent A. Then, if the offer is successful (the current bidder

is the final winner), the bidder role receives a sold message from the auctioneer role

of agent A. If the offer is unsuccessful, then the interaction between agent A and B

will end.

2.2 Design Pattern

To support agent protocol development activities, this thesis proposes LCC-

Argument design patterns. Design patterns, which are common and recurring code

patterns of a specific programming language [Gamma et.al, 1995], have been

extensively studied within the object-oriented and logic programming community.

This section summarises the software engineering, the agent protocol and the logic

programming community view of design patterns and how they have been used in

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 16

software development. It also compares our LCC-Argument patterns with the

literature.

2.2.1 Software Engineering Design Pattern

Object-oriented software engineering [Gamma et.al, 1995] uses the definition of

patterns as proposed by the architect Christopher Alexander [Alexander et.al, 1977]

to define the design pattern:

"Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in

such a way that you can use this solution a million times over, without ever

doing it the same way twice".

In a practical sense, design patterns are generic and recurring solutions to common

problems. However, they are not finished code that can be used directly. In essence,

design patterns describe how to solve some detailed problems that are independent of

any particular algorithm or problem domain, and can be reused in many different

situations. These patterns can help to speed up the development process by allowing

a set of tested and proven patterns to be reused in order to solve a given problem.

2.2.2 Agent Protocol Design Pattern

Object-oriented design patterns usually describe relationships and interactions

between objects and classes to solve general object-oriented design problems without

identifying the software classes or objects involved.

In practice, most of the implemented agent protocols [Deugo and Weiss, 1999] are

implemented using object-oriented languages (such as Aglets
4
 and Voyager

5

frameworks which are implemented using Java). Consequently, the structure of most

4
 http://aglets.sourceforge.net/

5
 http://www.pegacat.com/vcf/

http://aglets.sourceforge.net/
http://www.pegacat.com/vcf/

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 17

agent protocol patterns [Deugo and Weiss, 1999; Aridor and Lange, 1998; Tolksdorf,

199; Paschke et.al, 2006] are similar to the structure of object-oriented design

patterns.

An Example

An example of an agent design pattern (similar to Object-Oriented pattern) is from

Aridor and Lange [Aridor and Lange, 1998] work. Aridor and Lange [Aridor and

Lange, 1998] represent a set of new different mobile agent design patterns, which

can be used to generate mobile agent applications. They classify patterns into three

types: travelling, task, and interaction patterns.

One example of Aridor and Lange [Aridor and Lange, 1998] patterns is Master-Slave

pattern (see Figure 2.1) from the group of task patterns. This pattern was

implemented as an aglet. It defines how master agent can assign a task to a slave

agent. It has two abstract classes:

(1) Master class, which has one abstract method getResult. The getResult method

defines how to handle the task’s result.

(2) Slave class, which has two abstract methods:

i. initializeJob method, which defines the initialization steps to be performed

before the agent travels to a remote destination;

ii. doJob method, which defines the concrete task to be performed at the remote

destination.

A second example of an agent design pattern (similar to Object-Oriented pattern) is

from Tolksdorf [Tolksdorf,1998] work. Tolksdorf [Tolksdorf,1998] describes five

patterns which rely on some mobility mechanism of information (which is used to

manage the exchanging -accessibility dependencies- of knowledge between users,

systems and agents). These patterns, called "coordination patterns", can be used to

generate agent protocols that can manage dependence in organisation, economic, and

computing systems.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 18

public abstract class Master extends Aglet

{

public void onCreation(Object obj)

{
 // Called when the master is created.

}//end of onCreation function

public void run ()

{

 getResult()

 } // end of run function

}//end of Master class

public abstract class Slave extends Aglet

{

 Object result = null

public void onCreation(Object obj)

{
 // Called when the slave is created. Gets the remote destination, a reference to

 // the master agent, and other specific parameters.

}//end of onCreation function

public void run ()

{
// At the origin:

initializeJob();

dispatch(destination); // Goes to destination
// At the remote destination:

doJob(); // Starts on the task.

result=...;
// Returns to the origin.

// Back at the origin.

// Delivers the result to the master and dies.

dispose();

 } // end of run function

}//end of Slave class

Figure 2.1: The Slave Class

Both Aridor and Lange [Aridor and Lange, 1998] and Tolksdorf [Tolksdorf,1998]

patterns are expressed in terms of classes and objects. However, our solutions (LCC-

Argument patterns) are expressed in terms of roles. Our proposal can be interpreted

as an adaptation of object-oriented design patterns in order to capture the different

relationships and interactions between agents' roles.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 19

Essentially, agent role design patterns (LCC-Argument patterns) are similar to

object-oriented design patterns. The only difference between them is the structure of

an agent role pattern which is described by using the notions of roles instead of the

notions of classes and objects. In fact, we use the notation of the roles since our

protocol language is LCC which is not considered to be an object-oriented language

and uses roles (instead of classes and objects) to describe agent protocols (see section

2.1 for more details).

2.2.3 Logic Programming Patterns (Logic Programming Techniques)

Since LCC has a Prolog like syntax (see section 2.1.1), in this section, we give a

summary of Prolog programming techniques (logic programming patterns),

Techniques editing and Grivas structured design methods. The general idea of logic

programming techniques is analogous to that used in Techniques editing [Bowles

et.al, 1994], to synthesise Prolog clauses, as summarised below.

2.2.3.1 Prolog Programming Techniques

Programming Techniques [Bowles et.al, 1994] uses common code patterns (loosely

called techniques), which depend of a particular language such as Prolog but are

independent of any particular algorithm or problem domain. It provides generalised

pieces of code, which can be used by software engineers to implement part of a

specification.

 An Example

An example of a technique taken from [Bowles et.al, 1994], is to consider the

standard implementation of reverse in Prolog:

This predicate consists of two parts:

(1) A part which performs the recursion down the list:

rev([] , R , R).

rev([H|T] , R0, R) :-

rev(T, [H|R0] , R).

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 20

(2) An accumulator pair [O'Keefe,1990] part which builds a list during the

recursion and passes the result to the top of the recursion:

These two parts are considered to be Prolog techniques because they are general

common patterns, which can be used in a wide range of domains irrespective of the

algorithm being implemented.

A summary of methodology for building programs using techniques is given in

[Kirschenbaum at.al, 1989]:

(1) This methodology constructs a program by using a set of syntactic entities

(skeletons), which describe the common control flow pattern of the program.

(2) This methodology also constructs a set of syntactic methods (techniques or

additions), which perform simple tasks such as adding parameters.

(3) Additions and techniques can be applied to the skeletons yielding extensions

(extra parameters, goals or clauses).

(4) The final program is obtained by composing extensions.

The idea of building programs is to define the set of suitable skeletons to solve the

problem. In this way, the software engineer can choose one skeleton from this set

that suits his needs. Next, the software engineer can apply additions (or techniques)

to the skeleton. Finally, the software engineer can repeat the process of applying

additions (or techniques) until the final program is obtained.

The concept of Prolog programming techniques has been developed and applied in a

variety of contexts. The most interesting context is techniques editing.

rev([],...)

rev([H|T],...) :-

rev(T,...).

rev([],R,R)

rev(...,R0,R) :-

rev(...,[H|R0],R).

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 21

2.2.3.2 Techniques editing

Techniques editors can speed up the program-building process by reusing a set of

skeletons that solves a given problem. The idea of techniques editors has been

proposed in two editors: Robertson's editor [Robertson, 1991] and Ted [Bowles,

1994].

Robertson’s editor is based directly on methodology that is given in [Kirschenbaum

at.al, 1989] as illustrated above. The editor aims to support primary novice users. It

provides a set of Prolog skeletons, additions, and other information that allows the

editor to guide and judge the user. The user can construct the program by selecting a

skeleton and then apply additions onto the selected skeleton. This editor is limited by

a small set of skeletons and additions. Its interface is not sophisticated but it provides

a basic set of editing operations and some basic guidance in the editing process.

The second editor, Ted, also aims to support novice users, but its technique is

different from the skeleton-addition approach. Ted common patterns capture the

relationships between the head and recursive arguments in the recursive clauses of a

program. An example of Ted patterns is Same Technique [Bowles et.al, 1994], which

passes the same value between two argument positions: the head of a clause and a

recursive subgoal in the clause. (Note: in this example the technique appears

underlined).

The Ted editor has a number of limitations in the patterns. Most notably, that it does

not support both mutually recursive predicates
6
 and doubly recursive clauses

7
 a long

6
 Mutually recursive predicate: [Krauss,2008] "If two or more functions call one another mutually,

they have to be defined in one step". An example of mutually recursive predicate is: p *q , q *p.

rev([],R,R).

rev([H|T],R0,R):-

rev(T,[H|R0],R).

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 22

with the fact that its data-structures are limited to three types: lists, atoms, and

numbers.

The Ted editor has a graphical interface (point and click interface) and provides the

same amount of information as that provided by Robertson’s editor. It also has the

ability to map the arguments and check their suitability. However, it does not have

the ability to guide the user through the editing process.

Despite the limitations in both editors, they were tested on user groups. Ted in

particular was used in controlled experiments with novice programmers (those using

Ted tended to build programs faster and with fewer errors).

2.2.3.3 A Structural Synthesis System for LCC Protocols

Grivas' project [Grivas, 2005] developed a structured design editor for LCC protocol

(SDE). It aims to define a set of common LCC patterns, which can be reused to make

the LCC protocol-building process faster and easier by requiring less knowledge and

effort from the software engineer. In particular, Grivas' project attempts to use

similar techniques to Prolog techniques editing.

Grivas' project found that a direct use of Prolog technique editing approaches in the

LCC case is not easy because of the differences between Prolog and LCC languages

(LCC syntax similar to Prolog but LCC tackles different problems from those of

Prolog). The idea is to come up with a set of skeletons by using process-oriented

methods and then extend the design using similar techniques to those employed in

Prolog.

Three different types of patterns were identified in this project. The first type of

pattern, called Skeletal, describes the general structure of the clause where the details

of the clause can be specified later either manually or by applying another pattern.

7
 Double recursion: Double recursion [Odifreddi and Cooper, 2012] "allows the recursion to happen

on two variables instead of only one".

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 23

An example of this pattern follows:

This example represents a general recursive clause that can be applied to different

clauses. R represents role name, X represents agent identifier, <def> represents

unspecified definition, and <con> represents unspecified conditions.

The second type of pattern, called Role Refinement, describes the clause in more

detail and is used to refine the clause.

An example of this pattern is as follows:

This example represents a recursive clause in more detail than the Skeletal example.

F represents the role name and A1…An represents role arguments.

The third type of pattern, called Clause Interaction, describes the interaction between

two clauses. It is a message passing specification pattern.

An example of this pattern is as follows:

a(R,X) ::

(<def>

 then a(R,X))

or

null <con>

a(F(A1...An),X) ::

(

 <def>

 then a(F(A1...An-1,An'),X)

)

or

null <con>

a(R1,X) ::

 <def>

 then M=>R2

a(R2,Y) ::

 M<=R1

 then <def>

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 24

This example represents a message passing clause where one role sends a message

and another role receives the message. R1 and R2 represent roles name, and X and Y

represent the agent's identifiers while <def> represents an unspecified definition.

There are two main differences between Robertson's editor and Ted, and the SDE

editor. Firstly, Roberson's and Ted editors focus on helping a Prolog learner whereas

SDE aims to help software engineers by giving them a quick and easy way to build

the LCC protocol. Secondly, SDE considers patterns as reusable LCC code, which

can be useful when building protocols because it saves effort. Conversely,

Robertson's and Ted editors consider patterns as primitive operations where the

combinations of these patterns can produce a wide range of Prolog programs.

2.2.3.4 Comparing LCC-Argument Patterns with Logic Programming

Techniques

The most notable differences between our LCC-Argument patterns and Grivas'

[Grivas, 2005] patterns are:

(1) Grivas did not base his system on a high-level language, while we used as a

high-level language DID. DID provides mechanisms to represent, in an abstract

way, the dialogue game protocol rules by giving an overview of the permitted

moves and their relationship to each other (see chapter 4 for more details).

(2) Grivas describes very small scale patterns of LCC protocol systems (operating at

individual clause level) which required quite a lot of expertise from the user

(engineers) in order to put them together, while our patterns are large scale

patterns which bring more structure at one time (across entire LCC protocols)

and specific to argumentation. Our patterns allow larger LCC components to be

synthesised from smaller specification and do not require extensive low-level

(coding) skill;

(3) Grivas' patterns are inspired by Prolog Techniques editing, while our patterns

have their origins in object-oriented patterns. We do not claim that our approach

is better but we prefer to use the object-oriented approach over the Prolog

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 25

Techniques editing approach. Essentially, we choose to work with the object-

oriented patterns approach because it allows us to build the LCC roles in one

step, whereas Prolog Techniques editing (Grivas' patterns) solve the problem

(build LCC roles) by using an incremental approach in which missing parts of an

LCC clause can be filled in (refined by) with another pattern or LCC statements

(see [Grivas, 2005] chapter 4, page 22-29).

2.3 Verification Method based on SML and Coloured Petri Net

Automated protocol synthesis (pattern-based synthesis) is complex. It requires many

steps (e.g. profound knowledge of agent protocols, understanding of dialogue games

and LCC language) and large amounts of time to define a correct set of patterns and

adding new patterns risks introducing errors into the synthesiser. Therefore, this

thesis presents a verification method based on the Standard Functional Programming

language
8
 (SML) and Coloured Petri Net (CPNs), which is used to ensure that key

properties of the DID specification are preserved by the resulting LCC protocol.

Given the DID and the generated LCC interaction protocol, our verification tool can

answer the following question: Does the LCC specification satisfy the given DID

behavior properties? To answer this question, the tool performs the following tasks

(see chapter 6 for more detail):

(1) Given the generated LCC interaction protocol as an input, the automated

verification tool transforms the LCC protocol into an equivalent CPNXML file

using a set of transformational rules. The generated CPNXML file can then be

used to construct the state space. From the state space the automated verification

tool extracts the behavioral properties of the LCC protocol;

(2) Given the DID as an input, the automated verification tool extracts the DID

properties using SML specification transformational steps;

8
 SML[Milner et al., 1997] "SML is a general-purpose, modular, functional programming language

with compile-time type checking and type inference."

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 26

(3) The tool compares the DID properties and the behavioral properties of the LCC

protocol using CPN SML functions. A positive (negative) result indicates that a

specific property is satisfied (unsatisfied).

This section gives an introduction of CPNs model, explains a tool to specify and

simulate CPNs models called CPN Tool, and roughly summarizes some related work

which use SML and CPNs model to simulate, analyse the dynamic behavior and

verify the semantics of their system.

2.3.1 Coloured Petri Nets (CPNs)

CPNs [Jensen, 1992; Jensen et al., 2007; Kristensen et al., 1998] is a high-level

formal modelling language which can be used to model concurrent, distributed and

complex systems such as communication protocols [Suriadi et al.,2009; Floreani et

al.,1996]. An example of such systems are multi-agents interaction protocols.

A CPN model has a graphical representation as well as mathematical (formal)

definition [Jensen, 1992] which is defined in mathematical way what will happen and

when a specific event occurs in the model. The user does not need to know about the

formal definition of CPN. The formal definition is used by the CPN editor (such as

CPN Tool [Westergaard and Verbeek, 2002; Aalst and Stahl, 2011; Jensen et al.,

2007]) to check the syntax and the semantics of the CPN model, simulate, execute

the CPN and to do the formal verification methods [Balbo et al., 2000].

2.3.1.1 CPNs Model Elements

CPNs are Petri Nets
9
 (PNs) which have been extended with the notion of colors or

types. As a variant of PN, the CPN model consists of four elements [Jensen and

Kristensen, 2009; Eunice, 2005; Jensen et al., 2007] (as shown in Figure 2.2): data,

place, transition, and arc which describe the net structure of the CPN model. Places

9
 Petri Nets [Murata, 1989] is a mathematical, executable and graphical high level modelling language

that is used for the description and analysis of concurrent distributed systems.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 27

and transitions are called nodes. An arc is used to connect a place and a transition

and to specify the data flow (the pre- and post- condition relation between

transitions).

Data represents data types (colour sets), data objects (tokens) and variables. A colour

set [Jensen, 1992] can be a basic colour set (integer, string, real and Boolean) or a

product of colour sets or a combination of other colour sets (a declared colour set

from already declared colour sets). Colour sets are used to declare variables, other

colour sets, functions, operations, constants and a place's inscription. A token is

associated with a colour set and has data values (token colours) attached to it.

A place is a location (drawn as ellipse). It is used to hold data items (tokens). Tokens

must match the place type (colour set). A place is associated with a marking, which

indicates the number of stored tokens and the value (token colours) of these tokens.

The state of the CPN model, at a particular moment, is represented by the set of

markings of all the places.

A transition is an activity which represents an event and is drawn as a rectangle. It is

used to transform data between places. In practice, transition receives data from one

or more places, checks its guard condition, executes its associated code segment, and

sends the result to other places. A guard condition is a Boolean expression enclosed

in square brackets that appears above the transition rectangle. A code segment is a

computer program written in the CPN SML language (in the CPN Tool) or in the

other kinds of notations which has a well-defined syntax and semantic [Jensen,

1992].

An arc is used to connect a place and a transition. It has two directions: 1) an output

arc from a transition (input transition) to a place (output place); 2) an input arc from

a place (input place) to a transition (output transition). An arc is associated with

inscription (input inscription in an input arc or output inscription in an output arc)

which is used to describe how the state of the modelled system changes.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 28

Figure 2.2 CPNs Model Elements Example

In the CPN Tool, an arc inscription is an expression that consists of CPN SML

variables, constants and functions.

An example of a CPN modelled in the CPN tool is depicted in Figure 2.2. This

model has:

1) Three colour sets (see chapter 6, section 6.1.1 for more details):

i. Topic colour is string data type;

Place

input

Arc

Place

Type

(Colour

set)

Transition

Values

(Token

colours)

1`"The car is safe"

("claim",t,p, iDP, iDO) (t)

[FindInKB(kBP,t)]

 (iDP,cSP,kBP,r,"",p,cSO,iDO)

(iDP, cSP,kBP,

"replyToClaimReceiverP",

t,p, cSO, iDO)

Role

Role

claim1

Change
Role1

SendClaimP

Message

P Open

Topic

Single

token

Transition

guard

condition

output

Arc

Arc

inscription

1`("P",[], [("The car is safe","it has an aribag")]

, "SendClaimP","","", [],"O")

Marking

1`" "

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 29

ii. Message colour is a product type (comprising of locution, topic,

premise, sender identifier and receiver identifier) used to represent

message exchanges between agents;

iii. Role colour is used to represent the agent's profile (played role,

agent's identifier, agent's commitment store, agent's private

knowledge based, agent's role name, topic, premise, other agent's

commitment store and other agent's identifiers).

2) Two input places (Open and P) and two output places (claim1 and

ChangeRole1):

i. The names of the places are written inside the ellipses. The place's

name has no formal meaning. It has an important impact on the

readability of a CPN model.

ii. At the bottom right hand side of each place, the colour set is written.

The place Open has the colour set Topic. P and ChangeRole1 places

have the colour set Role. The place claim1 has the colour set

Message.

iii. At the upper right side of each place, the initial marking of the place

is written. For example, the inscription at the upper right side of the

place Open indicates that the initial marking of this place consists of

a single token with the token colour (value) "The car is safe". The

place claim1 has an initial marking which consists of a single token

with the token colour (value) " " (the empty text string) and indicates

that the initial marking of this place has no data.

3) One transition called SendClaimP:

i. The name of the transition is written inside the rectangle. The

transition's name as the name of the place has no formal meaning. It

has an important impact on the readability of a CPN model.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 30

ii. In the upper left side of the transition, the guard condition is written.

The transition SendClaimP has the guard condition FindInKB(KBP,t).

In the CPN Tool, this condition is written in the CPN SML

programming language.

iii. When a transition occurs (a transition is enabled or activated when its

input places are active and all the variables in the all surrounding

input arcs are bound to values), the guard condition can be checked. If

the condition is true, the transition removes tokens from its input

places (which are connected to the transition by the input arc) and it

adds tokens to its output places (which are connected to the transition

by the output arc). Note that the removed tokens are determined by

means of the arc inscription. For the example depicted in Figure 2.2,

an agent can send a claim (SendClaimP occurs) if an open place is

active (there is a token in Topic state) and an agent playing role

SendClaimP is active (there is a token in state P).

4) Two input arcs and two output arcs. Each arc has an inscription (variables,

constants and functions). If an inscription has variables, these variables (or

functions variables) are bound to values (when the connected transition occurs)

and the inscription can then be evaluated. The bounded values must have the

same type as the connected place colour set. For example, the input arc, which

connects the place Open to the transition SendClaimP, has (t) as its inscription.

This inscription (t) must be bound to a value of type Topic (string) because the

Open place has the colour set Topic. For this example, the arc inscription

evaluated to the "The car is safe" (the place token colour or value).

2.3.1.2 CPNs Hierarchical Structure

One of the key features of the CPN is its ability to construct large models in a

hierarchical manner [Jensen et al., 2007] by using subpages (submodules, subnets or

child CPN model) to build superpages (parent model, complex model). The pages

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 31

interact with each other and with the superpages through a set of substitution

transitions and a set of interfaces (fusion places).

A substitution transition is a transition (drawn as rectangular double lined boxes in

Figure 2.3) which is located in a superpage and refined by a subpage. A fusion place

is composed of one socket and one port. In practice, sockets and ports represent the

same places and store the same information, but the sockets are located in the

superpages whereas the ports are located in the subpages. There are three different

types of sockets/ports: (1) input sockets which are assigned to input ports and which

receive data from other CPNs models; (2) output sockets which are assigned to

output ports and send data to other CPNs models; (3) input/output sockets which are

assigned to input/output ports and receive/send data from/to other CPNs models.

Each related port and socket always has the same marking. Figure 2.3 illustrates the

hierarchical specification of CPNs supported by the CPN tool. Note that in the CPN

Tools (see section 2.3.1.3 for more information about the CPN Tool), below each

substitution transition there is a blue rectangular subpages tag which contains the

name of the subpages related to the substitution transition. In practice, the blue

rectangle means that the subpage has more detailed information (information about

the model behaviour) than the one represented in the superpage [Jensen et al., 2007].

The claim superpage in Figure 2.3 has two substitution transitions (SendClaimP and

ReceiveClaimO) and four sockets (Open, claim1, ChangeRole1 and

ChangeRole2).The SendClaimP subpage in Figure 2.3 has an input port Open, two

output ports claim1 and ChangeRole1 and an internal place P. The open port place of

the SendClaimP subpage is assigned to the open socket of claim superpage. The

claim1 port place of the SendClaimP subpage is assigned to the claim1 socket of

claim superpage. The ChangeRole1 port place of the SendClaimP subpage is

assigned to the ChangeRole1 socket of claim superpage. Note that in Figure 2.3, each

port in the SendClaimP subpage has the same name as the socket in the claim

superpage to which it is assigned, but this is not essential.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 32

Figure 2.3: A Hierarchical CPN

Output

port

Input

port

Output

port

1`"The car is safe"

(t)

[FindInKB(kBP,t)]

(iDP,cSP,kBP,r,"",p,cSO, iDO)

(iDP, cSP, kBP,

"replyToClaimReceiverP",

t,p, cSO, iDO)

out Role

Role

out

claim1

Change
Role1

StartClaimP

Message

P Open

In Topic

1`("P",[], [("The car is safe","it has

an aribag")] , "SendClaimP","","",

[], "O")

1`" "

Open

Change

Role1

Change

Role2

ReceiveClaimO claim1 SendClaimP

SendClaimP

ReceiveClaimO

sockets Role
Role

Message

Topic

substitution

transition

Claim

Superpage

SendClaimP

Subpage

("claim",t,p, iDP, iDO)

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 33

2.3.1.3 CPN Tool Components

The CPN Tool
10

 "is a tool for editing, simulating, and analyzing Colored Petri nets."

[Westergaard and Verbeek, 2002; Aalst and Stahl, 2011; Jensen et al., 2007].

The CPN Tool supports graphical representations which makes it easy for the user to

understand the structure of a CPN model and helps him/her to understand how the

individual subsystems interact with each other. It also allows the user to execute the

CPN model with data and analyse the model.

The CPN Tool uses the CPN SML language for declaration of variables, constants,

functions, arc inscription and transition's guard condition [Jensen and Kristensen,

2009; Ullman, 1998]. It is an extension of SML (see [Jensen, 1992] chapter 6 for

more information about the difference between the SML and the CPN SML

language) which can be used with the state-space technique
11

 to analyse the

behaviours of communication systems [Jensen et al., 2006].

The CPN tool is composed of three integrated tools which interact with a CPN

model:

(1) The CPN editor which is used to construct, edit and check the syntax of a CPN

diagram;

(2) The CPN simulator which is used to execute a CPN model;

(3) The CPN state space tool which is used to generate the state space of a CPN

model and to analyse the dynamic behaviour of a CPN model.

10
 http://cpntools.org/

11
 State-space technique: state-space technique [Jensen et al., 2006] is used to compute all reachable

states and state changes of the modeling system. See section 6.3 for more details.

http://cpntools.org/

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 34

Figure 2.4: CPN Tool

Figure 2.4 shows a screenshot of the CPN Tool. The area to the left is the index

which has the Tool box with various tools that are available for the user to constitute,

edit and simulate the CPN model. The remaining part of the screen is the CPN

workspace. For more information about the CPN Tool and the construction of the

CPN model see [Jensen et al., 2007; Kristensen et al., 1998].

CPNXML File

The CPN Tool generates for each CPN model a CPNXML file [Billington et al.,

2003], which is an extended markup language (XML) document [Goldfarb and

Prescod, 2003] that describes the modelling elements of the CPN model. The

structure of a CPNXML file is determined by the CPN Tool version [Eunice, 2005].

In this thesis, we used CPN Tools version 2.9.11.

In general, a CPNXML file is organised using pages, where each page represents one

CPN model. In the CPNXML file, there are two types of pages [Eunice, 2005]:

(1) Global declaration page: there is only one global declaration page in a CPN

model which is used to declare colour sets and variables;

CPN

Index
CPN

workspace

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 35

(2) Subpage: contains the information about place, transition and arc elements of a

CPN model. There is more than one subpage in a CPN model. Note that in this

thesis, the number of subpages is dependent on the number of LCC roles.

Figure 2.5(a) and Figure 2.5(b) show a simple CPN diagram with one input place,

one output place and one transition as well as the CPNXML description of the same

CPN diagram (note that to make CPNXML file easier to read the CPNXML

description in this chapter is slightly edited as compared to the CPNXML generated

by the CPN tool. We removed some CPNXML tags which are related to the

background colour, foreground colour and element position).

State Space Techniques

The state space method of the CPN tool allows to model check the correctness of

CPN models (concurrent systems) [Jensen et al., 2006]. It is used to verify

concurrent systems (in a mathematical way) by computing all reachable states and

state changes of this system. By constructing the state space, it is possible to

demonstrate that certain properties are satisfied or that certain undesired properties

are absent by using a set of CPN SML functions. An example of such properties is

the guarantee of terminating a specific service when reaching a given state and the

possibility of constantly reaching a given state [Kristensen et al., 1998].

A state space is a directed graph with reachable marking nodes and binding element

arcs. These arcs are used to connect two nodes together and demonstrate that the

occurrence of binding specific elements leads to the occurrence of the next node.

Figure 2.6 illustrates one example of a state space graph. This graph has:

(1) Ten nodes (with rounded boxes). Each of these nodes represents a reachable

marking. The marking (the token values of all places in the CPN model) of each

node is described in the rectangle box next to the node.

(2) Nine arcs. Each arc represents the occurrence of one or more binding elements

that leads to the occurrence of the next node and leads us from the marking of

the starting node to the marking of the termination node.

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 36

Figure 2.5 (a): CPNXML File Structure Example

<workspaceElements>

 <generator tool="CPN Tools" version="2.9.11" format="6"/>

 <cpnet>

<globbox>

 <color id="ID1424220943">

 <id>TOPIC</id> <string/>

 </color>

 <var id="ID1424221049">

 <type>

 <id>TOPIC</id>

 </type>

 <id> t </id>

 </var>

 </globbox>

 <page id="ID6">

<pageattr name="StartingPage"/>

 <place id="ID1424211163">

 <text>open</text>

 <type id="ID1424211164">

 <text tool="CPN Tools version="2.9.11">TOPIC</text>

 </type>

 <initmark id="ID1424211165">

 <text tool="CPN Tools"

 version="2.9.11">1`" The car is safe "</text>

 </initmark>

 <port id="ID1424205036" type="In">

 </port>

 </place>

Start

Open

Change

Role1

 Topic
Topic

In
out

1`"The car is safe"

(t) (t)

Global Declaration

page definition

CPN Tool Version

and encoding

colour set definition

variable definition

Subpage definition

place definition

place name

place colour set

place initial marking

Input port

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 37

Figure 2.5 (b): CPNXML File Structure Example

 <place id="ID1424211177">

 <text>R</text>

 <type id="ID1424211178">

 <text tool="CPN Tools" version="2.9.11">TOPIC</text>

 </type>

 <initmark id="ID1424211179">

 <text tool="CPN Tools" version="2.9.11"/>

 </initmark>

 <port id="ID1424205036" type="Out">

 </port>

 </place>

 <trans id="ID1424211151" explicit="false">

 <text>Start</text>

 <cond id="ID1424211152">

 <text tool="CPN Tools" version="2.9.11"/>

 </cond>

 </trans>

<arc id="ID1424211194" orientation="PtoT" order="1">

 <transend idref="ID1424211151"/>

 <placeend idref="ID1424211163"/>

 <annot id="ID1424211195">

 <text tool="CPN Tools" version="2.9.11"> t </text>

 </annot>

 </arc>

 <arc id="ID1424211211" orientation="TtoP" order="1">

 <transend idref="ID1424211151"/>

 <placeend idref="ID1424211177"/>

 <annot id="ID1424211212">

 <text tool="CPN Tools" version="2.9.11"> t </text>

 </annot>

 </arc>

 </page>

</cpnet>

</workspaceElements>

Transition definition

Input arc definition

(from place to

transition)

Output arc definition

(from transition to

place)

Transition ID

reference

Place ID

reference

Arc inscription

Transition name

Guard condition

Output port

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 38

Figure 2.6: State Space Graph

2.3.2 Comparing our Approach with Verification Approaches based on

SML and CPN Model

2.3.2.1 A Transformational Approach to CPN Model

Calderon [Eunice, 2005] developed a tool to transform UML–based systems [Bauer

et.al., 2001] to CPN models (Design/CPN XML
12

 file) [Jensen, 1992; Jensen et al.,

2007; Kristensen et al., 1998]. The tool was tested by running the Design/CPN tool
13

simulator for analysing the dynamic behavior of two large–scale UML systems:

(1) The stop and wait protocol system [Kristensen et. al., 1998]: This system has

two actors: a sender and a receiver. The sender actor sends data packets to the

receiver actor using a synchronous message communication protocol. Then, the

system allows the sender to send another message only when this actor has

12
 http://www.tcs.hut.fi/Software/maria/tools/cpn2maria/cpn2maria.html

13
 http://www.daimi.au.dk/designCPN/

State

Space

Graph

Marking of

node 1

Starting

node

Termination

node

Arc1

elements

http://www.tcs.hut.fi/Software/maria/tools/cpn2maria/cpn2maria.html
http://www.daimi.au.dk/designCPN/

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 39

received an acknowledgement message from the receiver which indicates that

the receiver received the previous message;

(2) The gas station system [Shin et. al., 2003; Shin et. al., 2005]: This is a system

that allows drivers to purchase petrol (gas) and to pay the bill by credit card,

debit card or Fast Pass card.

But the CPN models generated by the tool are not ready for analysis. The user needs

to perform some manual work to get an executable CPN model and to be able to

verify the correctness of the generated CPN.

This work demonstrates that the development of a software tool that is used to

automatically transform UML–based systems into a CPN models is possible.

The most notable differences between our verification tool and Calderon's [Eunice,

2005] tool are:

(1) Calderon's [Eunice, 2005] approach transforms data types of the UML-based

system model to the colour sets types of the CPN model automatically, while our

approach is not able to transform LCC parameters to the colour sets types of the

CPN model automatically because LCC is an untyped language (see chapter 6

for more information).

(2) In the Calderons' [Eunice , 2005] approach, the dynamic behavior of the system

is analysing by running the Design/CPN tool simulator, while in our approach,

the dynamic behaviour of the system is analysing by using state space

techniques and the CPN SML language.

2.3.2.2 A Verification Method based on SML

Suriadi et al. [Suriadi et al.,2009] used the CPN Tool to model one case study of the

Privacy Enhancing Protocols (PEPs) called the Private Information Escrow Bound to

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 40

Multiple Conditions Protocol (PIEMCP)
14

 manually. Then, this paper used the state

space techniques, CPN SML language and session-data files (these files are used by

SML function to verify if some security properties are achieved) to perform:

(1) Model validation of the PIEMCP: to check various properties of the generated

CPN model to ensure that the generated CPN model is a reliable representation

of the PIEMCP protocol specification model.

(2) Verification of the PIEMCP: this is a two stage verification.

a) The basic behaviour verification: to analyse the termination of session,

deadlock freedom, livelock freedom and absence of unexpected dead

transitions.

b) The Security behaviour verification: to check that the various security

properties of PIEMCP model are holding and to prove the correctness of the

security protocols.

The similarity between our verification approach and Suriadi et al. approach [Suriadi

et al.,2009] is that both use the state space techniques, CPN SML language and files

(the session-data file in Suriadi et al. approach and the DID properties file in our

work). However, the main difference between our verification approach and the

Suriadi et al. approach are:

(1) Suriadi's et al. [Suriadi et al.,2009] approach generates a CPN model from a

PIEMCP system model manually, while our approach generates a hierarchical

CPN model from an LCC protocol by using a set of transformational rules

automatically.

14
 Privacy enhancing protocols (PEPs): "are a family of protocols that allow secure exchange and

management of sensitive user information"[Suriadi et al.,2009].

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 41

(2) Suriadi's et al. [Suriadi et al.,2009] approach is used to check the behaviour

properties of PIEMCP system while our approach is used to check the semantics

of the DID specification used against the semantics of the synthesised LCC

protocol.

2.3.2.3 LCC Verification Approaches based on Model Checking

Osman's [Osman, 2007; Osman et al., 2006] approach describes a small sized and

dynamic local model checker for checking the deontic model (a list of agent

constraints) and trust model of MAS interactions. This model checker is a fully

automatic process, which helps agents at run-time to decide whether or not the given

interaction scenarios are trustworthy to join.

This model checker is implemented in XSB tabled Prolog [Sagonas et al., 1994]. It

gets as input:

(1) LCC and deontic constraints that model MAS scenarios.

(2) Desirable properties of the system expressed in model μ-calculus [Bradfield and

Stirling, 2006].

Then, the local model checker generates the state space, one step at a time,

automatically to verify whether or not MAS scenarios satisfy the desirable

properties.

While Osman's approach [Osman, 2007; Osman et al., 2006] is based on process

calculus model checking, our approach is based on CPN and SML language. We do

not claim that our approach is better but we prefer to use a CPN-based approach over

a process calculus approach because:

(1) CPN are reasonably simpler modeling techniques in comparison with process

calculus [Aalst, 2005];

(2) CPN-based tools are easier to use since they have a graphical interface as well as

a formal semantics;

Bridging the Specification Protocol Gap in Argumentation

Chapter 2 Background and Literature Review 42

(3) CPNs modelled with the CPN tool are integrated with SML, which can be used

to capture and analyse the behaviour of the CPN.

2.4 Summary

This chapter has described the background of the related topics to this thesis. It also

compared the thesis with relevant related work. The background review was

narrowed down to the concepts of agent protocol development language, design

patterns and verification methods. The motivations of this research as well as the

description of the basic concepts of argument, argumentation and dialogue games are

presented in chapter 3.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 43

Chapter 3

Argumentation, Dialogue Games and Multi-Agent Systems

Argumentation has for some time been an important area of research in natural

language processing, knowledge representation, and construction of automated

reasoning systems. It also has importance in Multi-Agent Systems (MAS), in

particular, to the design, implementation, and analysis of models of communication

between agents. In fact, argumentation-based communication not only allows agents

to exchange messages but also allows agents to support their messages by giving

reasons why those messages are appropriate. Commonly, argumentation-based

communication is based on systems of specification that use commitment and

dialogue games.

This chapter is an introduction to the basic concepts of argument, argumentation and

dialogue games. It begins by defining the meaning of an argument and argumentation

in Section 3.1. Section 3.2 provides a simple definition and examples of dialogue

games (argumentation-based dialogue). Section 3.3 explains the advantages of using

dialogue games for agent communication. The standard terminology of dialogue

games is given in Section 3.4. Section 3.5 describes six basic types of dialogue.

Section 3.6 stresses the importance of embedding more than one type of dialogue

game within another game. Finally, Section 3.7 summarises the Argument

Interchange Format work, which has been proposed to tackle the argumentation

sharing problem.

3.1 Argument and Argumentation

A simple definition of argument [Besnard and Hunter, 2008] is:

"An argument is a set of assumptions (i.e., information from which

conclusions can be drawn), together with a conclusion that can be

obtained by one or more reasoning steps (i.e., steps of deduction). The

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 44

assumptions used are called the support (or, equivalently, the premises) of

the argument, and its conclusion (singled out from many possible ones) is

called the claim (or, equivalently, the consequent or the conclusion) of the

argument. The support of an argument provides the reason (or,

equivalently, justification) for the claim of the argument."

Argumentation [Besnard and Hunter, 2008; Eemeren et al., 1987] is the act or

process of constructing arguments and counterarguments with the intention of

finding conclusions for a given problem. It normally involves handling conflicts.

Handling conflicts may involve comparing and evaluating arguments along with

looking for pros and cons for conclusions.

In particular, according to [Maudet et al., 2007] argumentation systems can be used

by:

(1) Logicians, computer scientists and autonomous agents for forming beliefs,

desires, intentions and obligations along with making decisions in the face of

uncertainty and non-standard, incomplete and conflicting information. This is for

the reason that argumentation offers formal systems that can be used for

resolving conflicts between different arguers by constructing and comparing

arguments for and against certain conclusions and finding consistent, well-

supported conclusions;

(2) Artificial intelligence (AI) and MAS designers for designing, modelling,

implementing and analysing multi-agent communication. This is for the reason

that argumentation offers structure and reasons for the exchange of information

related to an argumentation topic.

This thesis focuses on the use of argumentation in multi-agent communication.

3.2 Dialogue Games (Argumentation-Based Dialogues)

Dialogue games (argumentation-based dialogues) are a dynamic form of

argumentation which capture the intermediate stages of argument exchanges or the

process of building up the set of arguments between two or more participants until

the participants, as a group, reach a conclusion. Normally, dialogue games involve:

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 45

(1) a proponent (one or more participants) which is intended as the speaker(s) of the

argument,

(2) an audience (one or more participants) which is intended as the receiver(s) of the

argument.

According to Walton [Walton, 1990] dialogue games are defined as follows:

"Argument is a social and verbal means of trying to resolve, or at least to contend

with, a conflict or difference that has arisen or exists between two (or more) parties.

An argument necessarily involves a claim that is advanced by at least one of the

parties. In an asymmetrical case, one party puts forward a claim, and the other party

questions it. In a symmetrical case, each party has a claim that clashes with the other

party's claim. The claim is very often an opinion, or claim that a view is right, but it

need not be. In a negotiation argument, the claim could be to goods or to financial

assets."

The following four cases are examples of dialogue games that we will use throughout

this thesis:

(1) Simple car safety case (adapted from [Prakken, 2006]):

P: My car is safe. (Making a claim)

O: Why is your car safe? (Asking grounds for a claim)

P: Since it has an airbag. (Arguing: offering grounds for a claim)

O: OK, your car is safe. (Conceding)

In this case, there are two parties: P and O. P claims that his car is safe and O claims

that P's car is not safe. At the end, P succeeds in persuading O that his car is safe by

offering grounds for his claim.

(2) Complex car safety case ([Prakken, 2006]):

P: My car is safe. (Making a claim)

O: Why is your car safe? (Asking grounds for a claim)

P: Since it has an airbag. (Arguing: offering grounds for a claim)

O: Your car is not safe since the newspapers recently reported on airbags

expanding without cause. (Stating a counterargument)

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 46

P: Newspaper reports are very unreliable sources of technological information.

(Counterattack)

O: Still your car is not safe, since its maximum speed is very high. (Alternative

counterargument)

P: OK, I was wrong about my car being safe.

In this case, there are two parties: P and O. P claims that his car is safe and O claims

that P's car is not safe. At first, P tries to persuade O that his car is safe by offering

grounds for his claim but O puts forward a counterargument. Then, P puts forward a

strong counterattack on O's counterargument. After that, O provides his second

argument as to why P’s car is not safe and succeeds in persuading P that P's car is

not safe

(3)The picture hanging case (adapted from [Parsons et al., 1998; Maudet et al.,

2007]):

A: Can you please give me a nail? (Making a request)

B: Why do you need a nail? (Challenging)

A: Because I want to hang a picture up and to do this I need a nail. (Justifying a

request)

B: But you can use a screw and a screw driver to hang the picture up! And if you

ask me I can provide you with these in exchange for a hammer. (Providing an

alternative plan)

A: Really, I guess in that case, I do not need the hammer. Here you go.

(Acceptting the request)

In this case, there are two parties: A and B. A wants to hang a picture up and B wants

to hang a mirror up. A has a hammer. However, to hang the picture up A needs a

nail in addition to the hammer. In contrast, B has a nail and needs a hammer in

addition to the nail in order to hang the mirror up.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 47

A knows that B has a nail, screw, screw-driver and, in order to hang the picture up, A

needs to get the nail from B. B knows that A has a hammer and, in order to hang the

mirror up, B needs to get the hammer from A. At first, A asks B to give him the nail

but since B needs the nail to hang the mirror up, B challenges A by asking A for

grounds for his request. Then, B provides an alternative plan for A that allows both A

and B to achieve their goals and succeeds in persuading A to give away the hammer.

(4) The flying abilities of birds and penguins case:

A1: Tweety flies. (Making a claim)

A2: Why does Tweety fly? (Asking for grounds for a claim)

A1: Tweety is a bird , birds generally fly. (Arguing: offering grounds for a

claim)

A2: Tweety does not fly because Tweety is a penguin, penguins do not fly.

(Starting a counterargument)

A1: You are right. Tweety does not fly. (Conceding an argument).

In this case, there are two parties: A1 and A2 reasoning about whether a particular

penguin Tweety can fly. A1 claims that Tweety can fly and A2 claims that Tweety

cannot fly. A1 tries to persuade A2 that Tweety can fly by offering grounds for his

claim but A2 puts forward a counterargument which persuades A1 that Tweety

cannot fly.

3.3 Argumentation for Agent Communication

An agent, according to Jennings et al. [Jennings et al.,1998] "is a computer system,

situated in some environment, that is capable of flexible autonomous action in order

to meet its design objectives".

Despite the fact that the agent is autonomous, in a MAS, each individual agent needs

to consider its dependence on other agent(s), their role(s) in their environment, their

commitments to other agent(s), and environment rules which control their behaviour.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 48

Agents need to communicate, cooperate, coordinate and negotiate with each other in

order to achieve their individual or cooperative goals, resolve and manage conflicts

or disagreements and differences of opinions, work together to resolve problems or

to prove that specific information is either true or false, and inform each other of

important facts. For example, for an agent to perform a new activity or to cancel or

modify an existing activity, it needs to persuade other agents to act in the way

required. To succeed in this, agents must be able to speak the same language with

each other and must be able to construct a sequence of arguments for and against a

particular claim and exchange these arguments with other agents [Norman et

al.,2004].

This is exactly the type of communication which correlates with the interests of

argumentation-based dialogue theory. In fact, communication with argumentation

allows an agent to request a change to the arguments, to justify their attitude, and to

provide reasons for their claims [Maudet et al., 2007]. As a result of this fact, there

has been an increased interest in argumentation-based dialogue (dialogue games) as

an alternative model of agent communication - for example, by Sycara [1989]; Reed

[1998]; and Parsons et al. [2003].

3.4 Dialogues Games Terminology

We can view dialogue as a game which involves interactions between two or more

participants. Each participant is considered as a player who tries to achieve its main

goal (group goals) by making some finite set of moves. As in any game, players must

speak a common communication language and abide by combination rules (e.g. rules

which stipulate when a player(s) is allowed to make particular moves at a specific

time in the game) [Parsons and McBurney, 2003; Maudet et al., 2007; Walton and

Krabbe, 1995; Norman et al.,2004].

The standard terminology considered for the specification of protocols in dialogue

games includes [Hamblin, 1970; Walton and Krabbe, 1995; Prakken, 2000;

Mcburney et. al., 2003; Prakken, 2006]:

(1) Locutions rules: represent the set of permitted moves;

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 49

(2) One Commitment Store (CS) for each participant: the CSs of the participants

reflects the state of the dialogue;

(3) Commitment rules (effective rules): define the propositional commitments made

by each participant with each move during the dialogue;

(4) Pre-condition: rules define the conditions under which the move will be

achieved;

(5) Structural rules (reply rules or dialogue rules): define legal moves in terms of the

available moves that a participant can select to follow on from the previous

move;

(6) Turn Taking (next player): specifies the next player [Prakken, 2006];

(7) Starting rules (commencement rules) [Mcburney et. al., 2003]: define the

conditions beginning the dialogue;

(8) Termination rules [Mcburney et. al., 2003; Prakken, 2006]: define the conditions

ending the dialogue.

Dialogues Games Example

There are many examples [Prakken, 2000; Prakken, 2005; McBurney and Parsons,

2002; Walton and Krabbe, 1995] in literature for a formal model of dialogue games.

These examples include an abstract form (model) of dialogue games between two

agents. The primary difference between these examples is the set of locutions.

One of these examples is a persuasion dialogue (adapted from [Prakken, 2000;

Prakken, 2005]), where a dialogue is presented as a game in which one participant

(proponent 'P') attempts to persuade another participant (opponent 'O') to change

their point of view about a particular topic 'T'. We will describe this dialogue by

using the standard terminology of dialogue games introduced above:

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 50

(1) Locutions:

Locutions (speech acts) Meaning of Locution

claim(T) Making a claim

why(T) Asking grounds for a claim

concede(T) Conceding (accepting) a claim

argue(Pre, T) Offering grounds for a claim

retract (T) Retracting (withdrawing) a claim

(2) Commitment Store: There is one CS for each participant: {CSP , CSO}

(3) Commitment rules:

Locutions Commitment rules Meaning of Commitment rules

claim(T) CS υ {T} The effect of a 'claim' move is always to add topic 'T'

to the mover's commitments 'CS'

why(T) CS The mover's commitments remain unchanged

concede (T) CS υ {T} The effect of a 'concede' move is always to add topic

'T' to the mover's commitments 'CS'

argue(Pre,

T)

CS υ {T} υ {Pre} The effect of an 'argue' move is always to add topic 'T'

and premise 'Pre' to the mover's commitments 'CS'

retract (T) CS - {T} The effect of a 'retract' move is always to remove topic

'T' from the mover's commitments 'CS'

(4) Pre-conditions

Locutions Pre-conditions

claim(T) There are no special pre-conditions to starting a persuasion dialogue (for the

utterance of 'claim' locution).

why(T) In order for the speaker to ask grounds for a claim 'T', he must not be able to

find 'T' in his 'KB' or 'CS' (he must not have committed to it).

concede(T) In order for the speaker to concede a claim 'T', he must not have committed

to it. He also must not have committed to the opposite of the claim '~T'.

argue(Pre, T) In order for the speaker to offer grounds for a claim 'T', he must be able to

find promise 'Pre' in his 'KB' or 'CS' to support a claim 'T'.

retract(T) In order for the speaker to retract a claim, he must have committed to it. He

also must not be able to find a promise 'Pre' to support a claim 'T'.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 51

(5) Structural rules:

Locutions Structural rules Meaning of Structural rules

claim(T) why(T) or

concede(T)}

After a 'claim' move, the Next player can select

either 'why' or 'concede' locutions

why(T) argue(Pre,T) or

retract(T)

After a 'why' move, the Next player can select

either 'argue ' or 'retract' locutions

concede (T) No reply After a 'concede ' move, the Next player cannot

make a move.

argue(Pre, T) why(Pre),

argue(Def,T') or

concede(T)

After an 'argue' move, the Next player can select

'why', 'argue' or 'concede' locutions

retract (T) No reply After a 'retract' move, the Next player cannot make

a move

(6) Turn Taking: The turn-taking between participants switches after each move.

(7) Starting rules: dialogue is allowed to begin with claim locution.

(8) Termination rules: dialogue is allowed to end when agents send either concede

or retract locutions.

3.5 Types of Dialogues

Walton and Krabbe [Walton and Krabbe, 1995] identify six different general types of

dialogue in AI and MAS: persuasion, inquiry, information-seeking, negotiation,

deliberation and eristic. These dialogue types are classified based on:

(1) Their pre-conditions of the dialogue;

(2) Their Participant's goals for the dialogue;

(3) The primary goal of the dialogue.

The definitions and properties [Walton and Krabbe, 1995] of these dialogue types are

summarized in Table 3.1.

Persuasion [Prakken, 2000; Prakken, 2005] dialogue arises from an initial clash or

conflict of opinion. Its primary goal is to resolve the initial clash or conflict. It

usually takes the form of a sequence of questions (from the opponent) and the replies

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 52

Type of

Dialogue
General Definition

Pre-

conditions

Participant's

Goal

Primary

Goal of the

Dialogue

P
er

su
as

io
n

 One participant (proponent) attempts

to persuade another participant

(opponent) to change their point of

view about a particular topic.

[Prakken, 2000; Prakken, 2005].

Clash or

Conflict of

opinions

Persuade other

participant

Resolve the

initial

conflict,

reach a stale

agreement

or clarity

issue

In
q

u
ir

y
 "The participants collaborate to

answer some question or questions

whose answers are not known to any

one participant" [Parsons et al., 2003]

Need to prove

hypothesis to

answer some

questions

Find and

verify

evidence

Prove or

disprove

hypothesis

N
eg

o
ti

at
io

n

"The participants bargain over the

division of some scarce resource in a

way acceptable to all, with each

individual party aiming to maximize

his or her share"[Parsons et al.,

2003]. The goal of the dialogue may

be in conflict with the individual

goals of each of the

participants[Parsons et al., 2003]

Conflict of

interests

Get what you

most want

Find a

reasonable

settlement

or an

attractive

deal to all

participant

In
fo

rm
at

io
n

 s
ee

k
in

g

One participant is seeking some

information from another participant,

who is believed by the first

participant to know this information.

[Parsons et al., 2003]

One

participant

lacks and

needs

information

and other

participant has

this

information

Obtain or give

information

Exchange

information

D
el

ib
er

at
io

n

"Participants collaborate to decide

what course of action to take in some

situation. Participants share a

responsibility to decide the course of

action, and either share a common set

of intentions or a willingness to

discuss rationally whether they have

shared intentions"[Parsons et al.,

2003]

Practical

problem that

needs action

(decision to

act)

Co-ordinate

goals or

actions

Decide best

course of

action

E
ri

st
ic

 "Participants quarrel verbally as a

substitute for physical fighting, with

each aiming to win the exchange"

[Parsons et al., 2003]

Personal

conflict

Participants

are trying to

win and

verbally hit

out opponents

Reveal

deeper basis

of conflict

Table 3.1: Dialogue Types

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 53

Figure 3.1: Persuasion Dialogue Example (Car Safety Case)

'P'

" My car is safe "

'P'

"Since it has an airbag"

'O'

" OK, your car is safe "

'O'

" Why is your car safe? "

Persuasion
dialogue stage

Opening stage

Pre-condition

Clash or Conflict of opinions

Participant one 'P'

"My car is safe"

Participant two 'O'

"Your car is not safe"

Participant 'P' resolves the initial conflict

Ending stage

Primary Goal of

the Dialogue

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 54

(from the proponent) or attacks (from the opponent) and defence of its position (from

the proponent) [Walton and Krabbe, 1995]. An example of a persuasion dialogue is

illustrated in Figure 3.1.

Inquiry [Black and Hunter, 2007; Black and Hunter, 2009] dialogue is similar to the

persuasion dialogue since it aims at a stable agreement. However, it differs from a

persuasion dialogue since it does not arise from a conflict but from a problem

(something that is not proved to be true or false). To successfully end an inquiry

dialogue, each participant must reach the same conclusion [Walton and Krabbe,

1995].

Negotiation [Parsons et. al., 1998; Sadri et. al., 2001; Luo et. al., 2001] dialogue is

similar to the persuasion dialogue since it arises from a conflict. However, it differs

from a persuasion dialogue since its goal is to make a deal that is attractive to all

participants [Walton and Krabbe, 1995].

Information seeking [Doutre et. al.,2005; Walton, 1998] dialogue differs from the

negotiation and persuasion dialogues since it does not arise from a conflict but arises

from a situation where one participant lacks information and the other participant has

this information. It also differs from an inquiry and a deliberation dialogue since

these two arise from a lack of information, whereas, in an information-seeking

dialogue, the information is already present and the problem is to find a way to

obtain this information from the other participant (who has this information) [Walton

and Krabbe, 1995].

Deliberation [Tang and Parsons, 2006; McBurney et.al., 2007] dialogue is similar to

an inquiry dialogue but differs from a persuasion dialogue since it does not arise

from a conflict but from an open problem. However, it differs from the inquiry

dialogue since it has to proceed with some action. In practice, deliberation dialogue

is considered as a practical type of dialogue since its goal is to perform an action (to

decide how to act to solve a practical problem) which enables the practical

interaction of life and human business to go ahead [Walton and Krabbe, 1995].

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 55

Figure 3.2: Determining the Type of Dialogue

Eristic [Walton, 1998] dialogue is similar to the persuasion and negotiation dialogues

since it arises from conflict. However, in this dialogue each participant is trying to

win and their main goal is to hit out at other participants (opponents). In this thesis,

we will not consider the eristic type of dialogue since it is not expected to be useful

in agent interactions. Rather, it involves venting grievances or serving primarily as a

dialogue substitute for physical confrontation [Walton and Krabbe, 1995, page 76] .

Figure 3.2 (adapted from [Walton and Krabbe, 1995]) summarises the differences

between these types of dialogue.

Is there a conflict

Is the information

already present?

Is stable agreement

the main goal?

Is reasonable settlement

the main goal?

Is the main goal to

gain an agreement on

an action deal?

Persuasion

Negotiation Eristic Deliberation Inquiry

Information

seeking

No

Yes

Yes

No

No

Yes

No

Yes

No

Yes

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 56

3.6 Embedded Dialogues

Typically, agent interaction involves several dialogue types. Walton and Krabbe

[Walton and Krabbe, 1995] stress the importance of embedding more than one type

of dialogue game within another game, which allows complex interaction to occur

(e.g. [Black and Anthony, 2007; Sadri et.al., 2001; Reed, 1998; McBurney and

Parsons, 2002; Dimopoulos et.al., 2005]). There are two types of embedded

dialogues:

3.6.1 First Type: Shift from One Type to Another Type

Embedded dialogues are different dialogues types, which occur during a specific

type of dialogue between agents causing the dialogue to shift to another type. Some

examples of different situations in which we may find embedded dialogue are:

(1) One of the participants in an inquiry dialogue reaches a conclusion before the

other participants, then it needs to persuade her fellow participants to reach the

same conclusion since, to successfully end an inquiry dialogue, each participant

must reach the same conclusion. Therefore, persuasion dialogue could be

embedded as sub-dialogue in any given inquiry dialogue.

(2) A persuasion dialogue may reach a point where the participants need to settle a

fact before the discussion can continue, which means that the participants need to

move to an inquiry dialogue to settle the fact. Therefore, inquiry dialogue could

be embedded as sub-dialogue in any given persuasion dialogue.

(3) A negotiation dialogue may well move through persuasion or information

seeking dialogue in order to reach a decision.

3.6.2 Second Type: Internal Embedded

Embedding one type of the dialogue to the same type of the dialogue (change in the

subject of dialogue) called internal embedded (shifts) [Walton and Krabbe, 1995].

One example of the internal embedded is that an inquiry dialogue may reach a point

where the participants need to settle a sub-fact before settling the main fact [Black

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 57

and Anthony, 2007]. Therefore, inquiry dialogues could be embedded as

subdialogues in another inquiry dialogue.

3.7 Argumentation Sharing Problem and Argument

Interchange Format

Today, argumentation [Maudet et al., 2007; Rahwan, 2006] is gaining more

prominence since it is being used as part of the high-level specification of MAS.

However, a wide ranging approach of this kind carries with it various challenges

such as the lack of shared and agreed notations for an interchange format concerning

arguments and argumentation. To tackle this challenge, the argumentation

community has developed the Argument Interchange Format (AIF) [Chesnevar et

al.,2007;Willmott et al., 2006], which provides a common language to exchange

argumentation concepts among agents in a MAS.

3.7.1 AIF Definition

AIF [Chesnevar et al.,2007; Willmott et al., 2006] is the result of an international

effort which proposed a format for representation and communication of argument

resources between agents, research groups, argumentation tools, and specific

domains. It provides an ontology that can easily be extended to deal with different

types of argumentation formalisms and schemes. It is used to represent argument

entities and the relations between these entities.

3.7.2 AIF Elements

The AIF [Chesnevar et al.,2007; Willmott et al., 2006] provides an ontology which

represents an argument as a network of linked nodes. This network consists of two

types of nodes: Information nodes (I-nodes) that contain specific data (such as

claims, proposition and premises) depending on the domain of discourse, and Scheme

Application nodes (S-nodes) that describe the domain independent patterns of

reasoning.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 58

Figure 3.3: Specification in AIF of the Arguments Exchanged by Agents

Discussing the Flying Abilities of the "P" Bird

S-nodes come in three different types; include the Rule of Inference Application

nodes (RA-nodes) that define the support or inference of argument, Preference

Application nodes (PA-nodes) that represent the value judgements or preference

orderings of argument, and Conflict Application nodes (CA-nodes) that specify the

conflict of argument.

There are various restrictions on how nodes are connected. For example, I-nodes

cannot be connected to other I-nodes directly; they must be connected across S-

nodes. On the other hand, S-nodes can be connected to other S-nodes directly.

Basically, two types of edges can be added to connect any two nodes: scheme edges

that support conclusions that start from S-nodes and end either in I-nodes or S-nodes,

and data edges that supply data and start from I-nodes and end in S-nodes. See

[Chesnevar et al.,2007] for more details.

3.7.3 AIF Example

An example of AIF is shown in Figure 3.3 [Willmott et al., 2006; Modgil and

McGinnis, 2007]. This concerns a multi-agent persuasion dialogue where N (N ≥ 2

and unbounded) agents are involved in a discussion about the flying abilities of a

bird called "P" (Note that I-nodes are shown as rectangles, RA-nodes as ellipses and

PA-nodes as hexagon):

RA2 RA1

PA

I2

I5 I6

I1

I3 I4

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 59

(1) There are two arguments: one for ~flies(P) (I1-node) and one for flies(P) (I2-

node);

(2) The argument for ~flies(P) is composed of one Rule of Inference Application

node (RA1-node that defines the support or inference of argument), namely

Modus Ponens and two child nodes (premises);

(3) The argument for flies(P) is composed of one RA2-node, namely defeasible

Modus Ponens and two child nodes (premises);

(4) AIF assumes that there is a way of ordering the support for premises. In this

particular example, the choice was the justification through the probability. The

argument for ~flies(P) has a higher degree of support because the premises (I3-

node and I4-node) support it with a higher degree of probability (1 degree).

Conversely, the argument for flies(P) is weak because the premises (I5-node and

I6-node) support it with only 0.8 degree (a low probability). So, ~flies(P) is

preferred to the argument for flies(P). That is why the intermediate Preference

Application node (PA-node that defines the value judgments or preference

orderings of argument), namely Logical attack, links ~flies(P) (I1-node) to

flies(P)(I2-node).

This example demonstrates that a persuasion dialogue can be specified abstractly by

using arguments expressed in AIF. It describes the argument entities and relations

between argument entities but it does not describe the items related to the

interchange of arguments between agents (e.g. locutions and pre- and post-conditions

for each argument). It also does not directly influence the specification of agent

communication languages and interaction protocol standards.

3.7.4 AIF Implementation Problem

AIF enables users to structure arguments using diagrammatic linkage of natural

language sentences. However, AIF does not model dialogue games (because it does

not show the interchange of arguments between agents). Besides, it is not an

executable specification language. It specifies the properties that define an argument

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 60

without prescribing how that argument may be made operational. In fact, AIF is used

to represent data (argumentation structure) not to process data (it does not represent

or generate a dialogue games protocol). In other words, it lacks the ability to

implement complex systems of arguments from high-level specifications.

Papers by [Chesnevar et al.,2007; Willmott et al., 2006] suggest a way to solve the

AIF problem by identifying two elements: (1) Locutions, which are particular words,

phrases or forms of expressions which are used by agents, (2) Interaction Protocols,

which define communication between agents via a set of rules governing how two or

more agents should interact in order to reach a specific goal. These papers also give

the advantages of defining the interaction protocol language as part of AIF: (1) If we

can find an interaction protocol language that can be used practically for computation

then it will be easier to develop an associated computer program which is durable;

(2) To support formal analysis and verification, we need to use a declarative

language; (3) To facilitate human readability, we need to use a high-level language.

These papers also suggest the use of patterns in the design of protocols. These papers

only provide some suggestions for solving the AIF deployment problem and

demonstrate that it is difficult to solve it.

3.7.5 AIF Extension

AIF Extension by Modgil and McGinnis

Modgil and McGinnis [Modgil and McGinnis, 2007] tried to solve the AIF dialogue

problem by extending the AIF to represent argumentation-based dialogues. The

extensions are based on two types of nodes: Information nodes (I-nodes) whose

content expands to represent locution, and Protocol Interaction Application nodes

(PIA) that are created to represent interaction protocols and used to link I-nodes.

An example of this work is illustrated in Figure 3.4 (see persuasion dialogue game

example in section 3.4):

(1) A1 opens the discussion by sending claim(Tweety flies) in I1-node.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 61

Figure 3.4: A Dialogue Graph Represented in the AIF

I1: claim("Tweety flies")

PIA 1:

-why(T)

-concede(T)

I2: why("Why does Tweety fly?")

I3: argue("Tweety is a bird, birds generally fly", "Tweety flies")

)

PIA 2:

- argue(Pre,T)

(con(Pre) = T)

- retract(T)

A1

A2

A1

I4: argue("Tweety does not fly because Tweety is a penguin, penguins do not fly",

"Tweety flies")

)

 PIA 3:

- why(Pre)

- argue(Def,T')

(conc(Def) = ~T)

- concede(Pre)

(conc(Pre)= T)

A2

I5: concede(You are right. Tweety does not fly)

)

A1

 PIA 4:

- why(Def)

- argue(Def2,T')

(conc(Def2) = T)

- concede(Def)

(conc(Def)= ~T)

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 62

(2) PIA1-node specifies that A2 can reply with why(T) or concede(T).

(3) A2 sends why(Why does Tweety fly?) in I2-node.

(4) PIA2-node specifies the legal replies argue(Pre,T) where Pre’s conclusion is

T, or retract(T).

(5) A1 responds to the challenge by declaring the supporting premises "Tweety is

a bird, birds generally fly" for "Tweety flies" [sends argue("Tweety is a bird,

birds generally fly","Tweety flies") in I3-node].

(6) PIA3-node specifies the legal replies why(Pre), argue(Def,T') where Def’s

conclusion is ~T, or concede(Pre) where Pre's conclusion is T.

(7) A2 puts forward a strong counterargument "Tweety does not fly because

Tweety is a penguin, penguins do not fly " [sends argue("Tweety does not fly

because Tweety is a penguin, penguins do not fly","Tweety flies") in I4-node].

(8) PIA4-node specifies the legal replies why(Def), argue(Def2,T') where Def2’s

conclusion is T, or concede(Def) where Def's conclusion is ~T.

(9) A1 concede to the A2's argument that "Tweety does not fly" [sends

concede("You are right. Tweety does not fly") in I5-node].

Modgil and McGinnis [Modgil and McGinnis, 2007] also represent agents

interaction protocols by using a Lightweight Coordination Calculus language (LCC)

[Robertson, 2004; Hassan et. al., 2005] (see chapter 2 for more details). To explain

the use of LCC, Modgil and McGinnis use as an example of argumentation-based

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 63

medical dialogue where arguments are specified and evaluated in the ASPIC
15

(Argumentation Services Platform with Integrated Components) engine. The result

of this Modgil and McGinnis work supports the idea that protocol rules could be

represented as a part of the dialogue. However, this work was limited in three

important ways. Firstly, it only shows how to implement a particular sort of

argumentation in LCC. Secondly, it is limited to dialogues between only two agents.

Finally, it does not explain how to synthesise protocols (semi-)automatically for any

given argumentation.

AIF Extenuation by Reed et al.

Reed et at. [Reed et al., 2008] extended AIF to AIF
+16

 so that it could handle

argumentation dialogue games as well as represent the relation between the locution

and its propositional content. The extensions are based on three nodes:

(1) Locution nodes (L-nodes) a subclass of I-nodes which are created to represent

dialogue history (utterances of locutions);

(2) Transition Application nodes (TA-nodes) a subclass of RA-nodes which are used

to link two L-nodes and capture the flow of a dialogue (the sequence of

connected locutions)

(3) Illocutionary Application (YA-nodes). To handle natural arguments (to represent

the relation between the locution and its propositional content), [Reed et al.,

2010] extend AIF
+
 to represent the interaction between locutions uttered as part

of an argumentation-based dialogue (AIF
+
 nodes) and the argument structures

15
 ASPIC [Fox et.al, 2006] provides a general formal model for argumentation functions for

individual agents and argumentation between agents in medical multi-agent systems. It enables agents

to resolve conflicts of opinion in order to diagnose medical cases and find treatments.

16
 AIF+ [Reed et al., 2008 ; Reed et al., 2010]: the development of AIF+ still ongoing. See

http://www.arg.dundee.ac.uk/?page_id=197

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 64

(AIF nodes) by creating a new node type called Illocutionary Application (YA-

nodes). YA-nodes links I-nodes with L-nodes, and RA-nodes with TA-nodes.

An example of this work is illustrated in Figure 3.5 (Some detail is omitted from

Figure 3.5 for clarity. Please see chapter 8, section 8.1.2 for more information):

(1) In this dialogue between A1 and A2, the dialogue game consists of seven L-

nodes which are represented by L1, L2, L3, L4, L5, L6 and L7 nodes.

(2) The argument consists of six propositions which are represented by I1, I2, I3, I4,

I5 and I6 nodes.

(3) The L1, L3, L4, L5, L6 and L7 have illocutionary nodes connecting them with

propositional contents I2, I5, I3, I4 and I1, respectively.

(4) Locution nodes L1 and L2 have a transition node TA1 connecting them.

(5) Locution nodes L2, L3 and L4 have a transition node TA2 connecting them.

(6) Locution nodes L3, L4, L5 and L6 have a transition node TA3 connecting them.

(7) Locution nodes L5, L6 and L7 have a transition node TA4 connecting them.

(8) The interaction between the argument and the dialogue game is described by

means of the YA-nodes:

 The links between L1, L3 and L4 with I2, I5, I6 are represented by

YA1,YA4 and YA5, respectively.

 The illocutionary node YA2 links L2 and its propositional content I2.

 The illocutionary node YA3 links TA2 and RA2.

 The links between L5, L6 and L7 with I1, I3, I4 are represented by

YA5, YA6 and YA7, respectively.

 The illocutionary node YA4 links TA3 and RA1.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 65

Figure 3.5 : Illustration of the Link between Argument (AIF Nodes) and

Dialogue Games (AIF+ Nodes)

Argument Dialogue Games

I2= flies(p) 0.8

I5= bird(P)

I6= bird(p) 0.8 flies(p)

L1= Tweety flies

L2= Why does Tweety fly?

L4-= birds generally fly

L3= Tweety is a bird

YA1

YA2

YA4

YA5

YA3 TA2 (argue)

RA2

TA1 (why)

L6-=penguins do not fly

L5= Tweety is a penguin YA5

YA6

YA4 TA3 (argue)

I1= ~flies(p)

I3= penguin(P)

I4= penguin(p) ~flies(p)

RA1

PA

 TA4 (concede)

L7= Tweety does not fly

YA7

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 66

In this example:

(1) A1 opens the discussion by sending claim(Tweety flies) in L1-node.

(2) A2 sends why(Why does Tweety fly?) in L2-node.

(3) A1 responds to the challenge by sending argue("Tweety is a bird, birds generally

fly","Tweety flies") in L3-node and L4-nodes.

(4) A2 puts forward a strong counterargument by sending argue("Tweety does not fly

because Tweety is a penguin, penguins do not fly","Tweety flies") in L5-node and

L6-nodes.

(5) A1 concede to the A2's argument by sending concede("You are right. Tweety

does not fly") in L7-node.

Like Modgil and McGinnis [Modgil and McGinnis, 2007], the results of AIF
+

support the idea that protocol rules could be represented as a part of the dialogue.

However, similarly to AIF, AIF
+
 is used to represent data (describe the dialogue

games' structure), not to process data (it does not generate dialogue games). It also

does not explain how to synthesise protocols (semi-)automatically for any given

argumentation.

In conclusion, both Modgil and McGinnis [Modgil and McGinnis, 2007] and Reed et

al. [Reed et al., 2010; Reed et al., 2008] attempted to solve the dialogue problem of

AIF, but they did not try to solve the implementation problem.

In chapters 4 and 5 we will propose a new method to solve AIF dialogical and

implementation problems. We will accomplish this by extending the AIF. Our

extension will consist in adding more information to the AIF to represent interaction

protocol information, as well as some implementation information, to allow the user

to synthesise the multi-agent interaction protocol from it.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 67

3.8 Summary

This chapter has presented some concepts of arguments and argumentation,

summarising the advantages of using argumentation for agent communication, as

well as the problems of argumentation.

In practice, the argumentation community faces various problems, such as the lack of

a shared interchange format for arguments along with the lack of ability to

implement complex systems of arguments from high-level specifications. The first

problem is addressed by the AIF, which provides a common language to exchange

argumentation concepts among agents in a MAS. However, AIF does not solve the

implementation problem. The AIF language is abstract and solely concerned with the

structure of argument, while implemented multi-agent systems are concrete and need

social constraints via protocols. This means that there is a gap between argument

specification languages and multi-agent systems implementation languages which we

bridge in chapters 4 and 5.

Bridging the Specification Protocol Gap in Argumentation

Chapter 3: Argumentation, Dialogue games and Multi-Agent Systems 68

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 69

Chapter 4

Dialogue Game Argument Specification Language

Although, significant progress has been made in the argumentation community for

modelling agent communication in an abstract way (using argument specification

languages), there remain major barriers to make argumentation systems practical and

to implement (deploy) argumentation systems. This means that there is a gap

between argument specification languages and multi-agent deployment languages.

This thesis will attempt to close the gap between standard argument specification and

deployable protocol by automating the synthesis of protocols (in LCC) from dialogue

game argument specifications (ideally written in the AIF/DID). As we shall see later

in the thesis, it is not possible to fully automate synthesis starting only from the AIF

because it does not capture some concepts that are essential to the choice of protocol

structure. Some of these missing concepts we need to obtain from the user and some

of them from the development (implementation) language (see Figure 4.1).

This chapter proposes a mechanism by which the missing concepts might be

obtained from the user. We will propose a new intermediate language between the

AIF and LCC called a Dialogue Interaction Diagram (DID), which is used to specify

the dialogue game agent protocol in an abstract way.

Figure 4.1: Missing Concepts between AIF and Agent Protocol

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 70

We open this chapter with a discussion of dialogue game agent protocol concepts

(dialogue games and agent protocol implementation concepts) in Section 4.1. This is

followed by a graphical and formal description of DID language in Section 4.2. DID

for embedding dialogues is presented in Section 4.3. An extension of DID for

modelling dialogue between N > 2 agents is presented in Section 4.4. Finally,

Section 4.5 summarises the DID language, and justification is given for creating and

using DID as a high-level dialogue game protocol language.

4.1 Agent Protocol Concepts for Argumentation between Two

Agents

In order to represent an argument protocol in full, nine concepts are required (see

section 3.4):

(1) Locutions;

(2) Participants Commitment Store and Commitment rules;

(3) Structural rules (reply rules or dialogue rules);

(4) Turn Taking rules (Next player rules);

(5) Starting rules (commencement rules);

(6) Termination rules;

(7) Post-condition rules define the conditions which must always be true just after

the locution utterance;

(8) Pre-condition rules;

(9) Sender and receiver agents roles: a set of functions that an agent can use to

interact with another agent. Each role identifies the messages that an agent can

send or receive.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 71

The first six concepts can be found in most of the existing dialogue games [Hamblin,

1970; Walton and Krabbe, 1995; Prakken, 2000 ; Mcburney et. al., 2003]. However,

the last three concepts are not found in most of the existing dialogue games,

[Hamblin, 1970; Walton and Krabbe, 1995; Prakken, 2000] which makes it difficult

to generate the multi-agent protocol automatically. Post-condition rules [Atkinson et

al., 2005; Modgil and McGinnis, 2007] could refer to the effect of a locution

utterance on the receiver agent commitment stores as well as the effect of a locution

utterance on the agent’s mental state structure; Pre-condition rules [Modgil and

McGinnis, 2007] could refer to three different conditions: (1) sender agent

commitment stores at a particular time; (2) agent internal reasoning states; or (3) a

strategy that enables agents to select exactly one of the moves (locutions) from the

legal moves. The concepts of the pre-condition and post-condition rules are imposed

on utterance locutions and helps to control agent behaviour. Pre-condition allows an

agent to utter a specific locution only when this agent has a prior argument or proof

from its knowledge base or commitment stores. Sender and receiver agent roles

[Willmott et al., 2006; Modgil and McGinnis, 2007] in relation to the dialogue help

to control the way the dialogue proceeds.

All these concepts need to be presented in the AIF in order to perform the automated

synthesis. Unfortunately, AIF does not possess the following nine concepts:

Locutions; Participants Commitment Store and Commitment rules; Structural rules;

Turn Taking rules; Starting rules; Termination rules; Post-condition rules; Pre-

condition rules; and Sender and receiver agents roles. The next section extends the

AIF to enable it to represent the dialogue game agent protocol concepts.

4.2 Dialogue Interaction Diagram (An Extension of AIF)

In this section, we propose a new language called Dialogue Interaction Diagram

(DID) which is an extension of AIF. The extension of AIF to DID is not added

automatically. In practice, DID is a new layer on top of AIF (please note that DID

argument is fed by AIF, or other argumentation-based formalism). DID is a new

high-level specification language for multi-agent protocols, which allows to specify

the dialogue game protocol in an abstract way. It has the nine concepts of the agent

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 72

protocol [Locutions; Participants Commitment Store and Commitment rules;

Structural rules; Turn Taking rules; Post-condition rules; Pre-condition rules;

Locution types (Starting rules and Termination rules which are used to specify when

the dialogue starts and when the dialogue ends); and Sender and receiver agents

roles]. It provides mechanisms to represent multi-agent interaction protocol rules

between two agents by allowing the designer to specify the permitted moves and

their relationship to each other.

DID is a recursive visual language which restricts agents moves to:

(1) Unique-moves: agents can make just one move before the turn-taking shifts,

and agents can reply just once to the other agent’s move;

(2) Immediate-reply moves: the turn-taking between agents switches after each

move, moving from one level to the next level, and each agent must reply to

the move of the previous agent.

This restriction is quite strict but it still allows us to include a large class of

argumentation systems in our synthesiser; for instance, all argumentation systems

that can be described as dialogue games. In general, we can synthesise arguments

that can be described as a sequence of recursive steps (each of which involves turn

taking between the pair of agents) terminating in a base case.

4.2.1 DID Elements

The basic element of every DID is a locution which is represented as an icon. A

locution icon (as shown in Figure 4.2) is simply a rectangle divided into three

sections. The topmost section contains the name of the locution (Locutions agent

protocol concept). The left hand section contains sender attributes (Role name, Role

arguments, and Agent ID), and the right hand section contains receiver attributes

(Role name, Role arguments, and Agent ID). The left hand section and the right hand

section contain Sender and Receiver agents roles concept.

A rhombus shape represents conditions (Commitment rules, Post-condition and Pre-

condition rules agent protocol concepts) that apply to each move; when connected to

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 73

Locution name

Role Name Role Name

Role Arguments Role Arguments

Agent ID Agent ID

Figure 4.2: Locution Icon

the left hand section it represents sender pre-conditions, and when connected to the

right hand section it represents receiver post-conditions.

Dotted rectangles represent the locution type (Locution types agent protocol

concept): Starting (can be used to open a dialogue), Termination (can be used to

terminate the dialogue), and Intermediate locution (can be used to remain in the

dialogue).

A DID is created by linking the locution icons together. The links between locution

icons represent reply relations between arguments (Structural rules agent protocol

Sender and

Receiver agent's

roles concept

Locution

concept

Locution types

concept

Locution type

Sender

Informatio

n

Receiver

Informatio

n

Sender

Pre-

condition

Receiver

Post-

condition

Commitment rules

and

Pre-condition rules

concept

Commitment rules

and

Post-condition

rules

concept

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 74

concept). Finally, the turn-taking between agents switches after each move, moving

from one level to the next level.

4.2.2 How to Draw a DID Diagram

(1) The first step is to identify dialogue game locutions.

(2) The next step is to draw a rectangle for each locution, and divide it into three

sections: 1) a rectangle on the top of the rectangle; 2) a rectangle on the left; 3)

and a rectangle on the right. The below symbol represents a locution icon:

a) Write the locution name (e.g. claim(T)) in the topmost section of the icon.

claim(T)

b) Next, go to the left hand section and divide it into three rows and write the

sender role name (e.g. claimSender), role arguments (e.g. (KBSender,CSSender,

CSReceiver,T)), and agent ID (e.g. IDSender). Note that the sender role name,

arguments and agent ID must be the same for all locutions at the same level,

since each level has one role (this restriction allows us to do the automatic

agent protocol synthesises).

claim(T)

claimSender

KBSender,CSSender,

CSReceiver, T

IDSender

c) Then, go to the right hand section, divide it into three rows and write the

receiver role name (e.g. claimReceiver), role arguments(e.g.

(KBReceiver,CSReceiver,CSSender)), and agent ID (e.g. IDReceiver). Note that the

receiver role must be the same for all locutions at the same level (this

restriction allows us to do the automatic agent protocol synthesis).

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 75

claim(T)

claimSender claimReceiver

KBSender,CSSender,

CSReceiver ,T

KBReceiver,CSReceiver,

CSSender

IDSender IDReceiver

d) Next, draw a rectangle with rounded corners and a dotted line instead of a

solid line to signify locution type. Write the locution type inside the shape.

Following this, draw a downward dotted line from this shape to the locution

icon. Note that there are only three types of locutions: Starting Locution (SL),

Intermediate Locution (IL) and Termination Locution (TL). Choose starting if

an agent(s) is going to use this locution(s) in order to open a dialogue.

Finally, choose intermediate if the next agent can make a move (utter

locution(s)) after this locution, or choose termination if the agent needs to use

this locution to end a dialogue.

claim(T)

claimSender claimReceiver

KBSender,CSSender,

CSReceiver ,T

KBReceiver,CSReceiver,

CSSender

IDSender IDReceiver

e) Draw a rhombus for the sender pre-condition with a dotted line. Write the

pre-condition in the shape (e.g. addToCs(T,CSSender)). Draw a solid line from

this shape to the left hand section of the locution icon. This solid line is

indicating that the sender agent can send this locution only if he is able to

achieve this pre-condition. Note that if there is more than one pre-condition is

connected to the sender, then either one of these two scenarios is applicable:

1) if the relation between pre-conditions is 'and' draw a rhombus shape for

each pre-condition; 2) if the relation between pre-conditions is 'or' draw one

rhombus shape and write all the pre-conditions in the shape and connect them

by using 'or'.

Starting Locution

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 76

claim(T)

claimSender claimReceiver

KBSender,CSSender,

CSReceiver ,T

KBReceiver,CSReceiver,

CSSender

IDSender IDReceiver

f) Draw a rhombus for the receiver post-condition with a dotted line. Write the

post-condition in the shape (e.g. addToCs(T,CSReceiver)). Draw a solid line

from this shape to the right hand section of the locution icon. This solid line is

indicating that the receiver agent satisfies this post-condition after it receives

the locution. Note that if there is more than one post-condition is connected to

the sender, then either one of these two scenarios is applicable:1) if the

relation between post-conditions is 'and' draw a rhombus shape for each post-

condition; 2) if the relation between post-conditions is 'or' draw one rhombus

shape and write all post-conditions in the shape and connect them by using

'or'.

claim(T)

claimSender claimReceiver

KBSender,CSSender,

CSReceiver ,T

KBReceiver,CSReceiver,

CSSender

IDSender IDReceiver

(3) Step three is to connect the locutions together by following the reply rules:

a) Put the starting locution icon(s) at the top of the diagram.

claim(T)

claimSender claimReceiver

KBSender,CSSender,

CSReceiver ,T

KBReceiver,CSReceiver,

CSSender

IDSender IDReceiver

Starting Locution

addToCS(T,CSSender)

addToCS(T,CSSender)

Starting Locution

addToCS(T,CSReceiver)

addToCS(T,CSSender)

Starting Locution

addToCS(T,CSReceiver)

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 77

b) Draw a downward arrow from this icon indicating that when this process is

completed (message sent and received), a new activity will begin on the

following lower level (new message will be sent and received). Note that the

turn taking between agents switches as we move from one level to the next

level.

claim(T)

claimSender claimReceiver

KBSender,CSSender,

CSReceiver ,T

KBReceiver,CSReceiver,

CSSender

IDSender IDReceiver

c) Put one reply locution below the downward arrow.

claim(T)

claimSender claimReceiver

KBSender,CSSender,

CSReceiver ,T

KBReceiver,CSReceiver,

CSSender

IDSender IDReceiver

why(T)

whySender whyReceiver

KBReceiver,CSReceiver,

CSSender

KBSender,CSSender,

CSReceiver ,T

IDReceiver IDSender

d) Continue drawing downward arrows and put the reply locution below the

downward arrow (from the starting locution(s)) until all reply locutions to the

starting locution appear in the diagram on level two.

e) Complete the DID diagram by continuing to draw arrow(s) between locutions

until all reply rules of the dialogue game appear in the DID. Note that since

the DID is used to represent multi-agent interaction protocol rules between

two agents, you cannot draw any more arrows between two locution icons

addToCS(T,CSSender)

Starting Locution

addToCS(T,CSReceiver)

addToCS(T,CSSender)

Starting Locution

addToCS(T,CSReceiver)

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 78

when the reply relation between two locution icons has already appeared in

the DID.

4.2.3 Example (Persuasion Dialogue)

Figure 4.3 illustrates a DID structure of a persuasion dialogue [Prakken, 2000] (see

chapter 3, section 3.4). In Figure 4.3, there are five locutions: three attack locutions

which have reply moves (claim, argue and why), and two surrender locutions

(concede and retract) which do not have any reply moves. There are three types of

locution: starting (claim), termination (concede and retract) and intermediate (why

and argue).

In this example, a dialogue always starts with a claim and ends with a concede or

retract locution. A rhombus shape represents conditions (pre- and post-conditions)

that apply to each move. The variable KB (knowledge base list) represents the

agent’s private knowledge, defined as arguments expressed in the AIF. The variable

CS (commitment store list) contains a set of arguments expressed in the AIF to which

the player has committed during the discussion. Initially, the CS is empty.

In this dialogue, agent P can open the discussion by sending a claim(T) locution if he

is able to satisfy the addTopicToCS(T,CS) pre-condition (note that adding an

argument to the agent commitment store is a condition that it is always satisfied).

Then, turn-taking switches to agent O. O has to choose between two different

possible reply locutions: why(T) or concede(T). O will make his choice using the

pre-conditions which appear in the rhombus shape. In order to choose concede(T), O

must be able to satisfy the four pre-conditions which connect with concede: 1)

findTopicInKB(T, KBO) which returns true if agent O is able to find T in its

knowledge base KBO; 2) notFindTopicInCS(T,CSO) which returns true if agent O is

not able to find T in its commitment store CSO; 3)

notFindOppTopicInCS(not(T),CSO) which returns true if agent O is not able to find

the opposite of T (not(T)) in its commitment store CSO; 4) addTopicToCS(T,CSO)

which always returns true and results in agent O adding T to its commitment store

CSO. If O is not able to utter concede(T) because the explained pre-conditions are not

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 79

Figure 4.3 DID Structure of a Persuasion Dialogue

P

O

P

O

1

2

1

2

notFindTopciInCS

(T,CSO)

3

notFindOppPreInCS

(not(Pre), CSO)

3

notFindOppTopicInCS

(not(T),CSO)

concede(T)

fndTopicInKB

(T,KBO)

addTopicToCS(T,CSO)

Termination Locution

KBO,CSO, CSP,T,IDP

replyToClaimReceiverP

replyToClaimSenderO

KBP,CSP,CSO,T,IDO

IDO IDP

4

Intermediate Locution

KBO,CSO,CSP,T,IDP

notFindTopicInKB

(T,KBO)

why(T)

replyToClaimReceiverP replyToClaimSenderO

KBP,CSP,CSO,T,IDO

IDO IDP

notFindTopicInCS

(T,CSO)

1

2

notFindPreInKB

(Pre,KBO)

Intermediate Locution

why(Pre)

 KBP,CSP,
CSO,T, Pre, IDO

KBO,CSO,CSP,
T, Pre,IDP

IDP

IDO

replyToArgue-

SenderO

replyToArgue-

ReceivererP

notFindPreInCS

(Pre,CSO)

1

2

notFindPreInCS
(Pre, CSO)

addPreToCS

(T,Pre, CSO)
findPreInKB
(Pre, KBO)

1

2

Termination Locution

 concede(T)

KBP,CSP, CSO,

T,Pre, IDO

KBO,CSO, CSP,
T, Pre,IDP

IDP

IDO

replyToArgue-

SenderO

replyToArgue

-ReceivererP

4

1

2

IDO

KBP,CSP , CSO,T,IDO

subtractFromCS

 (T, CSO)

3

KBP,CSP,CSO,T,IDO

KBO,CSO,CSP,T,IDP

Termination Locution

retract(T)

replyToWhyReceiverO

replyToWhySenderP

KBO,CSO,CSP,T,IDP

IDP

cannotFindPreInKB

(T, KBO)

findTopicInCS

 (T, CSO)

argue(Pre,T)

Intermediate Locution

replyToWhyReceiverO

 IDO

replyToWhySenderP

IDP

Pre=
findPremise

(T, KBP,CSP)

addPreToCS

(T,Pre,CSP)

Def =

findDefeats

(T,Pre,KBO,

CSO)

addDefeatsToCS

(not(T'),Def,CSO)

1

2

Intermediate Locution

 argue (Def,T')

KBP,CSP,CSO,

T, Pre, IDO

KBO,CSO, CSP,
T, Pre,IDP

IDP

IDO

replyToArgue-

SenderO

replyToArgue-

ReceivererP

addTopicToCS(T,CSP)

Starting Locution

claim(T)
claimSenderP claimReceiverO

KBO,CSO ,CSP, IDP

IDO

KBP,CSP,CSO,T,IDO

IDP

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 80

satisfied, then O will send why(T). After that, the turn switches to P, and so on. The

argument terminates once P or O sends concede or retract locutions.

The basic Scenario of the Interaction Protocol of Persuasion Dialogue

Figure 4.4 represents the persuasion dialogue graph of the complex car safety

example (see chapter 3, section 3.2):

(1) Dialogue takes place between two agents, P and O.

(2) P has KBP and CSP, and O has KBO and CSO.

(3) Initially the CSP and CSO are empty.

(4) P and O can access both CSP and CSO.

(5) P opens the discussion by sending claim("My car is safe").

(6) O checks with its argumentation system ASO (ASO = {KBO, CSO}) whether "My

car is safe" is acceptable or not. It finds that "My car is safe" is not acceptable,

(7) O challenges "My car is safe". In others words, it asks what is the reason behind

P's proposal of "My car is safe". In this example, O will challenge "My car is

safe" by sending the why("Why is your car safe") locution.

(8) P responds to the challenge by declaring the supporting premises Pre for "My

car is safe". In this example, P is offering grounds for a claim by sending

argue("Since it has an airbag") locution.

(9) O checks with its argumentation system ASO whether "if car has an airbag, then

the car is safe" is acceptable or not. In this example, O finds a counterargument

for P's argument and sends an argue("Your car is not safe since the newspapers

recently reported on airbags expanding without cause") locution.

(10) P finds a counterargument for O's argument and sends an argue("Newspaper

reports are very unreliable sources of technological information") locution.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 81

Figure 4.4: The Complex Car Safety Example

concede(T)

P O

claim(safe)

why(safe)

argue(since airbag)

argue(not safe since newspaper reported

on airbags expanding)

retract(safe)

KBP={My car safe, My car has an airbag, car has an airbag car is safe, newspapers are

unreliable sources}

KBO={Your car is not safe, newspapers reported on airbags expanding car is not safe,

car has high maximum speed car is not safe}

argue(not safe since high maximum

speed)

argue(safe since newspaper unreliable

sources)

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 82

(11) O finds a counterargument for P's argument and sends an argue("Still your

car is not safe, since its maximum speed is very high") locution.

(12) P checks with its argumentation system ASP whether "if the car maximum

speed is very high, then the car is not safe" is acceptable or not. In this example

P finds that it is and retracts his main claim by sending a retract("My car is

safe") locution.

(13) The commitment stores of P and O at the end of the dialogue are:

o CSP={My car has an airbag, Newspapers are unreliable sources}

o CSO={Your car is not safe, Newspapers reported on airbags expanding

car is not safe, car has high maximum speed car is not safe}

4.2.4 DID for Two Agents Formal Definition

Up to this point we have explained the DID syntax and how to use it and draw the

DID diagrams. However, some readers may be interested to understand formally the

meaning of the DID syntax. One way to do this is to use an existing formal

definitions language from agents community such as Prakken's dialogue formal

specification language [Prakken, 2000].

In this section, we formally specify the DID for two agents, as an extension of AIF.

This formal definition called Dialogue Formal Specification Language (DFSL) is

based on Prakken's framework [Prakken, 2000]. It is used to describe dialogue

(argument) interaction protocol rules in a high-level way.

Definition 1: Dialogue

A dialogue protocol 'D' is defined as a tuple:

(L, Players, CS , KB, Roles ,Acts, ActType, Replies, Moves, LegalMoves) where:

Definition 2: Topic

L is a set of strings which specifies the dialogue topic;

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 83

Args(L) is a set of all well-formed AIF arguments expressed as I-nodes, therefore

Args(L) I-nodes (see chapter 3 for more information about I-nodes).

Definition 3: Players

Players = {player1, player2}

Where,

 Each player playeri has its own commitment store set CSi (Args(L)),

which contains a set of propositions to which the player is committed in the

discussion
17

.

 Each player playeri has its own knowledge base or beliefs set KBi

(Args(L)), which represents the propositions on which the agent believes.

Definition 4: Commitment Store

'CS' is a function which gives the commitment store set of the player at a particular

move.

CS: Players Moves (Args(L))

Initially CS(playeri, M1)= , where i = 1 or 2

Definition 5: Knowledge Base

'KB' is a function which gives the knowledge base set of the player

KB: Players (Args(L))

17
 For any set S:

 ℘(S) = the powerset of any set S

⊆ = a partial order on the set ℘(S) of all subsets of S.

http://en.wikipedia.org/wiki/Weierstrass_p
http://en.wikipedia.org/wiki/Set_%28mathematics%29
http://en.wikipedia.org/wiki/Partial_order
http://en.wikipedia.org/wiki/Weierstrass_p

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 84

Definition 6: Roles

Roles = {r1,r2………….rm-1,rm} is a set of role identifiers.

 Where m >= 2 (there are at least two roles: one for the first agent and one for the

second agent)

Definition 7: Acts

'Acts' is the set of speech acts (permitted messages or moves).

Acts={loc(T1, T2, …… Tn) such that for every n>= i >=1, Ti ϵ Args(L)}

Definition 8: ActType

'ActType' is a function which determines the type of 'Act'.

ActType: Acts (Types)

Where,

 Types ={Starting, Intermediate, Termination}

 Starting: to open a dialogue,

 Intermediate: to remain in the dialogue,

 Termination: to terminate the dialogue.

Definition 9: Replies

'Replies' is a function which takes 'Acts' and return its possible replies according to

the dialogue protocol.

 Replies : Acts (Acts)

For instance Replies(claim(T)) = {why(T),concede(T)}

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 85

Definition 10: Pre-conditions

'PreC' is a function which specifies the move pre-conditions according to the

dialogue protocol. It takes as input parameters an act, the sender’s commitment store,

and the sender’s knowledge base and returns a Boolean.

PreC : Acts (args(L))

 (args(L)) Boolean

For example:

PreC(claim(), CS(player1, Mt),KB(player1))= CS(player1, Mt) KB(player1)

Definition 11: Post-conditions

'PostC' is a function which specifies the move post-conditions according to the

dialogue protocol. It takes as input parameters an act, the receiver's commitment

store, and the receiver's knowledge base and returns a Boolean.

PostC: Acts (args(L))

 (args(L)) Boolean

Definition 12: Move

A move MtMoves, t >= 1, is defined as:

Mt = (playert, actt, Mt-1, nextPlayert,sendert, receivert)

Where,

 Playert Players represents the player of the move,

 Actt Acts represents the speech act performed in the move,

 Mt-1 Moves {null} represents the previous move (Mt is a reply to Mt-1),

 nextPlayert Players {null} represents the next player in the dialogue,

 sendert Roles represents the role identifier of player (sender agent),

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 86

 receivertRoles represents the role identifier of the nextPlayer (receiver

agent),

Definition 13: Legal Move for Two

'legalMove' is a function which specifies the legal moves at a particular moment in

the dialogue. It takes the dialogue history (list or sequence of moves) at a particular

moment and the commitment store of the two players:

LegalMovesTwo: MoveSeq (args(L)) (args(L))

 (Moves)

Rule 1: (Start a Dialogue)

This rule says that a dialogue always starts with a Starting act:

LegalMovesTwo([] , CS1, CS2) = { M1}

Where,

 M1= (player1, act1, null, player2, sRole1, rRole1) ,

 ActType(act1) = Starting,

 PreC(act1,KB1, CS1) = true , where KB(player1) = KB1

 PostC(act1,KB2, CS2) = true, where KB(player2) = KB2

Rule 2: (Terminat a Dialogue)

This rule says that a dialogue always terminates with a Termination act:

LegalMovesTwo([M1,M2,…….Mn] , CS1, CS2) = Ø

if

 Mn= (playern, actn, Mn-1, null, sRolen, rRolen) ,

 ActType(actn) = Termination,

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 87

 PreC(actn,KBn, CSn) = true , where:

o KB(playern) = KBn

o CS(playern, Mn) = CSn

 PostC(actn,KBm, CSm) = true, where:

o n m

o KB(playerm) = KBm

o playerm represents the receiver of actn

o CS(playerm,Mm) = CSm

Rule 3: (Reply to an Agent's Move)

This rule says that an agent can only select one move in order to reply to the

previous move:

LegalMovesTwo([M1,M2,…….Mt] , CS1, CS2)= {Mt+1}

if

 playeri playerj

 Mt= (playeri, actt, Mt-1, playerj, sRolet, rRolet) ,

 ActTypes(actt) ϵ {Starting , Intermediate} ,

 PreC(actt+1,KBj, CSj) = true , where:

o KB(playerj) = KBj

o CS(playerj , Mt+1) = CSj

 Mt+1= (playerj, actt+1 , Mt, playeri, sRolet+1, rRolet+1),

 actt+1 ϵ Replies(actt) (Mt+1 replies to Mt),

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 88

 PostC(actt+1,KBi, CSi) = true, where:

o KB(playeri) = KBi

o CS(playeri , Mt+1) = CSi

With this rule we are specifying also the turn-taking restriction. The sender of move

Mt is the receiver of move Mt+1 and the receiver of move Mt is the sender of move

Mt+1. Note that in order to send Mt+1, playerj must satisfy PreC and after Mt+1, playeri

must satisfy PostC.

Example of DFSL of Persuasion Dialogue

This example describes the persuasion dialogues in chapter 3, section 3.4 [Prakken,

2000; Prakken, 2005] by using DFSL:

(1) Players:

In this dialogue, there are two participants: one participant (proponent 'P') attempts to

persuade another participant (opponent 'O') to change his point of view about a

particular topic 'T'.

Players={P,O}

(2) There are five locutions (Acts):

Acts ={claim(T), why(T), concede(T), argue(Pre,T), retract(T)}

(3) ActType(Act):

Act ActType (Act)

claim {Starting}

why { Intermediate }

concede {Termination}

argue { Intermediate }

retract {Termination}

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 89

(4) Replies(Act):

In the persuasion dialogue, the Replies rules are as follows:

Act Replies(Act)

claim(T)
{why(T) , concede(T)}

why(T) {argue(Pre), retract(T)}

concede(T) Ø

argue(Pre,T) { why(Pre), argue(Def,T'), concede(T)}

retract(T) Ø

(5) PreC(Act,KB,CS):

Lets Player = P. In the persuasion dialogue, the Pre-conditions are as follows:

Act PreC(Act,KB,CS) Note

claim(T) addTopicToCS(T,CSP)= true addTopicToCS function always returns

true and results in agent P adding T to its

commitment store CSP

why(T) notFindTopicInKB(T,KBP) =

true

and

notFindTopicInCS(T,CSP) =

true

 notFindTopicInKB function returns true

if agent P is not able to find T in its

Knowledge Base KBP.

 notFindTopicInCS function returns true

if agent P is not able to find T in its

Commitment Store CSP.

concede(T) findTopicInKB(T, KBP) = true

and

notFindTopicInCS (T,CSP) =

true

and

notFindOppTopicInCS

(not(T),CSP) = true

and

addTopicToCS(T,CSP)= true

 findTopicInKB function returns true if

agent P is able to find T in its

Knowledge Base KBP.

 notFindTopicInCS function returns true

if agent P is not able to find T in its

Commitment Store CSP.

 notFindOppTopicInCS which returns

true if agent P is not able to find the

opposite of T (not(T)) in its commitment

store CSP.

 addTopicToCS function always returns

true and results in agent P adding T to its

commitment store CSP.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 90

Act PreC(Act,KB,CS) Note

argue(Pre, T) Pre =

findPremise(T, KBP, CSP) =

true

and

addPreToCS(T,Pre,CS P) =

true

 Where T= topic and Pre= Promise

which is used to support a claim

(Topic)

 findPremise function returns true if

agent P is able to find Pre either in its

knowledge base KBP or its commitment

store CSP.

 addPreToCS function always returns

true and results in agent P adding T and

Pre to its commitment store CSP.

argue(Def, T')
Def =

findDefeats(T, Pre, KBP, CSP)

= true

and

addDefeatToCS

(not(T)',Def,CS P) = true

 Where Def = Defeat an argument

which is used to attack an argument (T

or Pre) with a counterargument (Def)

 findDefeats function returns true if

agent P is able to find Def either in its

knowledge base KBP or its commitment

store CSP.

 addDefeatToCS function always returns

true and results in agent P adding Def

and not(T') to its commitment store

CSP. Note that T' = T or Pre.

retract(T) cannotFindPreInKB(T, KBP)

= true

and

findTopicInCS (T, CSP) = true

and

subtractFromCS(T,CSP)= true

 cannotFindPreInKB function returns

true if agent P is not able to find any

promise (pre) in its knowledge base

KBP to support a claim (T).

 findTopicInCS function returns true if

agent P is able to find T in its

Commitment Store CSP.

 subtractFromCS function always returns

true and results in agent P subtracts T

from its commitment store CSP.

(6) LegalMovesTwo(Mt , CSP, CSO)

From Figure 4.5 of the persuasion dialogue, we can see that:

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 91

Figure 4.5: The Persuasion Dialogue Legal Moves

P, claim

M1

O, why

M2

O, concede

M3

P, argue

M4

P, retract

M5

O, argue

M6

P, why

M7

O, retract

M9

P, concede

M8

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 92

 Dialogue begins by making a claim move

M1 = initial move, ActType(Act(M1)) = Starting and Act(M1)= {claim}

 In the persuasion dialogue, the argument terminates once agents send a

concede or retract locution. In other words, both concede and retract ϵ

Termination. There is no reply move to these moves (there are no arrows

coming out from these moves)

 Both why and argue ϵ {Intermediate}. There are several corresponding moves

to these moves (there are arrows coming out from these moves).

 The turn-taking between participants switches after each move:

 if M1 then Player = P,

 else NextPlayer = O iff Player = P

and NextPlayer = P iff Player = O

Appendix A presents a DID, DFSL and example of a negotiation dialogue.

4.3 Dialogue Interaction Diagram for Embedding Dialogue

4.3.1 DID for Embedding Dialogue

The DID can be used to model embedded dialogues. The DID allows agents to shift

among different types of dialogues by connecting the starting locution of the sub-

dialogue with the main dialogue locutions (changing the type of starting locution of

the sub-dialogue to the intermediate locution in the main dialogue, and then

connecting this locution with all other locutions in the main dialogue).

4.3.2 DFSL for Embedding Dialogue

In this section we define embedded dialogue in a formal way.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 93

Definition 13: Embedded Dialogue

Let D1 and D2 both are dialogues. Loc1 is a start locution in D1 and Loc2 is a start

locution in D2. TLoc1 is a termination locution in D1 and TLoc2 is a termination

locution in D2.

If D2 is a subdialogue of D1 then:

 Loc2 is an intermitted locution in D1

 Loc2 appears in all levels of D1 instead of level one

 TLoc2 is an intermitted locution in D1

 D1 will terminate if :

o D1 termination conditions is satisfied, and

o D2 has already terminated

4.3.3 Example

Black and Anthony's [Black and Anthony, 2007] work focuses on inquiry dialogues

(see chapter 3, section 3.5 for more details about inquiry dialogues), which allow two

agents to share knowledge in order to construct arguments in a dialogue within the

medical domain. It provides a protocol as well as a specific strategy for modelling

inquiry dialogues (a dialogue strategy that enables agents to select just one of the

legal moves). Essentially, it embeds inquiry dialogues inside another inquiry

dialogue and allows agents to shift between these inquiry dialogues.

Each inquiry dialogue has its own Question Store (QS), which is used to keep track

of dialogue beliefs. During the dialogue, both agents will try to provide arguments

for the belief(s) in the QS, which may lead them to open more sub-dialogues. These

sub-dialogues have a topic whose consequent is the belief(s) in the current QS. In

fact, an agent can open an inquiry dialogue by making an open move with the belief

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 94

'γ' and create its QS and add 'γ' to it (QS={γ}). Then, if an agent wants to open a sub-

dialogue, he can make a move with where = 1,2,3,...n .

To terminate an inquiry dialogue, two close moves must appear next to each other

and all sub-dialogues, which are embedded within this dialogue, must already be

terminated.

DFSL

We will start by describing the inquiry dialogue in [Black and Anthony, 2007] by

using DFSL:

(1) Players: Players={P'', P}

Each player has its own KB and CS:

 P'' argumentation system ASP'' (ASP'' = {KBP'' , CSP''})

 P argumentation system ASP (ASP= {KBP, CSP})

(2) There are four locutions (Acts):

Acts ={open(γ), assert (,γ), close(γ),subclose()}

(3) ActType(Act):

Act ActType (Act) Note

open
{Starting, Intermediate} In the main inquiry dialogue open

locution type is starting but in the

subdialogue we change the type of

the open locution to intermediate in

order to connect the two dialogues

together.

assert { Intermediate }

close {Intermediate, Termination} To terminate an inquiry dialogue,

two close moves must appear next to

each other. The first close type is

intermediate (ActType(close) =

{Intermediat}) and the second close

type is termination (ActType(close)

= {Termination}).

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 95

(4) Replies(Act):

In the inquiry dialogue the Replies rules are as follows:

Act Replies(Act) Note

open(γ) {assert (,γ),open(), close(γ)} when ActType (open) =

{Starting}

 (,γ) is an argument , is

the argument support and

γ is the argument claim

close(γ) {assert (2,X),open(2), close(γ)} When ActType (close) =

{Intermediate}

 X variable in

assert(2,X) represents

either or n .

close(γ) Ø when ActType (close) =

{Termination}

assert(,γ) {assert (2, γ),open(2), close(γ)}

open()

{assert (2,),open(2), close()} when ActType (open) =

{Intermediate},

close() {assert (3, X3),open(3), close(γ)} close() after close()

ends sub-dialogue

(5) PreC(Act,KB,CS):

Let Player = P''. In an inquiry dialogue, the Pre-conditions are as follows:

Act PreC(Act,KB,CS) Note

Open(γ) findInKB(γ,KBP'') = true

and

emptyCS(CSP'') = true and

addToQueryStore (QS, γ) =

true

and

addToOpenDialogue

(γ,OpenD) = true

when ActType (open) = {Starting}, four

functions must return true:

 findInKB function returns true if agent P'' is

able to find γ in its Knowledge Base KBP''.

 emptyCS function returns true if agent P''

Commitment Store CSP'' is empty.

 addToQueryStore function always returns

true and results in agent P'' adding γ to

dialogue Question Store QS.

 addToOpenDialogue function always returns

true and results in agent P'' adding γ to Open

Dialogue list OpenD.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 96

Act PreC(Act,KB,CS) Note

open()
isRelationship(,γ) = true

and

findInQS(QS,) = true

and

findInKB(,KB) = true

and

notFindInQS(QS,) = true

and

addToQueryStore(QS2,) =

true

and

addToOpenDialogue

(,OpenD) = true

and

addToSubD (,γ ,SubD) =

true

when ActType (open) = {Intermediate}, seven

functions must return true:

 isRelationship function returns true if agent

P'' is able to find a relation between and .

 findInQS(QS,) function returns true if agent

P'' is able to find in the dialogue Question

Store QS.

 findInKB(,KB) function returns true if agent

P'' is able to find in its Knowledge Base

KBP''.

 notFindInQS function returns true if agent ''P

is not able to find =1,2,3,...n in the

dialogue Question Store QS.

 addToQueryStore function always returns

true and results in agent P'' adding

=1,2,3,...n to dialogue Question Store

QS2.

 addToOpenDialogue (,OpenD) function

always returns true and results in agent P''

adding to Open Dialogue list OpenD.

 addToSubD function always returns true and

results in agent P'' adding to SubDialogue

list SubD.

assert(,) findInQS(QS,) = true

and

notFindInCS(,CSP'') = tru

and

findInKBorCS

((,),KBp'' ,CSp) = true

and

addToCS (,CSp'') = true

when agent sends assert(,) after open(), four

functions must return true:

 findInQS function returns true if agent P'' is

able to find in the dialogue Question Store

QS.

 notFindInCS function returns true if agent P''

is not able to find in its Commitment Store

CSP''.

 findInKBorCS((,),KBp'' ,CSp) function

returns true if agent P'' is able to find (,) in

either in its knowledge base KBP'' or its

commitment store CSP''.

 addToCS (,CSp'') function always returns

true and results in agent P adding to its

commitment store CSP''.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 97

Act PreC(Act,KB,CS) Note

assert

(3,X)

setInitialValueForX(X)

=true

and

findInQS(QS2,X) = true

and

notFindInCS(3,CSP'') =

true and

findInKBorCS((3,X),KBp''

,CSp) = true and

addToCS (3,CSp'') = true

 setInitialValueForX function always returns

true and results in setting initial value for X.

Note that X can be either or n .

 findInQS(QS2,X)

 notFindInCS(3,CSP'')

 findInKBorCS((3,X),KBp'' ,CSp)

 addToCS (3,CSp'')

(See assert(,)for more information about

functions definition)

close(γ) findInOpenDialogue

(,OpenD) = true and

allSubDialogueClosed(,Sub

D,ClosedD) = true

and

(

notFindInKBandCS((,),KBp'',

CSp) = true

 or

 findInCS(,CSP'') = true

)

and

(

noRelationship(,γ) = true

or

notfindInKB(,KBP'') = true

or

findInQS(QS,) = true

)

when ActType (close) = {Intermediate},

at last four functions of six functions must

return true:

 findInOpenDialogue function returns true if

agent P'' is able to find in the Open

Dialogue list OpenD.

 allSubDialogueClosed function returns true if

all subdialogue of is already closed.

 notFindInKBandCS function returns true if

agent P'' is not able to find (,) in either in

its knowledge base KBP'' or other agent P

commitment store CSP.

 findInCS function returns true if agent P'' is

able to find in its commitment store CSP''.

 noRelationship function returns true if agent

P'' is not able to find a relation between and

.

 notfindInKB function returns true if agent P''

is not able to find in its knowledge base

KBP''.

 findInQS function returns true if agent P'' is

able to find = 1,2,3,...n in the dialogue

Question Store QS.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 98

Act PreC(Act,KB,CS) Note

close(γ) (

notFindInKbandCS((,),K

Bp'',CSp) = true

or

findInCS(,CSP'') = true

)

and

(

noRelationship(,γ) = true

or

notfindInKB(,KBP'') = true

or

findInQS(QS,) = true

)

and

addToClosedDialogue

(,ClosedD) = true

when ActType (close) = {Termination},at last

three functions of six functions must return

true:

 cannotFindInKBandCS function returns true

if agent P'' is not able to find (,) in either in

its knowledge base KBP'' or other agent P

commitment store CSP.

 findInCS function returns true if agent P'' is

able to find in its commitment store CSP''.

 noRelationship function returns true if agent

P'' is not able to find a relation between and

.

 notfindInKB function returns true if agent P''

is not able to find in its knowledge base

KBP''.

 findInQS function returns true if agent P'' is

able to find =1,2,3,...n in the dialogue

Question Store QS.

 addToClosedDialogue function always

returns true and results in agent P'' adding to

closed Dialogue list ClosedD.

close() findInOpenDialogue

(,OpenD) = true and

allSubDialogueClosed(,Sub

D,ClosedD) = true

and

(notFindInKBandCS

((,),KBp'',CSp) = true

 or findInCS(,CSP'') = true)

and

(noRelationship(2,) = true

or notfindInKB(2,KBP'') =

true

or findInQS(QS, 2) = true)

when agent sends close() after open at last five

functions of seven functions must return true:

 FindInOpenDialogue

 allSubDialogueClosed

 notFindInKBandCS

 findInCS

 noRelationship

 notfindInKB

 findInQS

(See close(γ), ActType (close) = {Intermediate},

for more information about functions definition)

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 99

Act PreC(Act,KB,CS) Note

close() (

notFindInKbandCS((,),K

Bp'',CSp) = true

or

findInCS(,CSP'') = true

)

and

(

noRelationship(2,) = true

or

notfindInKB(2,KBP'') = true

or

findInQS(QS, 2) = true

)

and

addToClosedDialogue

(,ClosedD) = true

when agent sends close() after close(), at last

three functions of six functions must return

true:

 cannotFindInKBandCS

 findInCS

 noRelationship

 notfindInKB

 findInQS

 addToClosedDialogue

(See close(γ), where ActType (close) =

{Termination}, for more information about

functions definition)

(6) LegalMovesTwo(Mt , CSA1, CSA2)

From the inquiry dialogue depicted in Figure 4.8, we can see that:

 Dialogues begin by making an open move.

M1 = initial move, ActType(Act(M1)) = {Starting} and Act(M1)= {open}

 In the inquiry dialogue, the argument terminates once one agent sends close

which is followed by a close move by the second agent. In other words, to

terminate an inquiry dialogue, two close moves must appear next to each

other in the sequence

 Assert, close, subclose and open ϵ {Intermediate}. There are several

corresponding moves to these moves (there are arrows coming out from these

moves):

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 100

Figure 4.8: The Inquiry Dialogue Legal Moves

o assert move, by either P or P'', could be followed by Assert, close

and open.

o subclose move, by either P or P'', could be followed by Assert, close,

subclose and open.

P'', open

M1

P, assert

M2

P, open

M3

P, close

M4

P'', close

M5

P'', close

M6

P'', assert

M7

P, close

M8

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 101

o if the dialogue has not terminated yet, close move, by either P or P'',

could be followed by Assert, close and open

o open move, by either P or P'', could be followed by Assert, close and

open.

 The turn-taking between participants switches after each move (the agents

take it in turns to make moves):

 if M1 then Player = P'',

 else NextPlayer = P iff Player = P'' and NextPlayer = P''

iff Player = P

DID

Figure 4.9 illustrates the DID structure of an inquiry dialogue (note that pre-

conditions and post-conditions for locutions are not shown in this figure but are

shown in Figure 4.10(a), Figure 4.10(b) and Figure 4.10(c)). In Figure 4.9, there are

four locutions: open, assert, subclose and close. There are three types of locutions:

starting (open), termination (close), and intermediate (assert, close,subclose and

open).

The dialogue always starts with an open and ends with a close locution. P'' can open

the discussion by sending an open() locution if he is able to satisfy the four pre-

conditions which are connected to the sender role of this locution. Then, turn-taking

switches to P. P has to choose between three different possible reply locutions:

assert(,), open() or close(). P will make his choice using the pre-conditions that

appear in the rhombus shape. For example, in order to choose assert(,), P must be

able to satisfy the four pre-conditions which connect with assert: (1) findInQS(QS,)

which returns true if agent P is able to find in the dialogue question store QS; (2)

notFindInCS(,CSP) which returns true if agent P is not able to find in its

commitment store CSP ; (3) findInKBorCS((,),KBp ,CSp'') which returns true if

agent P is able to find (,) either in its knowledge base KBP or in the commitment

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 102

Figure 4.9: DID Structure of an Inquiry Dialogue

SL

IL

p''

p

p''

open()

assert(, γ) open() close()

open(3) assert(3,X3) close()

IL

IL

IL

IL

IL

IL

TL

p

IL

IL

IL

assert(2, γ)

IL

assert(2, γ)

close()

close()

open(2)

close()

open(2)

IL

assert(2,)

open(2)

IL

IL

assert(2,)

open(3)

close()

IL

IL

IL

p''

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 103

Figure 4.10(a): Inquiry Dialogue Locutions Pre-conditions and Post-
conditions

open(γ)

OpenReciver
p

 OpenSender
P'’

KB
p,

 CS
p,
 γ,

CSP'',IDP'', QS

KB
P'',

 CS
P'',

 γ,

CSP,IDP, QS

ID
p

 ID
P''

assert(,)

replyToOpen-

Reciver
P'’

replyToOpen-

Sender
P

KB
P'',

 CS
P'',

 γ,

CSP,IDP, QS
KB

p,
 CS

p,
 γ,

CSP'',IDP'', QS
ID

P'’
 ID

P

open()
replyToOpen

-Reciver
P''

replyToOpen

-Sender
P

KB
P'',

 CS
P'',

 γ,

CSP,IDP, QS

KB
p,

 CS
p,
 γ,

CSP'',IDP'', QS

ID
P''

 ID
P

Starting Locution

findInKB(γ,KBP'')

emptyCS(CSP'')

addToQueryStore

(QS,γ)

addToOpenDialogue

(γ,OpenD)

1

2

3

4

Intermediate Locution

Intermediate Locution

findInQS(QS,)

notFindInQS

(QS,)

findInKB(,KB)

addToQueryStore

(QS2,)

1

2

3

4

addToSubD

(,γ ,SubD)

5

findInQS(QS,)

notFindInCS

(,CSP)

addToCS

(,CSp)

findInKBorCS

((,),KBp ,CSp''')

1

2

3

4

isRelationship(,γ)

7

addToOpenDialogue

(,OpenD)

6

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 104

Figure 4.10 (b): Inquiry Dialogue Locutions Pre-conditions and Post-
conditions

close()

replyToOpen-

Reciver
P''

replyToOpen-

Sender
P

KB
P'',

 CS
P'',

 γ,

CSP,IDP, QS

KB
p,

 CS
p,
 γ,

CSP'',IDP'', QS

ID
P''

 ID
P

close()

replyToOpen-

AssertClose-
Receiver

P

replyToOpen-

AssertClose-
Sender

P''

KB
p,CS

p,γ, X,

CSP'',IDP'',

QS,QS2

KB
P'', CS

P'', γ

,X CSP,IDP,

QS,QS2

ID
P

 ID
P''

close()

replyToOpen-

AssertClose-

Receiver
P

replyToOpen-

AssertClose-

Sender
P''

KB
p,CS

p,γ, ,

CSP'',IDP'',

QS,QS2

KB
P'', CS

P'', γ

,, CSP,IDP,

QS,QS2

ID
P

 ID
P''

Termination Locution

Intermediate Locution

findInOpenDialogue

(,OpenD)

notFindInKBandCS

((,),KBp,CSp'')
or

findInCS(,CSP)

1
2

addToClosedDialogue

(,ClosedD)

allSubDialogueClosed

(,SubD,ClosedD)

1

2

noRelationship(,γ)

or

notfindInKB(,KBP)

or
findInQS

(QS,)

3

4

notFindInKBandCS

((,),KBp'',CSp)

or

findInCS(,CSP'')

noRelationship(,γ)

or

notfindInKB(,KBP'')

or

findInQS

(QS,)

3

Intermediate Locution

findInOpenDialogue

(,OpenD)

notFindInKBandCS

((,),KBp'',CSp)
or

findInCS(,CSP'')

 4

1 allSubDialogueClosed

(,SubD,ClosedD)

noRelationship(2,)

or

notfindInKB(2,KBP'')

or

findInQS

(QS2, 2)

2

3

colse() after open

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 105

Figure 4.10 (C): Inquiry Dialogue Locutions Pre-conditions and Post-

conditions

store of agent P''(CSP''); (4) addToCS (,CSp'') which always returns true and results

on the agent P adding to its commitment store CSP. After that, the turn switches to

P'', and so forth. The argument terminates when two close moves appear next to each

other. Note that X variable in assert(2,X) represents either or n .

close()

replyToOpen-

AssertClose2-

Receiver
P''

replyToOpen-

AssertClose2-

Sender
P

KB
p'',CS

p'',γ,

, CSP,IDP,

QS,QS2

KB
P, CS

P, γ

,, CSP'',IDP'',

QS,QS2

ID
P''

 ID
P

assert(3,X)

replyToOpen-

AssertClose-

Receiver
P

replyToOpen-

AssertClose-

Sender
P''

KB
p,

 CS
p,
 γ,,

CSP'',IDP'',

QS,QS2
KB

P'',
 CS

P'',

γ,, CSP,IDP,

QS,QS2
ID

P
 ID

P''

findInQS(QS2,X)

addToCS

(3,CSp'')

findInKBorCS

((3,X),KBp'' ,CSp)

1

2

3

4
notFindInCS

(3,CSP'')

Intermediate Locution

 setInitialValueForX
(X)

5

Intermediate Locution

addToClosedDialogue

(,ClosedD)

1

2

notFindInKBandCS

((,),KBP,CSp'')

or

findInCS(,CSP)

noRelationship(2,)

or

notfindInKB(2,KBP)

or
findInQS

(QS, 2)

3

colse() after close()

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 106

An example of inquiry dialogue [Black and Anthony, 2007] is shown in Figure 4.11.

The goal of the dialogue is to find an argument for believing 'c'. The agents

knowledge bases are shown at the top of the figure.

In this example, there is one main dialogue (D1 with QS1={c} start at move 1) and

three sub-dialogues (D2 with QS2={b} start at move 2, D3 with QS1={a} start at

move 3, and D4 with QS4={d, e} start at move 7) are created during the

augmentation process. The commitment store of agent P is changed at move 8 (CSP

= {d}) and move 16 (CSP = {d,e, de b , b c}). The commitment store of agent

P'' is changed at move 9 (CSP = {e}) and 13(CSP = {e, d, de b}). At move 18 the

main dialogue ends after it succeeds in achieving its goal (finding an argument for

the 'c' belief).

4.4 Dialogue Interaction Diagram for Argumentation between

N-agents

4.4.1 Need for Dialogue Games among N-agents

At times, in order to solve a particular problem, more than two agents have to work

together. Each agent has a responsibility to contribute to a finding final solution

[Dignum and Vreeswijk, 2003].

For example, five members of a family, each with their own favourite holiday, try to

decide where to go. This family can reach an acceptable solution and share their

experience by allowing all family members to take part in the dialogue.

4.4.2 Issues of Dialogue Games among N-agents

Dignum and Vreeswijk's work [Dignum and Vreeswijk, 2003] highlights some of the

key issues of N-agents' (multi-party) dialogues:

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 107

Figure 4.11: Embedded Inquiry Dialogue Example

 1: open(c)

QS3

KBP'' = {c,e, d e b , a b} KBP ={d, b c}

P'' P

2: open(b c)

3: open(a b)

4: close(ab)

5: close(ab)

6: close(bc)

7: open(d e b)

8: assert({d},d)

9: assert({e},e)

10: close(d e b)

11: close(d e b)

12: close(bc)

13: assert({d,e,deb},b)

14: close(bc)

15: close(bc)

16:assert({d,e,deb,BC},C)

17: close(c)

18: close(c)

QS1

QS2

QS4

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 108

(1) Open/closed system:

In two agent dialogue systems, neither agent can leave the dialogue. However, in N-

agents dialogue systems, there are two types:

 Open system: during a dialogue, an agent can join and leave the group.

 Closed system: during a dialogue, existing agents cannot leave the group and

new agents cannot join the group. In other words, if the dialogue starts with

N-agents, it must end with N-agents.

(2) Player's roles:

In two agent dialogue systems, one agent can be the speaker (e.g. proponent in

persuasion dialogue) and the other agent must be the audience (e.g. opponent in the

persuasion dialogue). However, in N-agents dialogue systems, there can be more

than one speaker agent and more than one audience agent.

(3) Addressing:

In two agent dialogue systems, one agent sends a message and the other agent

receives the message. However, in N-agents dialogue systems the following can

happen:

 One-to-one system: one agent sends a message and one agent receives the

message

 One-to-many system: one agent sends a message and more than one agent

receives the message

 One-to-all system: one agent sends a message and all other agents receive the

message

(4) Turn taking (coordination):

In two agent dialogue systems, there is a turn taking method (the speaker will

become the audience in the next turn and so on). However, in N-agents dialogue

systems:

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 109

 One agent will take the next turn; or

 More than one agent will take the next turn; or

 The turn could pass from one agent to another (under some conditions).

(5) Termination:

In two agent dialogue systems, the dialogue will terminate when one (or both agents)

has achieved its main goal. However, in N-agents dialogue systems:

 All agents have to achieve the dialogue main goal (e.g. in a persuasion

dialogue: all agents have to be persuaded); or

 The majority of agents have to achieve the dialogue main goal (e.g in a

persuasion dialogue: the majority of agents have to be persuaded)

In the following sections, we will present a new system for dialogue among N-

agents. This system will be:

 A closed system; and

 A flexible addressing system (messages could be one-to-one, one-to-many, or

one-to-all); and

 A system where more than one agent can take the next turn; and

 A flexible termination system (the software engineer can decide the

termination condition).

4.4.3 Method for Dialogue Games among N-agents

In this section, we describe a method for dialogue among N agents. We adapted this

method from [Ito and Shintani, 1996]. The idea is to consider the dialogue among N-

agents as a dialogue between two agents by dividing agents into groups composed of

two agents under certain conditions. For example, Figure 4.12 shows an example of a

persuasion dialogue among seven agents (A, B, C, D, E, F and G):

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 110

Figure 4.12: Dialogue Among N-agents

(1) Agents A and C accept the main topic, whereas B, D, E, F and G reject the main

topic (note that in this figure the accepting agents are underlined and the

rejecting agents are not underlined).

(2) Agents are divided into groups composed of two agents under one condition,

which is that we cannot put two accepting or two rejecting agents in one group.

In this example, group one consists of A and B and group two consists of C and

D.

(3) Within each group, dialogues take place between two agents in order to reach an

agreement. In this example, agent A argues with agent B and agent C argues with

agent D.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 111

Figure 4.13: Example two of Dialogue Among N-agents.

(4) Within each group (whose members have the same opinion) the system will

randomly select one agent to represent the beliefs of the group. In this example,

since agents A and B accept the main topic, the system will select agent A to

represent his group.

(5) Agents are divided into groups composed of two agents under two conditions: 1)

we cannot put two accepted or rejected agents in one group; 2) we cannot put the

agents, who previously argued about the same topic and did not reach a decision,

in one group. Group one now consists of A, B and E and group two consists of C

and F.

(6) The system reverts back to step 3 and repeats the same steps over and over again

until agents reach an agreement. In this example, agent A argues with agent E

and agent C argues with agent F.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 112

Figure 4.14: Example three of Dialogue Among N-agents.

(7) A represents his group and C represents his group. Then, the groups become (A,

B, E, D) and (C, F,G). Lastly, A argues with agent D and C argues with G and

the agents reach a conclusion.

Figure 4.13 and Figure 4.14 illustrate different examples of dialogue among N-

agents.

In Figure 4.13, the system divides agents into two groups: group one consists of A

and B and group two consists of C and D. Then, in the second round, the system

divides agents into two groups: group one consists of A, B and E and group two

consists of C and D. After that, F becomes a member of group one in the third round

and G becomes a member of group one in the fourth round. Finally, A persuades C

and then D.

In Figure 4.14, the system divides agents into groups composed of two agents: group

one consists of A and B and group two consists of C and D. Instead of selecting a

representative for each group's belief, each agent reports accepting or rejecting the

main topic. Following this, the system divides agents into groups composed of two

agents under the same condition (we cannot put two accepted or two rejected agents

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 113

in one group): group one consists of A and E, group two consists of B and F. After

that, the system divides agents into groups composed of two agents: group one

consists of B and C, group two consists of E and D, and group three consists of F and

G. Finally, the dialogue succeeds if all agents are persuaded.

As mentioned in the beginning of this section, the idea of dividing agents into groups

composed of two agents under certain conditions is mentioned first in Ito and

Shintani's work [Ito and Shintani, 1996]. In their work they prove (using decision

support system based on multi-agent negotiation) that this is a correct procedure that

will always terminate and produces the correct results.

4.4.4 DID for N-agents

As mentioned in section 4.1, to represent an argument protocol in full, nine concepts

are required (Locutions; Participants Commitment Store and Commitment rules;

Structural rules; Turn Taking rules; Post-condition rules; Pre-condition rules;

Locution types; and Sender and receiver agents roles). However, in N-agents'

dialogue, we need to add more concepts:

(1) Recursion rules (recursive-conditions and recursive-arguments): a set of rules

which, when repeating them over the recursive arguments, can repeat the same

task more than once until the recursive-condition cannot be achieved
18

. In N-

agents' systems, an agent's role may need to recurse by sending the same locution

to more than one agent (one-to-many system and one-to-all system) under some

recursive-condition. These conditions are usually done over some recursive

argument.

(2) Repeated locution: in the case of N-agents, more than one agent could use the

same locution icon.

18
 In agent protocol (e.g. LCC) recursion is accomplished by repeating the same process (or agent

role) a specified number of times (the process or role calls itself) either to process a list or to loop it

until the recursive condition fails.

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 114

Therefore, we need to add an extra diagrammatic notation to the DID for N-agents,

which represents recursion rules and repeated locution.

Figure 4.15 illustrates the locution icon for N-agents. A solid red rhombus represents

a recursive-condition (which denotes applying the same part of the role definition

more than once until it reaches a recursive-condition that fails). The red oval shape

represents a recursive argument. The dotted, rounded-corner, rectangle box around

the locution icon represents the recursive use of the locution by more than one agent

(repeated locution concept).

Note that, the dividing agents condition, of the described method for dialogue among

N-agents in section 4.4.3, could be a pre-condition, post-condition or recursive-

condition. Therefore, we must use either the solid red rhombus (where dividing rules

= recursive-conditions) or the dotted rhombus (where dividing rules = pre- or post-

conditions) to represent dividing agents condition.

Appendix B presents the DID for N-agents Formal Definition and a detail example of

a persuasion dialogue among N-agents.

4.4.5 Problems and Solutions of DID for N-agents

As we can see from the Figure 4.15, in the case of DID for N-agents, the diagram

may become too complex for the user to create, understand and edit. In other words,

describing DID for N-agents in the diagrammatical way could be unpractical for the

user for two primary reasons:

(1) DID for N-agents overloads the diagrammatic notation with new arrows and

symbols. These notations can confuse the user and make the overall task

(drawing DID for N-agents) more difficult than writing the agent protocol by

hand.

(2) Drawing DID for N-agents is complex since DID for N-agents is too close to

agent protocol. The user needs to understand the notation of recursive, how to

set up the constraint, and must learn how to write an agent protocol.

To solve this problem, we will hide the details of DID diagrams for N-agents in a

black box (reusable diagram) and use parameters, which are transformational, to get

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 115

Locution name

Role Name Role Name

Role Arguments Role Arguments

Agent ID Agent ID

Figure 4.15: Locution Icon For N-agents.

Sender and

Receiver agent's

roles concept

Locution

concept

Locution types

concept

Locution type

Sender

Informatio

n

Receiver

Informatio

n

Sender

condition

Receiver

condition

Recursive

conditions

Recursive

argument

Repeated Locution

Recursion

Commitment rules

and

Pre-condition rules

concept

Commitment rules

and

Post-condition

rules

concept

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 116

Figure 4.16: Black Box of DID for N-agents

the information needed, in order to do the protocol automated synthesis, from the

user.

Essentially, we will get the divided conditions and termination conditions from the

user. Then, the black box divides agents into groups composed of two agents under

divided conditions and terminates the dialogue between N-agents when the

termination conditions are satisfied (see Figure 4.16). Figure 4.17 illustrates the DID

for N-agents (see appendix B for more details about the DID for N-agents). This

figure shows how agents are divided into groups composed of two agensts, when

dialogues take place between two agents and when the game moves from DID for

two agents to DID for N-agents.

4.5 Summary

This chapter has presented a new recursive visual high-level language called DID

between AIF (or other argumentation-based formalism) and multi-agent protocol

languages (e.g. LCC). DID provides mechanisms to represent, in an abstract way, the

dialogue game protocol rules by giving an overview of the permitted moves and their

relationship to each. It can model any interaction between two agents (unique-moves

and immediate-reply protocol) that can be described as a sequence of recursive steps

terminating in a base case.

Agents Groups

DID for N-agent

In Figure 4.17

Termination conditions

Input Output Black Box

DID for

two agents

Divided conditions

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 117

Figure 4.17: Dialogue Interaction Diagram for N-agents (DIDN)

proposal(Topic)

proposalReciver proposalSender

IDproposal AgentList,NAgent,NSupporters,Topic

ID IDproposal

accept(Topic)

CollectResp-
Receiver

replyToProposal-
Sender

AgentList,NAgent,NS

upporters,Topic,
NReply,

AcceptingList,

RejectionList,
NAccepting,

NRejection

,SendingList

KB,CS, IDproposal

IDproposal ID

reject(Topic)

replyToProposal-

Receiver

replyToProposal-

Sender

AgentList,NAgent,N

Supporters,Topic,N
Reply,

AcceptingList,
RejectionList,
NAccepting,
NRejection,
SendingList

KB,CS, IDproposal

IDproposal ID

argueWith(Topic,AgentP,AgentO)

ResultReciver ResultSender

KB,CS,

IDproposal
AgentList,NAgent,NSupport

ers,Topic, AcceptingList,
RejectionList, AgentGroup

ID IDproposal

reachAgreement(Topic)

ResultReciver ResultSender

KB,CS,

IDproposal

AgentList,NAgent,NS

upporters,Topic,

AcceptingList,
RejectionList,
AgentGroup

ID IDproposal

RecursiveStarting Locution

RecursiveReceiving

Locution

Divided Locution

RecursiveTermination Locution

Others

Agent1

Agent1

Dialogue Interaction Diagram for two agents

(See Figure 4.3)

All other agents

Output:

Topic,IDProposal

Input: Topic, IDproposal, IDP, IDO

All agents

Proposal

RecursiveReceiving

Locution

Bridging the Specification Protocol Gap in Argumentation

Chapter 4: Dialogue Game Argument Specification Language 118

DID explains the order and type of messages that two or more agents can interchange

and the rules of the message interchange. However, a DID cannot explain how two

or more agents can cooperate and interact with each other in situations where more

complex protocols involving more than turn-taking are required.

In practice, the DID language provides the first step to get from the user the missing

agent protocol concepts. In chapter 5, we will present the next step which allows us

to get the missing development language concepts and perform the automated

synthesis of multi-agent protocol.

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 119

Chapter 5

Synthesis of Concrete Protocols

As mentioned in the previous chapter, to fully generate via automatic synthesis the

agent protocols from any AIF description we need to obtain missing concepts

(information) from both the user and the development language. The previous

chapter provides a detailed description on how to obtain these missing agent protocol

concepts from the user, by using the DID language. DID explains the order and type

of messages that two or more agents can interchange and the rules of the message

interchange. However, it does not explain how two or more agents can cooperate and

interact with each other because it omits essential concepts related to the dynamics of

interaction between agents.

This chapter proposes a mechanism on how to obtain the missing concepts from the

development language as well as to provide a fully automated synthesis method to

generate argumentation agent protocols from DID. In practice, when dealing with the

agent interaction protocol synthesis and the development of an agent protocol,

common codes and relations can be found. These codes can be specified as design

patterns, which are independent from any particular protocol specification problem

and can recur repeatedly across protocols. In this chapter, we put forward some

protocol design patterns that can be embedded in the automated synthesis tools and

used with DID to support agent protocol development activity. The reason for

introducing protocol design patterns in argumentation is that by re-using them it is

possible to reduce the effort of building argumentation agent protocols.

We open this chapter with a description of LCC-Argument protocol design patterns

in Section 5.1. Section 5.2 presents the automated synthesis steps for generating

agent protocols between two-agents and N-agents automatically. Finally, section 5.3

presents a summary of the LCC-Argument protocol design patterns and the

automated synthesis method.

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 120

5.1 LCC-Argument Patterns

By taking a closer look at the LCC protocol in chapter 2, we can see that this

protocol is quite complex, and therefore requires us to consider issues that the

software engineer may not be aware of until later in the implementation process,

such as synchronisation of the role. To overcome this problem, we supply LCC-

Argument patterns, which are re-usable, parameterisable LCC specifications that can

be embedded in automated synthesis tools and used with DID to support agent

protocol development. This allows us to reduce the effort of building more complex

argumentation protocols by re-using design patterns repeatedly to generate

argumentation protocols (see chapter 2 for more information about design patterns).

The set of these more complex design patterns is, in theory, unbounded (for the same

reason that design patterns in traditional software engineering are unbounded) but in

practice families of interaction patterns occur.

In fact, LCC-Argument patterns capture the different relationships and interactions

between LCC agents' roles. These patterns provide common LCC argument code for

developing protocols and their components along with explaining how two or more

agents can interact with each other. They are generic solutions to the common LCC

argumentation protocol development problem that recur across protocols repeatedly

and can be adapted to generate specific protocols.

To explain LCC–Argument patterns, we will use the following seven generic

characterisations (adapted from Appleton, Taylor and Wray works [Appleton,1998;

Taylor and Wray, 2004] to suit the needs of our argumentation domain):

(1) Name: a meaningful unique name which could be used to refer to the pattern's

knowledge and structure;

(2) Problem: a statement or a question that relates to the problem which describes the

problem that the pattern solves;

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 121

(3) Solution: relationship between the pattern's roles, which describes how the

problem is solved, often including a diagram that describes how the problem is

solved;

(4) Context (Pre-conditions): the initial configuration of the protocol before the

pattern is applied;

(5) Consequence (Post-conditions): the configuration of the protocol after the pattern

has been applied;

(6) Structure: identifies the pattern's structure, its roles and their relationship to each

other;

(7) Rewriting methods: a set of rewriting rules based on the semantics of LCC, which

allow generic relationship between roles to be rewritten in a specific way (Note

that, there might be a direct, complex or indirect relation between roles).

Pattern1:

Name: Starting pattern (SP).

Problem: How to start an argument (dialogue).

Solution:

Proposal

Proposal

Role 1

Proposal

Proposal

Role 2

Audience

Audience

Role 1

Starting Locution

Change to
Change to

1.a
2.b

Audience

Audience

Role 2

1.b
2.a

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 122

Both agents send/receive a message (locution) and then change their roles to remain

in the dialogue:

(1) Proposal (speaker) agent proposes an action (start a dialogue) by sending a

starting locution (step 1.a) and then changes its role (step 1.b).

(2) Audience agent receives a starting locution (step 2.a) and then changes its role

(step 2.b)

Context (Pre-conditions): Use a Starting Pattern when a proposal agent has not

started a dialogue.

Consequence (Post-conditions):

(1) Both the proposal and audience agents engage in a dialogue.

(2) Both the proposal and audience agents change their roles to remain in the

dialogue.

Structure:

a(RP1(KBP,CSP, CSA,Topic, IDA),IDP)::=

SL(Topic) => a(RA1(KBA,CSA, CSP, IDP),IDA) C1

then

a(RP2 (KBP,CSP , CSA,Topic, IDA),IDP).

a(RA1(KBA,CSA, CSP, IDP),IDA)::=

C2 SL(Topic) <= a(RP1(KBP,CSP, CSA,Topic, IDA),IDP)

then

a(RA2(KBA,CSA, CSP, Topic ,IDP),IDA)

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 123

Where SL represents the Starting Locution and C1 represents a condition that must

be satisfied in order for a proposal agent IDP to send the Starting Locution SL.

Usually, C1 is a condition over Topic. C2 represents a condition that must be

satisfied after audience agent IDA receives the starting locution.

In this LCC code, there are two roles: RP1 and RA1. The RP1 role of the proposal agent

IDP has five input parameters: (1) KBP which represents the agent knowledge base

list (the propositions that the agent believes); (2) CSP which represents the agent

commitment store list (a set of propositions to which the player is committed in the

discussion). Note that CSP is initially empty, since RP1 represents the first role of the

proposal agent in the LCC protocol; (3) CSA which represents agent A commitment

store list; (4) Topic to open dialogue; (5) IDA which represents the audience agent

identifier. The RP1 role begins by checking the C1 condition. If the C1 condition is

true, then the RP1 role sends a Starting Locution SL to the RA1 role and then it changes

its role to the RP2.

The RA1 role of audience agent IDA has four input parameters: (1) KBA which

represents the agent knowledge base list; (2) CSA which represents the agent

commitment store list. Note that CSA is initially empty, since RA1 represents the first

role of the audience agent in the LCC protocol; (3) CSP which represents agent P

commitment store list; (4) IDP which represents the proposal agent identifier. The

RA1 role begins by receiving a Starting Locution SL from RP1. Then, the RA1 role

satisfies C2 and then it changes its role to the RA2.

Rewriting methods: none

Pattern 2:

Name: Termination-Intermediate Pattern (TIP).

Problem: How to recur or terminate an argument (dialogue) between two agents.

Solution: Both agents send/receive a message(s) (locution) to terminate the dialogue

or to change role.

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 124

(1) Dialogue Termination (Termination locution):

 First agent (sender) sends a locution to terminate the argument.

 Second agent (receiver) receives a locution, which states the sender’s

intention to terminate the argument.

(2) Changing role (Intermediate locution):

 First agent (sender) sends a permitted locution (step 2.a) and then changes its

role (step 2.b).

 Second agent (receiver) receives a permitted locution and then changes its

role.

Context (Pre-conditions): Use a Termination-Intermediate Pattern when the

dialogue between the proposal agent and audience agent has already started.

Consequence (Post-conditions):

(1) Dialogue Termination (Termination locution):

 The dialogue between the proposal and audience agents is terminated.

(2) Changing role (Intermediate locution):

Sender

Sender

Role 1

Sender

 Sender

Role 2

Receiver

Receiver

Role 1

Receiver

 Receiver

Role 2

Termination Locution

Change to Change to

1

Intermediate Locution
2 a

2 b

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 125

 Both the sender and receiver agents change their roles to remain in the

dialogue.

Structure:

This pattern represents a generic recursive clause. The variable R in the definition

above represents the role name. KB and CS are the role arguments and ID is the agent

identifier. TL represents Termination Locution and IL represents an Intermediate

Locution. '≈>' represents outgoing messages from a role, and '<≈' represents

incoming messages.

In this LCC pattern, there are two roles: RSender1 and RReceiver1. The RSender1 role of

sender agent IDSender has five input parameters: (1) KBSender which represents the

agent knowledge base list; (2) CSSender which represents the agent commitment store

list; (3) CSReceiver which represents the receiver agent commitment store list; (4) Topic

to open the dialogue; (5) IDReceiver which represents the receiver agent identifier. The

RSender1 role begins by sending either a Termination Locution TL to the RReceiver1 role

or an Intermediate Locution IL. The '≈>' symbol indicates that the RSender1 role may

send one or more different TLs (or ILs) to the RReceiver1 role.

The RReceiver1 role of the receiver agent IDReceiver has five input parameters: (1)

KBReceiver which represents the agent knowledge base list; (2) CSReceiver which

represents the agent commitment store list; (3) CSSender which represents the sender

agent commitment store list; (4) Topic to open the dialogue; (5) IDSender which

represents the sender agent identifier. The RReceiver1 role begins by receiving either a

a(RSender1(KBSender,CSSender, CSReceiver,Topic,IDReceiver),IDSender)::=

RSender1
TL

≈> RReceiver1

or

RSender1
 IL

≈> RReceiver1

a(RReceiver1(KBReceiver,CSReceiver, ,CSSender ,Topic,IDSender),IDReceiver)::=

R Receiver1 <≈
 TL

 R Sender1

or

R Receiver1 <≈
 IL

 R Sender1

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 126

Termination Locution TL from the RSender1 role or an Intermediate Locution IL. The

'<≈' symbol indicates that the RReceiver1 role may receive one or more different TLs

(or ILs) from the RSender1 role.

Rewriting methods:

First (Sending Termination Method): Rewriting of the "RSender1
TL

≈> RReceiver1"

If there is a general relation of "RSender1
TL

≈> RReceiver1" then it is possible to specialise

it within two different statements:

Rewrite 1: (one termination locution)

We might specialise "RSender1
TL

≈> RReceiver1" to an interaction statement that sends a

TL(Topic) termination message to agent IDReceiver, which is achieved by the

constraint C1. In practice, C1 may represent more than one condition that is

connected by or and and operators. Usually, C1 is a condition over the role

arguments (e.g. KB and CS).

 TL (Topic) => a(RReceiver1(KBReceiver,CSReceiver, CSSender,Topic, IDSender),IDReceiver)

 C1

Rewrite 2:(multiple termination locution)

We might specialise "RSender1
TL

≈> RReceiver1" to an interaction statement that sends a

TL(Topic) termination message to agent IDP which is achieved by the constraint C1.

Then, there is another termination relation between RSender1 and RReceiver1.

 TL (Topic) => a(RReceiver1(KBReceiver,CSReceiver,CSSender,Topic, IDSender),IDReceiver)

 C1

 or

 R Sender1
TL

≈> R Receiver1

Second (Receiving Termination Method): Rewriting of the "RReceiver1<≈
 TL

 RSender1"

If there is a general relation of "RReceiver1<≈
 TL

 RSender1" then it is possible to specialise

it within two different statements:

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 127

Rewrite 1: (one termination locution)

We might specialise "RReceiver1<≈
 TL

 RSender1" to an interaction statement that receives

a TL(Topic) termination message from agent IDSender. C2 represents a condition that

must be satisfied after receiver agent receives the Termination Locution TL. In

practice, C2 may represent more than one condition that is connected by or and and

operators. Usually, C2 is a condition over the role arguments (e.g. KB and CS).

 C2 TL (Topic)

 <= a(RSender1(KBSender,CSSender,CSReceiver, Topic, IDReceiver),IDSender)

Rewrite 2:(multiple termination locution)

We might specialise "RReceiver1<≈
 TL

 RSender1" to an interaction statement that receives

a TL(Topic) Termination message from agent IDSender. C2 represents a condition that

must be satisfied after receiver agent receives the Termination Locution TL. Then,

there is another termination relation between RSender1 and RReceiver1.

 C2 TL(Topic)

 <= a(RSender1(KBSender,CSSender, CSReceiver, Topic, IDReceiver),IDSender)

 or

 RReceiver1 <≈
 TL

 RSender1

Third (Sending Intermediate method): Rewriting of "RSender1
 IL

≈> RReceiver1"

Rewrite 1: (One intermediate locution)

We might specialise "RSender1
 IL

≈> RReceiver1" to an interaction statement that sends

message IL(Topic) to agent IDReceiver which is achieved by the constraint C3.

Following this, it changes its role. In practice, C3 may represent more than one

condition, which is connected by or and and operators. Usually, C3 is a condition

over the role arguments (e.g. KB and CS).

 IL(Topic) => a(RReceiver1(KBReceiver,CSReceiver, CSSender,Topic, IDSender),IDReceiver)

 C3

 then

a(RSender2 (KBSender,CSSender, CSReceiver, Topic, IDReceiver),IDSender)

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 128

Rewrite 2: (multiple Intermediate locutions):

We might specialize "RSender1
 IL

≈> RReceiver1" to an interaction statement that sends

message IL(Topic) to agent IDReceiver, which is achieved by the constraint C3, after

that it recurses. Then, there is another recursive relation between RSender1 and

RReceiver1.

 IL(Topic) => a(RReceiver1(KBReceiver,CSReceiver, CSSender, Topic, IDSender),IDReceiver)

 C3

 then

 a(RSender2 (KBSender,CSSender, CSReceiver, Topic, IDReceiver),IDSender))

 or

 RSender1
 IL2

≈> RReceiver1

Fourth (Receiving Intermediate method): Rewriting of "RReceiver1 <≈
 IL

 RSender1 "

Rewrite 1: (One intermediate locution)

We might specialise "RReceiver1 <≈
 IL

 RSender1" to an interaction statement that receives

message IL(Topic) from agent IDSender. Following this, it changes its role. C4

represents a condition that must be satisfied after receiver agent receives the

Intermediate Locution IL. In practice, C4 may represent more than one condition,

which is connected by or and and operators. Usually, C4 is a condition over the role

arguments (e.g. KB and CS).

 C4 IL(Topic)

 <= a(RSender1(KBSender,CSSender, CSReceiver, Topic, IDReceiver),IDSender)

 then

a(RReceiver2 (KBReceiver,CSReceiver, CSSender, Topic, IDSender),IDReceiver)

Rewrite 2: (multiple Intermediate locutions):

We might specialize " RReceiver1 <≈
 IL

 RSender1 " to an interaction statement that

receives message IL(Topic) from agent IDSender, after that it recurses. Then, there is

then another Recursive relation between RSender1 and RReceiver1. C4 represents a

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 129

condition that must be satisfied after receiver agent receives the Intermediate

Locution IL.

 C4 IL(Topic)

 <= a(RSender1(KBSender,CSSender, CSReceiver, Topic, IDReceiver),IDSender)

 then

a(RReceiver2 (KBReceiver,CSReceiver, CSSender, Topic, IDSender),IDReceiver)

 or

 RReceiver1 <≈
 IL2

 RSender1

Pattern3:

Name: Broadcasting Pattern (BP)

Problem: use this pattern to solve four problems at the same time:

(1) How to start an argument (dialogue) for N >= 3 agents, or how to broadcast new

Topic to N >= 3 agents;

(2) How to respond to the broadcasting;

(3) How to divide agents into groups of two;

(4) How to terminate an argument (dialogue) for N>=3 agents.

Solution:

(1) Step one (Start a Dialogue or Broadcast a Topic): (see Figure 5.1)

a) Proposal agent proposes an action (start dialogue) by sending a

proposal(Topic) locution to all agents (step a.1) and then changes its role

to replyToProposalReceiverproposal (step a.2).

b) Other agents (all agents except the proposal agent) receive a

proposal(Topic) locution (step b.1) and then change their role to

replyToProposalSender (step b.2).

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 130

Figure 5.1: Broadcasting Pattern Solution (Step one)

Proposal

proposalSender

Proposal

replyToProposalReceiverproposal.

Agent1

proposalReceiver1

Agent1

replyToProposalSender1

proposal(Topic)

Change to
Change to

Agent2

proposalReceiver2

Agent2

replyToProposalSender2

Change to

Agentn

proposalReceivern

Agentn

replyToProposalSendern

Change to

a.2
a.1

b.2

b.2

b.2

b.1

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 131

(2) Step two (Respond to the Broadcasting): (see Figure 5.2)

a) Other agents send either an accept(Topic) or reject(Topic) locution to the

proposal agent (step a.1) and then change their role to resultSender (step

a.2).

b) The proposal agent receives either an accept(Topic) or reject(Topic)

locution (step b.1) and then changes its role to resultReceiver (step b.2).

(3) Step three (Divide or Terminate):

a) Divide: (see Figure 5.3)

i. The proposal agent sends argueWith(Topic,AgentP,AgentO) location

for a pair of agents (step i.1): AgentP and AgentO (telling them to

interact together) and then recurses (step i.2) or changes its role (step

i.3).

ii. Both AgentP and AgentO receive argueWith(Topic,AgentP,AgentO)

location (step ii.1) and then change their roles to startDID role (step

ii.2).

b) Terminate: (see Figure 5.4)

i. The proposal agent sends reachAgreement(Topic) location to all other

agents (step i.1) and then terminates its role (step i.2).

ii. All other agents receive reachAgreement(Topic) (step ii.1) and then

terminate their roles (step ii.2).

Context (Pre-conditions):

Use the Broadcasting Pattern when a proposal agent has not already started a

dialogue for N>= 3 agents.

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 132

Figure 5.2: Broadcasting Pattern Solution (Step two)

Agent1

replyToProposalSender1

Agent1

resultReceiver1

Proposal

resultSender

accept(Topic)

or

reject(Topic)

Change

to

Change to

Agent2

replyToProposalSender2

Agent2

resultReceiver2

accept(Topic)

or

reject(Topic)

Agentn

replyToProposalSendern

Agentn

resultReceivern

accept(Topic)

or

reject(Topic)

Change

to

Change

to

a.2 a.1

a.2

a.2

b.2

a.1

a.1

Proposal

replyToProposalReceiver

b.1

b.1

b.1

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 133

Figure 5.3: Broadcasting Pattern Solution (Step three:Divide)

AgentP1

ResultReceiverP1

argueWith(Topic,AgentP1,AgentO1)

--

argueWith(Topic, ,AgentO1,AgentP1)

AgentP1

startDIDP1

Prposal

divideGroup

AgentPt

ResultReceiverPt

AgentPt

startDIDPt

argueWith(Topic,AgentPt,AgentOt)

argueWith(Topic, AgentOt ,AgentPt)

AgentO1

ResultReceiverO1

AgentO1

startDIDO1

AgentOt

ResultReceiverOt

AgentOt

startDIDOt

Change

to

i.3

ii.2

ii.2

ii.2

ii.2

i.1

i.1

i.1

i.1

recourses
i.2

Proposal

recursproposal

ii.1

ii.1

ii.1

ii.1

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 134

Figure 5.4: Broadcasting Pattern Solution (Step three:Termination)

Agent1

 ResultReceiver1

reachAgreement(Topic)

Agent 2

ResultReceiver2

Agent n

ResultReceivern

--

Proposal

sendReach-

Argument

reachAgreement(Topic)

reachAgreement(Topic)

reachAgreement(Topic)

Terminate

i.2

i.1

i.1

i.1

i.1

ii.2

ii.2

ii.2

Terminate

Terminate

Terminate

ii.1

ii.1

ii.1

ii.1

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 135

Consequence (Post-conditions):

(1) Step one (Start a Dialogue or Broadcast a Topic):

 Proposal and other agents engaged in a dialogue.

 Proposal agent committed to Topic ϵ CSProposal (updates its commitment store

by adding the Topic to it).

 Proposal and all other agents (receivers) change their roles so as to remain in

the dialogue.

(2) Step two (Respond to the Broadcasting):

 Both sender and receiver agents change their roles so as to remain in the

dialogue.

(3) Step three (Divide or Terminate):

 Divide: Divide agents into groups of two and start dialogues between two

agents.

 Terminate: The dialogue between N-agents is terminated.

Structure:

Broadcasting Pattern contains 8 roles:

 Two roles to solve the first problem (How to start an argument (dialogue) for N

>= 3 agents, or how to broadcast new Topic to N >= 3 agents) (see Figure 5.5):

(1) proposalSenderproposal (2)proposalReceiverID

 Two roles to solve the second problem (How to respond to the broadcasting?)

(see Figure 5.6):

 (1) ReplyToProposalSenderID (2)replyToProposalReceiverproposal

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 136

Figure 5.5 : Structure (proposalSenderproposal and propsalReceiverreceiver

roles)

 Four roles to solve the third and fourth problems (How to divide agents into

groups of two, and how to terminate an argument (dialogue) for N>=3 agents)

(see Figure 5.7):

(1) resultSenderproposal (2) sendReachAgreement Proposal

(3) divideGroupProposal (4) resultReceiverID

Where DivideC2 represents a condition that must be satisfied in order for a proposal

agent to divide agents into groups composed of two agents. By default, DivideC2 is

"lessThan(NAccepting,NSupporters) and isNotEmpty(RejectionList) and

isNotEmpty(AcceptingList))". TerminationC1 represents a condition that must be

satisfied in order for a proposal agent to terminate the dialogue between N-agents.

By default, TerminationC1 is "greaterThanOrEequal(NAccepting,NSupporters)" a

function which returns true if NAccepting is greater than or equal to NSupporters.

AgentGroupC3 represents a function which divides agents into groups composed of

two agents.

a(proposalSenderproposal(AgentList,NAgent,NSupporters,Topic),IDproposal)::=

proposal(Topic) => a(proposalReceiverID(KBID,CSID,IDproposal), ID)

getAgentIDFromList (AgentList,otherAgents,ID) and addTopicToCS(Topic,CSproposal)

then

(

a(replyToProposalReceiverproposal (AgentList, NAgent,NSupporters,Topic,[],[],[],0,0), IDproposal)

 agentListEmpty(AgentList)

or

a(proposalSenderproposal (OtherAgents,NAgent,NSupporters,Topic), IDproposal)

).

a(proposalReceiverID(KBID,CSID,IDproposal), ID)::=

proposal(Topic)<=a(proposalSenderproposal(AgentList,NAgent,NSupporters,Topic), IDproposal)

then

a(replyToProposalSender(KBID,CSID, Topic,IDproposal), ID).

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 137

Figure 5.6: Structure (replyToProposalSender and

replyToProposalReceiverproposal roles)

a(replyToProposalSenderID(KBID,CSID,Topic,IDproposal), ID) ::=

(

 accept(Topic) => a(replyToProposalReceiverproposal(_ , _ , _ , _ , _ , _ , _ , _, _),IDproposal)

 findTopicInKB(Topic, KBID) and notFindTopicInCS (Topic,CSID) and

 notFindOppTopicInCS (not(Topic),CSID) and addTopicToCS(Topic,CSID)

or

 reject(Topic) => a(replyToProposalReceiverproposal (_ , _ , _ , _ , _ , _ , _ , _ , _),IDproposal)

 notFindTopicInKB(Topic,KBProposal) and notFindTopicInCS(Topic,CSProposal)

)

 then

 a(resultReceiverID(KBID,CSID,Topic,IDproposal), ID) .

a(replyToProposalReceiverproposal(AgentList,NAgent,NSupporters,Topic,SendingList,

AcceptingList,RejectingList,NAccepting,NRejecting), IDproposal) ::=

(

addIDToList(SendingList,OtherSedingList,ID) and

addToAcceptingList(AcceptingList,AccList,ID) and

increaseAccepting(NAccepting,NAcc) and

RejList= RejectionList and

NRej is NRejection

 accept(Topic) <= a(replyToProposalSenderID(KBID,CSID,Topic,IDproposal), ID)

or

addIDToList(SendingList,OtherSedingList,ID) and

addToRejectingList(RejectingList,RejList,ID) and

increaseRejecting(NRejecting,NRej) and

AccList=AcceptingList and

NAcc is NAccepting

 reject(Topic) <= a(replyToProposalSenderID(KBID,CSID,Topic,IDproposal), ID)

)

 then

a(resultSenderproposal (AgentList,NAgent, NSupporters,Topic,

OtherSedingList,AcceptingList, RejectionList,NAccepting,NRejection), IDproposal)

notEqual(AgentList, OtherSendingList).

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 138

Figure 5.7: Structure (resultSenderproposal , sendReachAgreement Proposal,

divideGroupProposal and resultReceiver roles)

a(resultSenderproposal(AgentList,NAgent,

NSupporters,Topic,AcceptingList,RejectionList, AgentGroup), IDproposal) ::=

a(sendReachAgreementproposal (AgentList,NAgent,Topic),IDproposal)

 TerminationC1

or

a(divideGroupproposal (AgentList , NAgent,NSupporters ,Topic,AcceptingList,RejectionList,

[]) ,IDproposal) DivideC2.

a(sendReachAgreementProposal (AgentList, Topic),IDProposal) ::=

reachAgreement(Topic) => a(resultReceiverID(KBID,CSID,IDproposal), ID)

 getAgentIDFromList (AgentList,otherAgents,ID)

then

(

null isAgentListEmpty(AgentList)

or

a(sendReachAgreementproposal (OtherAgents, Topic), IDproposal)

).

a(divideGroupProposal (AgentList, NAgent,NSupporters ,Topic,

AcceptingList,RejectionList,AgentGroup), IDproposal)::=

 (

argueWith (Topic,P,O) => a(resultReceiverP(KBp,CSp,Topic,IDproposal), P)

 AgentGroupC3

then

argueWith (Topic,O,P) => a(resultReceiverO(KBo,CSo,Topic,IDproposal), O)

)

then

(

a(recursproposal (AgentList, NAgent,NSupporters ,0 ,Topic),IDproposal)

 RecursC4

or

a(divideGroupproposal(AgentList ,NAgent,NSupporters,Topic,Ac,Re,AGroup),IDProposal))

)

a(resultReceiverP(KBP,CSP,CSO,Topic,IDproposal),P) ::=

reachAgreement(Topic) <= a(sendReachAgreementProposal (AgentList, Topic),IDProposal)

or

(

 argueWith(Topic,P,O) <=

a(divideGroupProposal(AgentList,NAgent,NSupporters,Topic,AcceptingList,RejectionList,

AgentGroup),IDproposal)

then

 a(startDID(KBP,CSP, CSO,Topic, IDproposal, O),P)).

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 139

By default, AgentGroupC3 is a call to the "creatOneAgentGroup" function which

creates one agent group by getting one agent ID from the RejectingList and one

agent ID from the AcceptingList.

RecursC4 represents a condition that must be satisfied in order for a proposal agent

to recur (to change its role to recursproposal). By default, RecursC4 is "isListEmpty(Re)

or isListEmpty(Ac)" which returns true if Re (or Ac) list is empty list.

The meaning of each role argument is shown in Table 5.1. The meaning of each

function is shown in Table 5.2(a) and Table 5.2(b).

In this LCC pattern (Figure 5.5, Figure 5.6 and Figure 5.7), the proposalSenderProposal

role of proposal agent IDProposal has four input parameters: AgentList, NAgent,

NSupporters and Topic. The proposalSenderProposal role begins by sending the

proposal(Topic) message to one agent (at the head of the AgentList list) and then if

the AgentList list is empty, the proposal agent changes its role to

replyToProposalReceiverProposal role, otherwise, it recurses over the remaining agents

(recurses over the OtherAgents list. Note that OtherAgents = AgentList - {the head of

the AgentList}). The proposalReceiverID role begins by receiving the proposal(Topic)

message from the proposalSenderProposal role and then the receiver agent changes its

role to the replyToProposalSender role.

The control then changes to the replyToProposalSender role. The

replyToProposalSender role of agent ID has four input parameters: KBID, CSID,

Topic and IDProposal. It begins by checking if it can accept Topic by checking four

conditions: findTopicInKB, notFindTopicInCS, notFindOppTopicInCS and

addTopicToCS. If all of these conditions is true, the replyToProposalSender sends

the accept(Topic) message to replyToProposalReceiverProposal role. Otherwise, the

replyToProposalSender role checks two conditions: notFindTopicInKB and

notFindTopicInCS. If these two conditions are true, it sends the reject(Topic)

message to the replyToProposalReceiverProposal role. Then it changes its role to the

resultReceiverID role.

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 140

Argument Meaning

AgentList Agents ID list

NAgent The number of agents (note that the number of agents > = 3)

NSupporters The number of supporters agents which is used to end a dialogue when

agents reach an agreement (when the supporter number is equal to the

number of the acceptance agents)

Topic Main dialogue topic

IDProposal Proposal agent ID

OtherAgents Agents ID list

Where, OtherAgents =AgentList –{The head of the AgentList}

KBID Agent Knowledge Base

CSID Agent Commitment Store

AcceptanceList The list of the accepting agents ID (note that when

replyToProposalReceiverProposal role is called AcceptanceList is empty)

RejectioList The list of the rejected agents ID (note that when

replyToProposalReceiverProposal role is called RejectioList is empty)

NAccAgents The number of accepted agents (note that when

replyToProposalReceiverProposal role is called NAccAgents equal 0)

NRejAgents The number of rejected agents(note that when

replyToPrposalReceiverProposal role is called NRejAgents equal 0)

SendingList The list of the sender (replier) agents ID (note that when

replyToProposalReceiverProposal role is called SendingList is empty)

AgentGroup Agent group list. Each element of the agent group list is composed of

two agents ID (P,O)

P Agent ID

O Agent ID

Table 5.1 : Broadcasting Pattern Roles Arguments

The replyToProposalReceiverProposal role of the proposal agent has four input

parameters: AgentList, NAgent, NSupporters and Topic. It also has five output

parameters: NReply, AcceptingList, RejectionList, NAccepting and NRejection. The

values of the output parameters when the role begins are as follows: NReply=0,

AcceptingList=[], RejectionList=[], NAccepting=0 and NRejection=0.

 The replyToProposalReceiverProposal begins by receiving either the accept(Topic) or

reject(Topic) from the replyToProposalSender role. If it receives accept(Topic)

message, it: (1) adds the accepting agent ID to the AcceptingList by achieving

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 141

Function Meaning

getAgentIDFromList

(AgentList,otherAgents,ID)
The getAgentIDFromList funciton gets one agent ID from the

AgentsList and puts the remainder agents in the otherAgents list.

addTopicToCS

(Topic,CS)
The addTopicToCS function always returns true and results in

the agent adding Topic to its commitment store CS.

agentListEmpty

(AgentList)
The agentListEmpty function returns true if AgentList is empty

(which means that proposal agent broadcasts the Topic to all

agents)

findTopicInKB

(Topic, KBID)
The findTopicInKB function returns true if the agent is able to

find Topic in its Knowledge Base KB

notFindTopicInCS

(Topic,CSID)

The notFindTopicInCS function returns true if the agent is not

able to find Topic in its Commitment Store CS

notFindOppTopicInCS

(not(Topic),CSID)

The notFindOppTopicInCS which returns true if the agent is not

able to find the opposite of Topic (not(Topic)) in its

commitment store CS

notFindTopicInKB

(Topic,KB)
The notFindTopicInKB function returns true if the agent is not

able to find Topic in its Knowledge Base KB

addToAcceptingList

(AcceptingList,AccList,ID)

The addToAcceptingList function a always returns true and

results in proposal agent adding the accepting agent ID to the

AcceptingList (AccList =AcceptingList {ID}).

addIDToList(SendingList,

OtherSendingList,ID

The addIDToList function a always returns true and results in

proposal agent adding the agent ID to the SendingList (

OtherSendingList =SendingList {ID}).

addToRejectingList

(RejectingList,RejList,ID)

The addToRejectingList function always returns true and results

in proposal agent adding the rejecting agent ID to the

RejectingList (RejList=RejectingLsit {ID}).

increaseRejecting

(NRejecting,NRej)
The increaseRejecting function increases the number of

rejecting agents by adding one to NRejecting (NRej =

NRejecting +1)

increaseAccepting

(NAccepting,NAcc)

The increaseAccepting function increases the number of

accepting agents (NAcc = NAccepting +1)

increaseReply

(NReply,NRep)
The increaseReply function increase the number of replying

agents by adding one to NReply (NRep = NReply +1)

RejList= RejectingList Assigns the value of RejectingList argument to the RejList

variable

NRej is NRejecting Assigns the value of NRejecting argument to the NRej variable

Table 5.2 (a): Broadcasting Pattern Functions

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 142

Function Meaning

AccList=AcceptingList Assigns the value of AcceptingList

argument to the AccList variable

NAcc is NAccepting Assigns the value of NAccepting argument

to the NAcc variable

notEqual(AgentList, OtherSendingList) The notEqual function compare the

AgentList with the OtherSendingList and

returns true if these two lists are equal

greaterThanOrEequal(NAccepting, NSupporters)
The greaterThanOrEequal function

returns true if the number of accepting

agents NAccepting is greater than or equal

to the number of supporter agents

NSupporters.

(NAccepting >= NSupporters)

lessThan(NAccepting ,NSupporters)
The lessThan function returns true if the

number of accepting agents NAccepting is

less than the number of supporter agents

NSupporters.

creatOneAgentGroup(RejectingList,Re,AcceptingList,

Ac, AgentGroup, AGroup,P,O)

The creatOneAgentGroup function:

(1) Creates one agent group by getting

one agent O from the Rejectinglist and

one agent P from the Acceptinglist;

and

(2) Adds the new agents groups to

AGroup list (AGroup = AgentGroup +

{(P,O)}; and

(3) Saves the remained rejection agent in

Re list and saves the remained

accepting agents in Ac.

isListEmpty(Re) or isListEmpty(Ac)

The isListEmpty function returns true if Re

(or Ac) list is empty list

Table 5.2 (b): Broadcasting Pattern Roles Functions

addToAcceptingList function; (2) increases the number of accepting agents by

achieving increaseAccepting function; (3) increases the number of replying agents by

achieving increaseReply function; (4) gives default value for the RejList argument

(RejList=RejectingList); and (5) gives default value for the NRej argument (NRej is

NRejecting). If the replyToProposalReceiverProposal role receives the reject(Topic)

message, it: (1) adds the rejecting agent ID to the RejectingList by achieving

addToRejectingList function; (2) increases the number of rejecting agents by

achieving increaseRejecting function; (3) increases the number of replying agents by

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 143

achieving increaseReply function; (4) gives default value for the AccList argument

(AccList=AcceptingList); and (5) gives default value for the NAcc argument (NAcc is

NAccepting).

The proposal agent then changes the replyToProposalReceiverProposal role to the

resultSenderproposal. The resultSenderproposal role has nine input parameters: AgentList,

NAgent, NSupporters, Topic, NReply, AcceptingList, RejectionList, NAccepting and

NRejection. The replyToProposalReceiverProposal role begins by checking

TerminationC1 condition. If this condition is true, then the proposal agent changes its

role to the sendReachAgreementproposal role. Otherwise, the

replyToProposalReceiverProposal role checks DivideC2 condition. If this condition is

true, then the proposal agent changes its role to the divideGroupproposal role.

The sendReachAgreementproposal role has two parameters: AgentList and Topic. It

begins by sending the reachAgreement(Topic) message to one agent (at the head of

the AgentList list) and then it recurses over the remaining agents (recurses over the

OtherAgents list, where OtherAgents = AgentList - {the head of the AgentList}). The

sendReachAgreementproposal role ends once the reachAgreement(Topic) message is

sent to all the agents.

The divideGroupproposal role has six input parameters: AgentList, NAgent,

NSupporters, Topic, AcceptingList and RejectionList. It also has one output

parameter: AgentGroup. This role is responsible for dividing the agents in the

AgentList list into a group composed of two agents. It begins by checking

AgentGroupC3. If this condition is true, then this role creates the first agent group by

taking one agent from the head of the AcceptingList and one agent from the head of

the RejectionList. It then sends the argueWith message to the first group (agent P and

agent O) and asks them to start arguing together about the dialogue Topic. Then, if

the RecursC4 condition is true, the proposal agent changes its role to the

recursProposal role, otherwise, it recurses.

Finally, the control changes to the resultReceiverID role. The resultReceiverID role of

agent ID has four input parameters: KBID, CSID, Topic and IDPrposal. It begins by

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 144

receiving either the reachAgreement(Topic) message or the argueWith(Topic,P,O)

message from the proposal agent. The resultReceiverID role ends once it has received

the reachAgreement(Topic) message. Otherwise, agent ID changes its role to

startDID role.

Rewriting methods: none

Pattern 4:

Name: Move-To-Dialogue Pattern (MTDP).

Problem: How to move from a dialogue for N-agents to a dialogue for two agents.

Solution:

(1) The agent changes its role to the sender starting role of the two agent dialogue, if

it is able to satisfy the conditions of the sender role;

(2) Or the agent changes its role to the receiver starting role of the dialogue between

two agents if it is able to satisfy the conditions of the receiver role;

Context (Pre-conditions): Use a Move-To-Dialogue Pattern to connect the N-agents

dialogue with a two agents dialogue.

Consequence (Post-conditions): Start the dialogue between two agents.

Agent

startDID

Agent

Sender

Role 2

Agent

startDID

Change to
Change to

1 2

Agent

 Receiver

Role

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 145

Structure:

Where RSender1 represents the first sender role in the dialogue between two agents and

RReceiver1 represents the first receiver role in the dialogue between two agents. C1

represents a condition that must be satisfied in order for an agent to change its role to

the sender role (the Starting Locution sender role of the dialogue between two

agents). C2 represents a condition that must be satisfied in order for an agent to

change its role to the receiver role (the Starting Locution receiver role of the dialogue

between two agents).

Rewriting methods: none

Pattern 5:

Name: Recurs-To-N-Dialogue Pattern (RTNDP).

Problem: How to inform the proposal about the ending of the dialogue between two

agents.

Solution:

(1) Each agent (in the dialogue between two agents) sends an end message to the

proposal agent when the dialogue between two agents terminates.

(2) The proposal agent sums up the reply and changes its role to the

proposalSenderproposal , only if the number of replied agents equals the number of

agents. See Figure 5.8.

Context (Pre-conditions): The dialogue between two agents has terminated.

Consequence (Post-conditions): N-agents dialogue recurs.

a(startDIDID(KBID,CSID, CSPartnerID,Topic, IDProposal, PartnerID),ID) ::=

a(RSender1 (KBID,CSID, CSPartnerID,Topic, IDProposal, PartnerID),ID) C1

or

a(RReceiver1 (KBID,CSID, CSPartnerID,Topic, IDProposal, PartnerID),ID) C2.

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 146

Figure 5.8: Solution of Recurs-To-N-Dialogue Pattern

Agent1

ROLEAgent1

Agent2

ROLEAgent2

Proposal

proposalSenderproposal

end(Topic)

Change to

Agen3

ROLEAgent3

Agent4

ROLEAgent4

end(Topic)

Agentn-1

ROLEAgentn-1

Agentn

ROLEAgentn

end(Topic)

1

2

1

1

Proposal

recursProposal

end(Topic)

1

end(Topic)

1

end(Topic)

1

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 147

Structure:

In this LCC code, there is one role recursProposal. The recursProposal role of the

proposal agent IDProposal has five input parameters: AgentList, NAgent, NSupporters,

NReply and Topic. The recursProposal role begins by receiving two or more end

locutions from sender agents Rsender and receiver agents RReceiver (Rsender and RReceiver

role in the LCC protocol between two agents). Then, it checks isEqual condition

(isEqual condition returns true if the number of replied agents N is equal to the

number of agents NAgents). If isEqual condition is true, the proposal agent changes

its role to the proposalSenderProposal role, otherwise, it recurses.

Rewriting methods:

Rewriting of the "recursProposal

<≈ RSender2"

If there is a general relation of "recursProposal <≈ RSender2" then it is possible to

specialise within two different statements:

a(recursProposal (AgentList, NAgent,NSupporters,NReply,Topic),IDProposal)

::=

N = NReply +1 end(Topic)

<= a(Rsender (_ ,_ , _ ,Topic,IDProposal, _), IDsender)

or

N = NReply +1 end(Topic)

<= a(Rreceiver (_ ,_ , _ ,Topic,IDProposal, _), IDreceiver)

or

recursProposal

<≈

 end
 RSender2

then

(

a(proposalSenderproposal (AgentList,NAgent,NSupporters,Topic), IDproposal)

 isEqual(N, NAgent)

or

a(recursProposal (AgentList, NAgent,NSupporters, N,Topic),IDProposal)).

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 148

Rewrite 1: (one end locution)

We might specialise "recursProposal

« RSender2" to an interaction statement that sends

two end(Topic) messages (one from sender agent and one from receiver agent in the

LCC protocol for two agents) to the proposal agent.

 N = NReply +1 end(Topic) <= a(Rsender2 (_ ,_ , _ ,Topic,IDProposal _ ,), IDsender2)

 or

 N = NReply +1 end(Topic)<= a(Rreceiver2 (_ ,_ , _ ,Topic,IDProposal, _),IDreceiver2)

Rewrite 2: (multiple end locutions)

We might specialise " recursProposal

<≈ RSender2 " to an interaction statement that sends

two end(Topic) messages (one from sender agent and one from receiver agent in the

LCC protocol for two agents) to the proposal agent. Then, there is another relation

between proposal agent and senders (recursProposal <≈ RSender3).

 N = NReply +1 end(Topic) <= a(Rsender2 (_ ,_ , _ ,Topic,IDProposal_ ,), IDsender2)

 or

 N = NReply +1 end(Topic)<= a(Rreceiver2 (_ ,_ , _ ,Topic,IDProposal, _),IDreceiver2)

 or

 recursProposal

<≈ RSender3

This section describes in detail five LCC–Argument patterns. In the next section, we

will use these five patterns along with DID to generate an LCC agent protocol.

5.2 Agent Protocol Automated Synthesis Tool

LCC–Argument patterns only provide a general solution to the common agent

argumentation protocol development problems. Even though these patterns include

some LCC roles they are not codes in themselves (final protocol) [Budinsky et.al.,

1996]. Therefore, we need an automated synthesis tool that can be used to translate

the patterns into final code.

Our automated agent protocol synthesis tool "GenerateLCCProtocol" (see chapter 7

for more details), summarised pictorially in Figure 5.9, can generate agent protocols

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 149

Figure 5.9: Agent Protocol Automated Synthesis Tool

Locution Type Pattern Name

Starting Locution Starting Pattern

Termination Locution Termination- Intermediate Pattern

Intermediate Locution Termination- Intermediate Pattern

Table 5.3: Relationship Between Locution Type and Patterns

from DID diagrams automatically. It receives as input a DID and returns the

corresponding LCC argumentation agent protocol by using LCC–Argument patterns.

In practice, by using this tool, no additional programming is required.

5.2.1 Automated Synthesis Steps for Generating Agent Protocol

between Two Agents

In general, during the automated synthesis process, every time we progress from

level to level in the DID diagram the tool generates a pair of LCC clauses or roles

and switches roles (the sender agent will became the receiver and vice versa). The

automated synthesis process occurs from the top-down and moving left to right. The

synthesis process matches each level of the DID with only one LCC-Argument

pattern.

The automated synthesis process of the two agents' protocol consists of five steps

(The two agents protocol automated synthesis algorithm is illustrated in Figure 5.10.

A worked example is described in detail in appendix C):

Argument

Specification

Language

(DID)

Multi-agents

Development

Language

(LCC)

Design Patterns

(LCC-Argument Patterns)

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 150

1. Input (DID, LCC-Argument patterns)

2. Select&Save Icon= one DID locution icon (Step1)

3. Select&Save Pattern= one pattern from the LCC-Argument patterns library (Step2)

4. If (Pattern has rewriting methods) then (Step3)

5. If (level has one locution icon) then

6. Select&Save RewriteMethod=Rewrite 1

7. If (level has more than one locution icon) then

8. Select&Save RewriteMethod=Rewrite 2

9. Match (Icon,Pattern,RewriteMethod) (Step4)

10. Go To line 2 (Step5)

11. End matching all levels in the DID with the corresponding patterns

12. Output LCC protocol

Figure 5.10: Two Agents Protocol Automated Synthesis Algorithm

(1) The tool begins with the locution icon at the top of the DID. Note that if more

than one locution icon appears in one level, then the tool begins with the

locution to the left (since it works from left to right).

(2) Following this, the tool selects one pattern from the LCC-Argument patterns

library. This pattern depends on the locution type. Note that each locution type is

connected to only one LCC-Argument pattern. See Table 5.3.

(3) After that, if the selected pattern has rewriting methods, the tool selects one or

more of the rewriting methods. The number of rewriting methods selected is

dependent on the number of locution icons in this level. If this level has one

locution icon, the tool selects the rewriting method Rewrite 1 (rewriting method

with one locution). If this level has more than one locution icon, the tool selects

the rewriting method Rewrite 2 (rewriting method with multiple locutions).

(4) Finally, the tool applies the selected pattern by matching formal parameters

(variables) with its corresponding values in the locution icon to generate pairs of

LCC clauses or roles (sender and receiver roles). If the selected pattern has

rewriting methods, the tool matches the formal parameters (variables) in the

selected rewriting methods with its corresponding values in the locution icon, to

generate pairs of LCC clauses or roles. The matching process matches one

parameter at a time. It begins with the locution icon and occurs from the top-

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 151

down and left to right. It then moves to the left side conditions and then to the

right side conditions. Finally, if the selected pattern has recursive (changing)

roles, the tool moves to the next level and matches the recursive roles in the

pattern with the recursive roles in the locution icon on the next level.

(5) Moves to the next level in the DID and repeats steps 2, 3 and 4. Note that the

automated synthesis process finishes when the tool matches the last level in the

DID with one of the LCC-Argument patterns. If the selected pattern has

recursive (changing) roles, the tool moves to the locution icon reply level, which

represents the reply rules of the selected locution icon, and matches the recursive

roles in the pattern with the recursive roles in the locution icon on this level.

5.2.2 Automated Synthesis Steps for Generating Agent Protocol for N-

agents

In general, during the automated synthesis process of the N-agents' protocol, the tool

uses Broadcasting, Move-To-Dialogue and Recurs-To-N-Dialogue patterns to divide

agents into groups of two and to generate LCC protocols for N-agents. It then

follows the automated synthesis process of the two agents' protocol (see section

5.2.1) to generate the LCC protocol from the DID for two agents, which allows pairs

of groups to communicate with each other.

The automated synthesis process of the N-agents' protocol consists of four steps (The

N-agents' protocol automated synthesis algorithm is illustrated in Figure 5.11. A

worked example is described in detail in appendix C):

(1) The tool begins with the Broadcasting Pattern. It gets TerminationC1, DivideC2,

AgentGroupC3, and RecursC4 conditions from the user. Note that if the user

does not specify these conditions, the tool uses the default functions of these

conditions (see section 5.1 pattern 3).

(2) Following this, the tool uses the Move-To-Dialogue Pattern to connect N-agents'

dialogue with the two agents' dialogue. The tool applies this pattern by matching

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 152

1. Tool Input (DID, LCC-Argument patterns)

2. Use Broadcasting Pattern (Step1)

3. Pattern Input (TerminationC1, DivideC2, AgentGroupC3, RecursC4)

4. Use Move-To-Dialogue Pattern (Step2)

5. Match(Starting locution icon in the DID for two agents, Move-To-Dialogue Pattern)

6. Use Recurs-To-N-Dialogue Pattern (Step3)

7. recursNumber = number of Termination locution icon in the DID for two agents -1

8. If (recurseNumber = 0) then //one Termination Locution

9. Select&Save RewriteMethod=Rewrite 1

10. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod)

11. Else //more than one Termination Locution

12. Loop begin (if i=1)

13. Select&Save RewriteMethod=Rewrite 2

14. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod)

15. i= i+1

16. Loop end (if i = recurseNumber)

17. Go To two agents algorithm (Step4)

18. Add lines to connect N-agents' protocol with two agents' protocol

19. Output LCC protocol

Figure 5.11: N-agents' Protocol Automated Synthesis Algorithm

formal parameters (variables) with its corresponding values in the Starting

locution icon in the DID for two agents to generate one LCC role.

(3) After that, the tool uses the Recurs-To-N-Dialogue Pattern to generate the LCC

role which is used to inform the proposal agent about the ending of the dialogue

between two agents:

a) The tool selects one or more rewriting methods. The number of selected

rewriting methods is the number of the Termination Locution icons in the

DID for two agents, minus one. For example, if the number of Termination

Locution icons is equal to five, then the number of end messages is equal to

5 x 2 = 10 and the number of rewriting methods is equal 5-1= 4. Eeach

rewriting methods has two end messages and by default Recurs-To-N-

Dialogue pattern receives two end messages one from the first Termination

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 153

Locution sender role and one from the first Termination Locution receiver

role.

b) The tool applies this pattern by matching the formal parameters (variables)

with their corresponding values in the Termination locution icons in the

DID for two agents to generate one of the LCC clauses or roles for the

proposal agent.

(4) Finally, the tool follows the steps of the automated synthesis process of two

agents' protocol to generate the LCC protocol from the DID for two agents. Note

that the tool adds two lines after each Termination message (locution) in the

LCC protocol for two agents to connect N-agents' protocol with two agents'

protocol:

 Line one: Sending end message to proposal.

 Line two: Changing agents' role to proposalReceiverID (agent change from

the LCC protocol for two agents to LCC protocol for N-agents.

 (

 TL (Topic) => a(R, ID)

 then

 end(Topic)=>

 a(recursProposal(AgentList,NAgent,NSupporters,NReply,Topic),IDProposal)

 then

 a(proposalReceiverID (KBID,CSID, IDproposal), ID)

)

5.3 Summary

This chapter has presented a set of LCC–Argument patterns as well as a fully

automated synthesis method to generate LCC argumentation agent protocols by

using DID and LCC-Argument patterns. In practice, the argument LCC protocol is

Bridging the Specification Protocol Gap in Argumentation

Chapter 5: Synthesis of Concrete Protocols 154

quite complex, and therefore requires considering issues that the software engineer

may not be aware of until later in the implementation process, such as

synchronisation of the role. The usage of DID and LCC-Argument patterns can speed

up the protocol development process and help to prevent subtle design issues that can

cause errors in the protocol. It also improves code readability and the efficiency of

role synchronisation mechanisms.

Our automated synthesis tool enables to generate any LCC argumentation agent

protocol for two agents. However, in the case of the dialogue between N-agents (N

>= 3), the automated synthesis tool uses a broadcasting method to divide agents into

groups composed of two agents under certain conditions. Then the tool uses DID and

LCC-Argument patterns for two agents to allow pairs of groups to communicate with

each other. Therefore, the user needs to either write a new LCC protocol or define

new patterns to be able to work with different structures concerning how the set of

agents is partitioned. This means that in the case of N-agents there is no finite,

complete set of patterns.

Adding new patterns and writing protocols from scratch requires profound

knowledge of agent protocols, and adding new patterns risks introducing errors into

the synthesiser. It is impractical to ask software engineers to ensure that the protocol

is error-free each time they want to write a protocol or add new patterns or to fully

consider the semantics of the DID. Therefore, the next chapter proposes a

verification model, which is used to ensure that key properties of the DID

specification are preserved by the resulting LCC protocol.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 155

Chapter 6

Verification Method based on Coloured Petri Nets and SML

Chapter 5 discussed the automatic generation of LCC protocols from DID by using

LCC-Argument patterns and concluded that checking the validity of the generated

protocols is necessary since the current LCC-argument pattern library is limited to

two agents, unique-moves and immediate-reply dialogue games and a broadcasting

pattern for N-agents. The user needs to understand the semantics of the DID and to

define new patterns to be able to work with different dialogue game structures. For

these, the user must ensure that the new patterns are error-free and fully consider the

semantics of the DID in order to avoid the generation of inappropriate LCC protocols

(a poorly designed interaction pattern may result in inappropriate LCC protocols,

even with a perfect synthesis mechanism).

This chapter proposes a verification methodology based on CPN and the SML

language to verify the semantics of the DID specification against the semantics of the

synthesised LCC protocol. In other words, our verification methodology is a

technique for automatically evaluating, testing or verifying the correctness of LCC-

argument patterns.

We automatically transform an LCC protocol to a Coloured Petri Nets (CPNs)

model, which is then used to check the validity of various concurrent behaviour

properties of the resulting LCC protocol by using state space techniques and CPN

SML language (see chapter 2, section 2.3 for more details about CPN SML). The

verification process, illustrated in Figure 6.1, is divided into four steps:

1. Automated transformation LCC protocol to CPNXML file (see chapter 2,

section 2.3 for more details about CPNXML file);

2. Construction of state space;

3. Automated creation of DID properties file;

4. Applying the verification process.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 156

Figure 6.1: Verification Process

This chapter discusses the details of each of these four steps. Section 6.1 describes

the automated transformation approaches from an LCC protocol to CPNXML file.

Section 6.2 highlights the construction of state space approaches. Section 6.3

describes the automated creation approaches of DID properties file. Section 6.4

details the verification approach for the LCC protocol and Section 6.5 Section 6.6

summarises this chapter.

Automated

Creation

DID Properties

S

DID

1

2

3

4

Verification model

(General behaviour

property checking

code in CPN SML)

Result

True /False

Applying the

verification process

Resulting LCC

Protocol

Automated

Transformation

CPNXML

State space

 Construction

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 157

6.1 Step One: Automated Transformation from LCC to

CPNXML

We have developed a step-by-step technique that allows the user to transform an

LCC protocol into the CPNXML file (see chapter 2 for more details about CPNXML

file) by:

(1) Declaring colour sets and functions.

(2) Generating a CPN subpage for each LCC role. Each subpage represents a role

behaviour.

(3) Connecting all the CPN subpages by generating one CPN superpage, which

describes the interaction between roles, where the messages that are passed

between two roles determine the interaction between the subpages of the two

roles.

In practice, to automate the transformation process from an LCC protocol into

CPNXML file we use LCC-CPNXML tables (Table 6.1, Table 6.2, Table 6.3, Table

6.4, Table 6.5, Table 6.6, Table 6.7, Table 6.8, Table 6.9, Table 6.10, Table 6.11 and

Table 6.12), where transitions and places are connected according to a set of

transformation rules. The use of LCC-CPNXML tables makes the transformation

faster and the resulting CPN model can be executed with data and analysed, not only

by our tool, but also by other users (using CPN Tool) since CPN has a

comprehensible graphical representation.

The following sections give more details of the transformation process from an LCC

protocol into CPNXML file.

6.1.1 Declaration of Colour Sets and Functions

Declaration of Colour Sets

We use three different primary types of colour sets:

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 158

(1) Type TOPIC. This type is used to model the main dialogue topic. It is defined as

a string.

 colset TOPIC = string;

(2) Type Message. This type is used to model messages. It is defined as the product

of the types Locution, TOPIC, Premise, ID and ID. The types Locution, TOPIC,

Premise and ID are defined as a string. Locution type represents locution

(message) name (e.g. claim). TOPIC type represents the main dialogue topic.

Premise type represents the topic premise. ID type represents agent ID. The first

ID in the Message type represents the message sender agent's ID and the second

ID in the Message type represents the message receiver agent's ID.

 colset Message = product Locution * TOPIC * Premise * ID * ID ;

(3) Type Role. This type is used to model role arguments. It is defined as the

product of the types ID, CSlist, KBlist, RoleName, TOPIC, Premise, CSlist and

ID. The types RoleName, TOPIC, Premise and ID are defined as a string. The

RoleName represents the new (recursive) role name. The TOPIC type represents

the main dialogue topic. The Premise type represents the topic premise. The ID

type represents agent ID. The first ID in the Role type represents agent's ID and

the second ID in the Role type represents the other agent's ID. The type CSlist is

defined as a list of CS representing the possible contents of the agent

commitment store at a specific time. The type CS is defined as a string. The first

CSlist in the Role type represents agent's CS and the second CSlist in the Role

type represents other agent's CS. The type KBlist is defined as a list of

FactXPremise representing the possible contents of the agent knowledge base at

a specific time. The type FactXPremise is defined as a product of the types Fact

and Premise. Both Fact and Premise are defined as a string. The Fact type

represents the agent belief and the Premise type represents the agent proposition

or premise which is used to prove that an agent's belief is true (e.g. Fact= "The

car is safe" and Premise="The car has an airbag").

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 159

 colset FactXPremise= product Fact * Premise;

 colset KBlist =list FactXPremise;

 colset CS=string;

 colset CSlist = list CS;

 colset Role =

 product ID* CSlist*KBlist*RoleName* TOPIC * Premise* CSlist*ID ;

Declaration of Functions

As mentioned in chapters 3 and 4, each agent has a knowledge base KB (private

knowledge) and a commitment store CS (common knowledge). During the dialogue

game the agents take turns to make moves. Each agent makes his choice between

possible moves depending on its CS and KB. In practice, the CS is continuously

updated at each move by either adding to or subtracting from it arguments.

For that reason, we defined thirteen different basic functions which are used to find,

get, add or subtract an argument from either a CS or KB list. These functions are

written in the CPN SML language [Jensen and Kristensen, 2009; Ullman, 1998]. See

appendix D for a detailed explanation of these functions:

(1) Add an argument 't' to a CS list:

 addTopicToCS

(2) Add a premise of an argument 't' to a CS list:

 addPremiseToCS

(3) Add a defeat of a premise or an argument to a CS list:

 addDefeatToCS

(4) Subtract an argument 't' from a CS list:

 subtractFromCS

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 160

(5) Find an argument 't' in a CS list:

 findTopicInCS

(6) Find a premise of an argument 't' in a CS list:

 findPreInCS

(7) Find an argument in a KB list:

 findTopicInKB

(8) Find a premise of an argument in a KB list:

 findPreInKB

(9) Find a defeat of a premise or an argument in a KB list:

 findDefeatInKB

(10) Find the opposite of an argument 't' in a CS list:

 findOppTopicInCS

(11) Find the opposite of the premise 'p' of an argument 't' in a CS list:

 findOppPreInCS

(12) Return (get) the premise of an argument 't' from a KB list:

 getPremiseFromKB

(13) Return (get) the defeat of an argument 't' from a KB list:

 getDefeatFromKB

The CPNXML format of the three types of colour sets and thirteen functions are

saved in the Global Declaration file called "CPNmainCode". The user does not need

to know about these colour set types or functions unless he/she needs to define new

types or functions. For more information about how to define new CPN SML colour

set types or functions, please read [Westergaard and Verbeek, 2002; Aalst and Stahl,

2011; Jensen et al., 2007].

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 161

LCC
(Role)

a(RoleName(Arguments,Topic),AgentID)

LCC
CPNs Model

CPNXML Structure

non <page id="ID6">

<pageattr name= Role Name />

</page>

Table 6.1: LCC-CPNXML Transformation Table (Role)

6.1.2 Generation of a CPN Subpage

Nine tables are used to automate the transformation process from LCC roles into

CPN subpages.

Table one: LCC Role

Generate a new subpage for each LCC role where (as shown in Table 6.1):

1) The beginning of a page block is identified by the start tag <page>;

2) The end of a page block is identified by the end tag </page>;

3) The page ID= unique identifier;

4) The page name = role name.

Table Two: LCC Message Sending Statement

The LCC message sending code is transformed into a high-level Petri net by creating

(as shown in Table 6.2):

(1) One new transition where the transition ID = unique identifier, the transition

name= "Send" + Message name, and guard condition = LCC message Boolean

conditions (line 1 to 7 of Table 6.2);

(2) One new place where the place ID = unique identifier, the place name = message

name, place colour set type = Message and place (port) type= Out (line 8 to 19

of Table 6.2);

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 162

LCC Code
(Send a Message)

Message(Topic) => a(RoleName(Arguments),AgentID)

 Conditions

CPNs Model CPNXML Structure

Send message symbol

1. <trans id="ID1423689023">

2. <text> "Send"+ message name </text>

3. <cond >

4. <text tool="CPN Tools "version="2.9.11">

5. LCC Boolean conditions </text>

6. </cond>

7. </trans>

8. <place id="ID1423689035">

9. <text> Message name </text>

10. <type id="ID1423689036">

11. <text tool="CPN Tools" version="2.9.11">

12. Message </text>

13. </type>

14. <initmark id="ID1423689037">

15. <text tool="CPN Tools" version="2.9.11"/>

16. </initmark>

17. <port id="ID1424205036" type="Out">

18. </port>

19. </place>

20. <arc id="ID1423689049"

21. orientation="TtoP" order="1">

22. <transend idref="New transition ID"/>

23. <placeend idref="New place ID"/>

24. <annot id="ID1423689050">

25. <text tool="CPN Tools version="2.9.11">

26. Message arguments </text>

27. </annot>

28. </arc>

Table 6.2:LCC-CPNXML Transformation Table (Send a message)

(3) One arc (output arc), which is used to connect the new transition to the new

place, where the arc ID = unique identifier, the arc type= TtoP (output arc), the

transition ID reference = the new transition ID, the place ID reference = the

new place ID, the arc inscription = (Message arguments) (line 20 to 28 of

Table 6.2).

Table Three: LCC Message Receiving Statement

The LCC message receiving code is transformed into a high-level Petri Net by

creating (as shown in Table 6.3):

[Boolean conditions]

Out

 (Message

arguments)

 Message

Message

Name

"Send"+

Message

Name

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 163

LCC
(Receive a Message)

Conditions

Message(Topic) <= a(RoleName(Arguments),AgentID)

CPNs Model CPNXML Structure

Receive message
symbol

1. <place id="ID1423689035">

2. <text> Message name </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Message </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. </initmark>

10. <port id="ID1424205036" type="In">

11. </port>

12. </place>

13. <trans id="ID1423689023">

14. <text> "Receive"+ message name </text>

15. <cond >

16. <text tool="CPN Tools "version="2.9.11">

17. LCC Boolean conditions </text>

18. </cond>

19. </trans>

20. <arc id="ID1424199627"

21. orientation="PtoT" order="1">

22. <transend idref="New transition ID"/>

23. <placeend idref="New place ID"/>

24. <annot id="ID1424199628">

25. <text tool="CPN Tools" version="2.9.11">

26. Messages arguments

27. </text>

28. </annot>

29. </arc>

Table 6.3: LCC-CPNXML Transformation Table (Receive a message)

(1) One new place where the place ID = unique identifier, the place name= message

name, place colour set type = Message and place (port) type = In (line 1 to 12 of

Table 6.3);

In

(Message

arguments)

[Boolean

conditions]

]

Message

"Receive" +

Message

Name

Message

Name

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 164

(2) One new transition where the transition ID = unique identifier, the transition

name = "Receive" + Message name and guard condition = LCC message

Boolean conditions (line 13 to 19 of Table 6.3);

(3) One arc (input arc), which is used to connect the new place to the new transition,

where the arc ID = unique identifier, the arc type= PtoT (input arc), the

transition ID reference = the new transition ID, the place ID reference= the new

place ID, the arc inscription = (Message arguments) (line 20 to 29 of Table 6.3).

Table Four: LCC Recursive (Changing Role) Statement

The LCC Recursive code is transformed into a high-level Petri net by creating (as

shown in Table 6.4):

(1) One new place where the place ID = unique identifier, the place name=

"ChangeRoleTo" + new role name, place colour set type = Role and place (port)

type = Out (line 1 to 12 of Table 6.4);

(2) One arc (out arc), which is used to connect the new place to the last message

transition, where the arc ID = unique identifier, the arc type= TtoP (output arc),

the transition ID reference = the last message transition ID, the place ID

reference = the new place ID, the arc inscription = (Role arguments). Note that

if the ChangeRoleConditions represents either add or subtract condition, it will

appear in the Role arguments (line 13 to 22 of Table 6.4).

Table Five: LCC "or" Statement

The LCC "or" code is transformed into a high-level Petri net by creating (as shown in

Table 6.5):

(1) One new place where the place ID = unique identifier, the place name= main

role name, place colour set type = Role and place (port) type = In (line 1 to 12

of Table 6.5);

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 165

LCC
(LCC Then keyword

followed by Changing Role

statement)

then

a(NewRoleName(Arguments),AgentID)

 ChangeRoleConditions

LCC

CPNs Model

CPNXML Structure

Change role

symbol

1. <place id="ID1423689035">

2. <text> "ChangeRoleTo" + New Role name </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Role </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. </initmark>

10. <port id="ID1424205036" type="Out">

11. </port>

12. </place>

13. <arc id="ID1423689049"

14. orientation="TtoP" order="1">

15. <transend idref="Last Message transition ID"/>

16. <placeend idref="New place ID"/>

17. <annot id="ID1423689050">

18. <text tool="CPN Tools version="2.9.11">

19. New Role Arguments + ChangeRoleConditions

20. </text>

21. </annot>

22. </arc>

Table 6.4: LCC-CPNXML Transformation table (Then keyword and Change
Role)

(2) One or more arcs. The number of arcs depends on the number of messages.

These arcs are used to connect the new place to the message transitions. Each

arc has an arc ID = unique identifier, the arc type= PtoT (input arc), the

transition ID reference = the message transition ID, the place ID reference= the

new place ID, the arc inscription = (Role arguments) (line 13 to 32 of Table

6.5).

Out

"ChangeRole

To"+

New LCC

Role Name

Role

(Changing

role

conditions

+

New role

arguments)

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 166

LCC
(LCC or keyword)

or

LCC
CPNs Model

CPNXML Structure

Or symbol

1. <place id="ID1423689035">

2. <text> Main role name </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Role </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. </initmark>

10. <port id="ID1424205036" type="In">

11. </port>

12. </place>

13. <arc id="ID1423689049"

14. orientation="PtoT" order="1">

15. <transend idref="First Message transition ID"/>

16. <placeend idref="New place ID"/>

17. <annot id="ID1423689050">

18. <text tool="CPN Tools version="2.9.11">

19. Role arguments

20. </text>

21. </annot>

22. </arc>

23. <arc id="ID1423689049"

24. orientation="PtoT" order="1">

25. <transend idref=" Second Message transition ID "/>

26. <placeend idref=" New place ID "/>

27. <annot id="ID1423689050">

28. <text tool="CPN Tools version="2.9.11">

29. Role arguments

30. </text>

31. </annot>

32. </arc>

Table 6.5:LCC-CPNXML Transformation Table (Or keyword)

Main role

name

Role In

Role

arguments

Role

arguments

First

Message

Second

Message

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 167

LCC

(Dialogue Topic Argument)

a(RoleName(Arguments, Topic),AgentID)

LCC

CPNs Model

CPNXML Structure

Dialogue Topic symbol 1. <place id="ID1423689035">

2. <text> OpenDialogoe </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Topic </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. </initmark>

10. <port id="ID1424205036" type="In">

11. </port>

12. </place>

13. <arc id="ID1423689049"

14. orientation="PtoT" order="1">

15. <transend idref="Role message transition ID"/>

16. <placeend idref="New place ID"/>

17. <annot id="ID1423689050">

18. <text tool="CPN Tools version="2.9.11">

19. Topic arguments

20. </text>

21. </annot>

22. </arc>

Table 6.6: LCC-CPNXML Transformation table (Dialogue Topic)

Table Six: LCC Dialogue Topic Argument

The LCC Topic argument of the primary role (the first role in the LCC code which is

responsible for opening the dialogue) is transformed into a high-level Petri net by

creating (as shown in Table 6.6):

In Topic

Open

Dialogue

(Topic

arguments)

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 168

(1) One new place where the place ID = unique identifier, the place name=

"OpenDialgoue", the place colour set type = Topic and place (port) type= In

(line 1 to 12 of Table 6.6);

(2) One arc, which is used to connect the new place to the role message transition of

the agent first role, where the arc ID = unique identifier, the arc type= PtoT

(input arc), the transition ID reference = the role message transition of agent first

role's ID, the place ID reference= the new place ID, the arc inscription = (Topic

argument) (line 13 to 22 of Table 6.6).

Table Seven: LCC Role Arguments

Each agent in the dialogue has one or more arguments. Our tool supplies these

arguments by creating (as shown in Table 6.7):

(1) One new place where the place ID = unique identifier, the place name= agent

ID, the place colour set type = Role and place (port) type = In (line 1 to 12 of

Table 6.7);

(2) One arc (input arc), which is used to connect the new place to the role message

transition of agent first role, where the arc ID = unique identifier, the arc type=

PtoT (input arc), the transition ID reference = the role message transition of an

agent first role's ID, the place ID reference = the new place ID, the arc

inscription = (Role arguments) (line 13 to 22 of Table 6.7).

Table Eight: LCC "." End Statement

The LCC end statement is representd by the mark '.' after sending or receiving a

message statement. It is transformed into a high-level Petri net by creating (as shown

in Table 6.8):

(1) One new place where the place ID = unique identifier, the place name= end,

place colour set type = Role and place (port) type = Out (line 1 to 12 of Table

6.8);

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 169

LCC Code

(Starter Role Arguments)

a(RoleName(Arguments, Topic),AgentID)

LCC

CPNs Model

CPNXML Structure

Starter Role argument
symbol

1. <place id="ID1423689035">

2. <text> Agent ID </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Role </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. Arguments initial values

10. </initmark>

11. <port id="ID1424205036" type="In">

12. </port>

13. </place>

14. <arc id="ID1423689049"

15. orientation="PtoT" order="1">

16. <transend idref=Role main transition ID"/>

17. <placeend idref="New place ID"/>

18. <annot id="ID1423689050">

19. <text tool="CPN Tools version="2.9.11">

20. Role arguments

21. </text>

22. </annot>

23. </arc>

Table 6.7: LCC-CPNXML Transformation table (Starter Role Arguments)

(2) One arc (output arc), which is used to connect the message transition to the new

place, where the arc ID = unique identifier, the arc type= TtoP (output arc), the

transition ID reference = the message transition ID, the place ID reference = the

new place ID, the arc inscription = (Role arguments) (line 13 to 22 of Table 6.8).

Role In

Agent

ID

Arguments initial

values

(Role

Arguments)

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 170

LCC

('.' After sending or

receiving message

statement)

Message(Topic) => a(RoleName(Arguments),AgentID)

 Conditions .

Conditions

Message(Topic) <= a(RoleName(Arguments),AgentID) .

LCC
CPNs Model

CPNXML Structure

End

symbol

1. <place id="ID1423689035">

2. <text> End </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Role </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. </initmark>

10. <port id="ID1424205036" type="Out">

11. </port>

12. </place>

13. <arc id="ID1423689049"

14. orientation="TtoP" order="1">

15. <transend idref="Message transition ID"/>

16. <placeend idref="New place ID"/>

17. <annot id="ID1423689050">

18. <text tool="CPN Tools version="2.9.11">

19. Role arguments

20. </text>

21. </annot>

22. </arc>

Table 6.8: LCC-CPNXML Transformation table (End Statement)

Table nine: Get an Item from List Condition

The get an item from list condition is transformed into a high-level Petri net by

creating (as shown in Table 6.9(a), Table 6.9(b) and Table 6.9(c)):

Out

end

Role

(role

arguments)

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 171

(1) One new transition where the transition ID = unique identifier, the transition

name = "getConditionTransition" and guard condition = "true" (line 1 to 7 of

Table 6.9(a));

(2) One new place where the place ID = unique identifier, the place name= the item

name, place colour set type = the item type(by default the place colour set type=

Premise which is defined as a string) (line 8 to 17 of Table 6.9(a));

(3) One new place where the place ID = unique identifier, the place name= "flow",

place colour set type = Role (line 18 to 27 of Table 6.9(a));

(4) One arc, which is used to connect the item place to the new transition

("getConditionTransition"), where the arc ID = unique identifier, the arc type=

PtoT, the transition ID reference = the new transition ID, the place ID reference=

the item place ID, the arc inscription = (the item arguments e.g. Premise) (line

27 to 37 of Table 6.9(a) and Table 6.9(b));

(5) One arc, which is used to connect the flow place to the new transition

("getConditionTransition"), where the arc ID = unique identifier, the arc type=

PtoT, the transition ID reference = the new transition ID, the place ID reference=

the flow place ID, the arc inscription = (Role arguments) (line 38 to 47 of Table

6.9(b));

(6) One arc, which is used to connect the new transition ("getConditionTransition")

to the message place, where the arc ID = unique identifier, the arc type= TtoP,

the transition ID reference = the new transition ("getConditionTransition") ID,

the place ID reference= the message place ID, the arc inscription=(Message

Arguments) (line 49 to 57 of Table 6.9(b));

(7) One arc, which is used to connect the role message transition to the item place,

where the arc ID = unique identifier, the arc type= TtoP, the transition ID

reference = the role message transition ID, the place ID reference= the item

place ID, the arc inscription = (GetCondition) (line 58 to 67 of Table 6.9(a) and

Table 6.9(b));

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 172

LCC Code
(Get condition)

 GetConditions

CPNs Model CPNXML Structure

Get Condition symbol

1. <trans id="ID1423689023">

2. <text> "getConditionTransition"</text>

3. <cond >

4. <text tool="CPN Tools "version="2.9.11">

5. "true" </text>

6. </cond>

7. </trans>

8. <place id="ID1423689035">

9. <text> Item name </text>

10. <type id="ID1423689036">

11. <text tool="CPN Tools" version="2.9.11">

12. Item Type </text>

13. </type>

14. <initmark id="ID1423689037">

15. <text tool="CPN Tools" version="2.9.11"/>

16. </initmark>

17. </place>

18. <place id="ID1423689036">

19. <text> flow </text>

20. <type id="ID1423689036">

21. <text tool="CPN Tools" version="2.9.11">

22. Role </text>

23. </type>

24. <initmark id="ID1423689039">

25. <text tool="CPN Tools" version="2.9.11"/>

26. </initmark>

27. </place>

28. <arc id="ID1424199627"

29. orientation="PtoT" order="1">

30. <transend idref="getGonditionTransition ID"/>

31. <placeend idref="Item Place ID"/>

32. <annot id="ID1424199628">

33. <text tool="CPN Tools" version="2.9.11">

Table 6.9 (a):LCC-CPNXML Transformation Table (Get an Argument
Condition)

[true]

Role

getCondition

Transition

flow Item

Name
Item

Type

Get

Condition

Role

Arguments

Message

Arguments

Item

Arguments

Role

Arguments

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 173

LCC Code
(Get condition)

 GetConditions

CPNs Model CPNXML Structure

 34. Item arguments

35. </text>

36. </annot>

37. </arc>

38. <arc id="ID1424199687"

39. orientation="PtoT" order="1">

40. <transend idref="getGonditionTransition ID"/>

41. <placeend idref="flow Place ID"/>

42. <annot id="ID1424199618">

43. <text tool="CPN Tools" version="2.9.11">

44. Role arguments

45. </text>

46. </annot>

47. </arc>

48. <arc id="ID1424199684"

49. orientation="TtoP" order="1">

50. <transend idref="getGonditionTransition ID"/>

51. <placeend idref="Message Place ID"/>

52. <annot id="ID1424199638">

53. <text tool="CPN Tools" version="2.9.11">

54. Message arguments

55. </text>

56. </annot>

57. </arc>

58. <arc id="ID1424199664"

59. orientation="TtoP" order="1">

60. <transend idref="Message transition ID "/>

61. <placeend idref="Item Place ID"/>

62. <annot id="ID1424149638">

63. <text tool="CPN Tools" version="2.9.11">

64. Get Condition

65. </text>

66. </annot>

67. </arc>

Table 6.9 (b):LCC-CPNXML Transformation Table (Get an Argument
Condition)

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 174

LCC Code
(Get condition)

 GetConditions

CPNs Model CPNXML Structure

 68. <arc id="ID1424129684"

69. orientation="TtoP" order="1">

70. <transend idref="Message transition ID "/>

71. <placeend idref="flow Place ID"/>

72. <annot id="ID1424299638">

73. <text tool="CPN Tools" version="2.9.11">

74. Role Arguments

75. </text>

76. </annot>

77. </arc>

Table 6.9 (c):LCC-CPNXML Transformation Table (Get an Argument
Condition)

(8) One arc, which is used to connect the role message transition to the flow place,

where the arc ID = unique identifier, the arc type= TtoP, the transition ID

reference = the role message transition ID, the place ID reference= the flow

place ID, the arc inscription = (Role arguments) (line 68 to 77 of Table 6.9(c));

See Figure C.14 in appendix C which shows an example of get item from list

condition CPN model.

6.1.3 Generation of a CPN Superpage

The third step for transforming an LCC protocol into the CPNXML file is to generate

one CPN superpage. The CPN superpage is composed of:

(1) More than one substitution transition (see chapter 2, section 2.3.1.2) where each

substitution transition represents one LCC role.

(2) More than one place and arc which is used to connect the CPN subpages

generated in the second step to the CPN superpage and to create the CPN model

of the LCC protocol. These places and arcs represent the interaction relations

between roles (subpages).

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 175

LCC Code
(Role)

a(RoleName(Arguments, Topic),AgentID)

LCC
CPNs Model

CPNXML Structure

Role symbol

1. <trans id="ID1414172135">

2. <text> Role Name </text>

3. <subst subpage= "Corresponding subpage ID"

4. portsock= "(socket ID, Port ID) "

5. <subpageinfo id="ID1414172175"

6. name= Corresponding subpage Name >

7. <\subpageinfo>

8. </subst>

9. </trans>

10. <arc id="ID1423689049"

11. orientation="PtoT" order="1"

12. <transend idref="Substitution transition ID"/>

13. <placeend idref="Related socket ID"/>

14. <annot id="ID1423689050">

15. <text tool="CPN Tools version="2.9.11">

16. Socket arguments (e.g. Role arguments ,

17. Message arguments)

18. </text>

19. </annot>

20. </arc>

Table 6.10: LCC-CPNXML Transformation table (Role in the CPN Superpage)

The final result of this step, which is used to connect all the CPN subpages, is a high-

level CPN model. The resulting CPN model is the formal representation of the LCC

protocol and can be used to analyse the dynamic behaviour of the LCC protocol.

Generation of a CPN Superpage Steps

Each LCC role is transformed into a high-level Petri net by creating (as shown in

Table 6.10):

(1) One new substitution transition where the transition ID = unique identifier, the

transition name= role name, subpageinfo ID = corresponding subpage ID,

subpageinfo name = corresponding subpage name, and portsock= (socket ID,

Port ID). Note that port socket relation (portsock) is used to represent the

hierarchical relation among CPN pages. The socket ID represents the place ID

in the superpages and the Port ID represents the place ID in the corresponding

subpage. (see chapter 2, section 2.3.2.1) (line 1 to 9 of Table 6.10);

(2) One or more arcs. The number of arcs is dependent upon the number of related

sockets. These arcs are used to connect the new substitution to the related

Subpage Name

Role Name

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 176

LCC
(Dialogue Topic Argument)

a(RoleName(Arguments, Topic),AgentID)

LCC
CPNs Model

CPNXML Structure

Dialogue Topic symbol 1. <place id="ID1423689035">

2. <text> OpenDialogue </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Topic </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. </initmark>

10. <port id="ID1424205036" type="In">

11. </port>

12. </place>

13. <arc id="ID1423689049"

14. orientation="PtoT" order="1">

15. <transend idref="New substitution transition ID"/>

16. <placeend idref="New place ID"/>

17. <annot id="ID1423689050">

18. <text tool="CPN Tools version="2.9.11">

19. Topic arguments

20. </text>

21. </annot>

22. </arc>

Table 6.11: LCC-CPNXML Transformation table (Dialogue Topic in the
superpage)

sockets. Each arc has an arc ID = unique identifier, the arc type= PtoT or TtoP

(depends on the relation between the transition and the socket), the transition ID

reference = the new substitution transition ID, the place ID reference = the

related socket ID, the arc inscription depends on the socket colour set type (line

10 to 20 of Table 6.10);

(3) If this role is the primary role (the first role in the LCC code which is

responsible for opening the dialogue), then:

a) Create one new place where the place ID = unique identifier, the place name

= "OpenDialogue", the place colour set type = Topic and place (port) type =

In (line 1 to 12 of Table 6.11);

b) Create one arc (input arc), which is used to connect the new place to the new

substitution transition, where the arc ID = unique identifier, the arc type =

In Topic

Open

Dialogue

(Topic

arguments)

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 177

LCC Code
(Starter Role
Arguments)

a(RoleName(Arguments, Topic),AgentID)

LCC
CPNs Model

CPNXML Structure

Starter Role argument
symbol

1. <place id="ID1423689035">

2. <text> Agent ID </text>

3. <type id="ID1423689036">

4. <text tool="CPN Tools" version="2.9.11">

5. Role </text>

6. </type>

7. <initmark id="ID1423689037">

8. <text tool="CPN Tools" version="2.9.11"/>

9. Arguments initial values

10. </initmark>

11. <port id="ID1424205036" type="In">

12. </port>

13. </place>

14. <arc id="ID1423689049"

15. orientation="PtoT" order="1">

16. <transend idref= New substitution transition ID "/>

17. <placeend idref="New place ID"/>

18. <annot id="ID1423689050">

19. <text tool="CPN Tools version="2.9.11">

20. Role arguments

21. </text>

22. </annot>

23. </arc>

Table 6.12: LCC-CPNXML Transformation table (Agent's Starter Role
Arguments in superpage)

PtoT (input arc), the transition ID reference = the new substitution transition

ID, the place ID reference = the new place ID, the arc inscription = (Topic

argument) (line 13 to 22 of Table 6.11).

(4) If this role is the agent's primary role, then:

a) One new place where the place ID = unique identifier, the place name =

agent ID, the place colour set type = Role and place (port) type = In (line 1 to

12 of Table 6.12);

b) One arc (input arc), which is used to connect the new place to the role

message transition of agent first role, where the arc ID = unique identifier,

the arc type = PtoT (input arc), the transition ID reference = the new

substitution transition ID, the place ID reference = the new place ID, the arc

inscription = (Role arguments) (line 13 to 23 of Table 6.12)

Role In

Agent

ID

Arguments initial

values

(Role

Arguments)

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 178

Figure 6.2: State Space Tool Palette

Appendices A and C illustrate detailed examples of CPN subpages and the

superpage of a negotiation dialogue and a persuasion dialogue, respectively.

6.2 Step Two: Construction of State Space

The second step of the verification method is to construct state space. In the CPN

Tool, state spaces can be constructed by:

(1) Using the following CPN SML functions:

 CalculateOccGraph();

 CalculateSccGraph();

(2) Or, using the CPN State Space (SS) tool palette: constricting the state space is

simple. The user needs to:

a) Open the CPN Tool;

b) Select the state space tool palette (as shown in Figure 6.2);

c) Select the Enter State Space (Enter SS) in the SS tool palette, and apply it

to one of the pages in the CPN model.

For more information about using the state space tools see [Jensen et al., 2002]. In

our approach, the user can construct the state space of the generated CPNXML file

Enter

State

Space

icon

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 179

(the generated CPN model) using the CPN state space tool palette (see chapter 8,

section 8.3.2).

Appendices A and C illustrate detailed examples of the State Spaces of the CPN

models corresponding to a negotiation dialogue and a persuasion dialogue,

respectively.

The State Space Explosion Problem in the CPN Tool

In general, verification techniques suffer from state space explosion problem [Ding

and Su, 2008]. The main reason for this problem is running out of memory before

finishing to compute the state space of a complex model.

Ding and Su [Ding and Su, 2008] compare different techniques for dealing with the

state space explosion problem in the CPN Tool. In this thesis we did not deal with

this problem.

However, we cannot guarantee that our verification method will not encounter a state

space explosion problem. In fact, the generated CPN model could obtain an infinite

number of state space nodes which cause the state space explosion. This is because

the CPN model could be defined for finite number of agents (e.g. two agents) but still

the agents could be involved in infinite loops. Consequently, we cannot guarantee

that there will be no state space explosion in our verification model process.

In real life there is a huge variety of dialogue game argument systems. Typically, the

complexity of these argument systems tends to be bound by the complexity of

argument. In fact, in some areas of live argument can be really complicated and the

state space can be huge such us the health care and safety dialogue game argument

systems. This thesis has not tackled this sort of complex argument. It has tackled a

sort of arguments that are typically found in the academic literature and the

argumentation community such as the persuasion dialogue (see appendix C) and the

negotiation dialogue (see appendix A). These two examples show the typical

complexity of dialogue game argument systems in the literature.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 180

In both the persuasion (see appendix C) and negotiation (see appendix A) dialogues,

we constructed the state space of the generated CPNXML file (the generated CPN

model) using the CPN state space tool palette. The number of nodes in the state

space (in the finite state machine) that the CPN tool has generated for the persuasion

dialogue is 10 nodes in roughly 9 seconds and for the negotiation dialogue is 13

nodes in roughly 8 seconds.

From these two examples we can see the following:

(1) The size of the state space is reasonably small. However, that by itself does not

measure the complexity of the search (the tool could generates a state space with

a small number of nodes but with a large number of searches).

(2) The creation time of the state space varies. It is independent of the size of state

space and dependent on the complexity of the CPN model (dialogue game LCC

protocol) as well as in the dialogue game example.

6.3 Step Three: Automated Creation of DID Properties Files

The third step of the verification method is to create a DID properties file. The

extraction of the protocol properties from the DID diagram and the creation of DID

properties files are automatic. These files can be used by our tool to obtain all the

information about the behaviour of the DID diagram (e.g. Starting message

information). When the tool dynamically generates each file, it uses the property

name as the file name and stores the file on the tool path.

Nine property files are automatically created by our tool:

(1) Possible Locutions file: contains the set of permitted messages;

(2) Reply Locutions file: contains the set of legal reply locutions in terms of the

available moves that an agent can select to follow on from the previous move;

(3) Starting Locutions file: contains message names which are used to begin the

dialogue;

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 181

(4) Intermediate Locutions file: contains message names which are used to remain

in the dialogue,

(5) Termination Locutions file: contains message names which are used to terminate

the dialogue;

(6) Termination Locutions Effect CS and Effective CS files: contain the effect of the

termination message to the sender commitment store CS;

(7) Player Types file: contains dialogue game player types (e.g. opponent or

proponent);

(8) Player IDs file: contains dialogue game player IDs;

(9) Termination Role Names file: contains player termination role names.

6.4 Step Four: Applying Verification Model

In step two we explained how to construct a state space graph and in step three we

explained how to create DID property files. Therefore, the next task is to

automatically verify the DID properties over the synthesised LCC protocol

represented as a state space graph.

Verification Model Properties

The verification process is carried out by checking five basic properties, which are

independent of any dialogue games types:

(1) Dialogue opening property: to check that the LCC protocol begins with a proper

Starting Locution;

(2) Termination of a dialogue property: to determine if the LCC protocol terminates

with a proper Termination Locution;

(3) Turn taking between agents property: to guarantee that in the LCC protocol the

turn-taking switches to the next agent after the current agent sends a message;

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 182

(4) Message sequencing property: to check that the LCC protocol message exchange

respects the DID;

(5) Recursive message property: to verify that the LCC protocol recurs when an

agent sends a message with an Intermediate DID Locution.

In general, to verify each property, we use the following approach:

(1) Create a new text file for each property and use the property name as the file

name;

(2) Extract the needed information from the state space graph and write this

information in the property text file;

(3) Get the information of a DID diagram from the DID property file (created in

the previous step three);

(4) Call the CPN SML property function, where the function inputs are the DID

diagram information (DID property file) and the LCC protocol state space

information (property text file);

(5) Create a new text file (property result file) and write the CPN SML property

function result in the property result file;

(6) Repeat steps 1 to 5 for each property;

(7) Present a report to the user indicating which properties are satisfied and which

are unsatisfied.

The following subsections give a detailed description of each of these properties as

well as the corresponding CPN SML function.

Property-1 Dialogue Opening

This property should guarantee that the LCC protocol will start if, and only if, a

proposal agent sends a Starting DID Locution. Figure 6.3 shows the CPN SML

specification of this property:

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 183

1. Read&Save SS=State Space information

2. Read&Save DIDOpenDialogueMessages =DID information

3. Call CheckProperty1

4. Input (SS,DIDOpenDialogueMessages)

5. Extract message1

6. val checkODM =

7. compare(DIDOpenDialogueMessages,message1)

8. if (checkODM) then

9. "Property 1(Dialogue opening) is Satisfied"

10. else

11. "Property 1(Dialogue opening) is not Satisfied"

12. end CheckProperty1

13. Create&Save Property1 result file

Figure 6.3: Property 1 as an SML Function

(1) Line 1: Read the state space graph information from the Property1 text file and

save this information in the SS variable.

(2) Line 2: Read the information of a DID diagram from the Starting Locutions'

DID property file and save this information in the DIDOpenDialogueMessages

variable.

(3) Line 3: Call CheckProperty1 function.

(4) Line 4: CheckProperty1 function inputs are SS and DIDOpenDialogueMessages.

(5) Line 5: Extract the first message from the SS (message1)

(6) Lines 6 and 7: Compare the first exchanged message in the state space graph

with the Starting Locution from the DID where:

a) compare function is used to compare the first message;

b) checkODM variable represents the compare function result. It is

considered true if the first message in the state space graph is the

same as the Starting Locution of the DID.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 184

(7) Lines 8 to 11: Check the result of the comparison. A positive (negative) result

indicates that Property 1 is satisfied (unsatisfied).

(8) Line 13: Create a Property1 result file and write the result of CheckProperty1 in

this file.

Property-2 Termination of a Dialogue

This property should guarantee that the LCC protocol will end when an agent sends a

DID Termination Locution. It should also check that the agent's commitment store

has changed properly after termination, and that the role of the agent that finishes the

dialogue is the expected one (based on the recorded sequence of moves). Figure 6.4

shows the algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph Termination nodes information from the

Property2 text file and save this information in TNodes variable.

(2) Line 2: Read the DID termination messages information from the Termination

Locutions and the Effective CS DID property files and save this information in

the TDID variable.

(3) Line 3: Call function CheckProperty2.

(4) Line 4: Function inputs are TNodes and TDID.

(5) Line 5: Extract the needed information from TNodes where:

a) message represents termination message;

b) topic represents dialogue topic;

c) premise represents dialogue topic premises;

d) sender represents termination message sender ID;

e) receiver represents termination message receiver ID;

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 185

1. Read&Save TNodes = state space termination nodes information

2. Read&Save TDID =DID termination nodes information

3. Call CheckProperty2

4. Input (TNodes,TDID)

5. Extract (message, topic , premise, sender, receiver, sCS, rCS,opponent,proponent)

6. Extract (DIDTL, DIDEf, DIDAID,DIDS)

7. val checkSR = checkSenderReceiver(message,sender,receiver,

8. opponent,proponent,DIDAID,DIDS)

9. val csContant = checkTheContantofCS(role, message, rCS,topic,premise,rCSsize,

10. topicSize,premiseSize, DIDTL,DIDEf)

11. val lengthofRest= length restStateSpace

12. if (lengthofRest >= 4) andalso (csContant= true) andalso (checkSR=true) then

13. CheckPropert2(restStateSpace, DID)

14. else

15. if (csContant) andalso (checkSR) then

16. "Property 2(Termination of a Dialogue) is Satisfied"

17. else

18. if not (csContant) then

19. "Property 2(Termination of a Dialogue) is not Satisfied: There is a

20. problem in the agent's commitment store"

21. else

22. "Property 2(Termination of a Dialogue) is not Satisfied: There is a

23. problem in the how to terminated the dialogue"

24. End CheckProperty2

25. Create&Save Property2 result file

Figure 6.4: Property 2 as an SML Function

b) sCS represents sender commitment store;

c) rCS represents receiver commitment store;

d) proponent represents the sender agent in the initial node (the sender

agent ID of the first role in the LCC code which is responsible for

opening the dialogue);

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 186

e) opponent represents the receiver agent in the initial node (the

receiver agent ID of the second role in the LCC code which is

responsible for receiving the opening [starting] dialogue message).

(6) Line 6: Extract one termination message information from the TDID where:

a) DIDTL represents the expected termination message for the specific

role;

b) DIDEf represents the effect of the termination message to the sender

commitment store CS (e.g. DIDEf= "Add Topic");

c) DIDAID represents the expected agent ID of the termination

message sender;

d) DIDS represents the expected agent type (e.g. opponent or

proponent) of the termination message sender.

(7) Lines 7 and 8: Check that the sender and the receiver of the termination

message in the state space are the expected sender and receiver. Then compare

the sender and receiver of the termination message in the state space with the

sender and receiver of the same termination message in the DID where:

a) checkSenderReceiver function is used to compare the sender and

receiver of the termination message;

b) proponent and opponent variables are used to check the expected

values of the sender and receiver (which agent must send this

message and which agent must receive this message);

c) checkSR variable represents the checkSenderReceiver function

result. It is considered true if the sender and receiver of the

termination message in the State Space are identical to the sender

and receiver of the same termination message in the DID.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 187

(8) Lines 9 and 10: Compare the content of the CS in the termination message of

the sender agent in the state space with the content of the same termination

message of the sender agent in the DID where:

a) checkTheContantofCS function is used to compare the content of the

CSs;

b) csContant represents the checkTheContantofCS function result. It is

considered true if the content of the CS in the termination message

of the sender agent in the state space is identical to the content of the

CS of the same termination message of the sender agent in the DID.

(9) Lines 11 to 13: Check if there is another termination node in the state space;

then recall the CheckPropert2 function.

(10) Lines 14 to 23: Check the result of the comparison. A positive (negative)

result indicates that Property 2 is satisfied (unsatisfied).

(11) Line 25: Create Property2 result file and write the result of CheckProperty2

in this file.

Property-3 Turn Taking between Agents

This property checks that in the LCC protocol the turn-taking between agents

switches after each move (after an agent sends a message). Figure 6.5 shows the

algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph information from the Property3 text file and

save this information in SS variable.

(2) Line 2: Call function CheckPropert3AllTN.

(3) Line 3: Function input is SS.

(4) Line 4: Extract the arcs information from the ArcsList. ArcsList represents all

arcs information in the SS.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 188

1. Read&Save SS= state space graph information

2. Call CheckPropert3AllTN

3. Input (SS)

4. Extract (ArcsList)

5. Call turnTaking = checkProperty3Part1

6. Input (ArcsList)

7. Extract (n1,role1, senderM1, receiverM1, n2,role2, senderM2, receiverM2)

8. val restLength= length restArcsList

9. if (restLength >= 3) andalso (not (role1 = role2))

10. andalso (senderM1 = receiverM2) andalso (receiverM1 = senderM2)

11. then checkProperty3Part1(restArcsList)

12. else

13. if (restLength >= 3) andalso ((role1 = role2))

14. andalso ((senderM1 = senderM2) andalso (receiverM1 = receiverM2))

15. then checkProperty3Part1(restArcsList)

16. else

17. if (not (role1 = role2)) andalso (senderM1 = receiverM2)

18. andalso (receiverM1 = senderM2)

19. then true

20. else

21. false

22. End checkProperty3Part1

23. Return Back to CheckPropert3AllTN

24. if (turnTaking= true) then

25. "Property 3(Turn Taking) is Satisfied"

26. else

27. "Property 2(Turn Taking) is not Satisfied"

28. end CheckPropert3AllTN

29. Create&Save Property3 result file

Figure 6.5: Property 3 as an SML Function

(5) Line 5: Function CheckPropert3AllTN calls the function checkProperty3Part1

which is used to check the turn-taking between agents by comparing the state

space nodes information. It compares two nodes at one time. It compares the

odd numbers of the nodes since every two nodes represent the sender and the

receiver function of the same locution (message). It begins by comparing node

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 189

1 with node 3. Note that the result of function checkProperty3Part1 is saved in

the turnTaking variable.

(6) Line 6: Function checkProperty3Part1 input is ArcsList.

(7) Line 7: Extract two nodes' information from ArcsList where:

a) n1 represents the first node;

b) role1 represents the role name of the first node;

c) senderM1 represents the sender agent ID of the first node;

d) receiverM1represents the receiver agent ID of the first node;

e) n2 represents the second node;

f) role2 represents the role name of the second node;

g) senderM2 represents the sender agent ID of the second node;

h) receiverM2 represents the receiver agent ID of the second node;

(8) Line 8: Get the lengths of the remaining nodes information in the

restArcsList and save it in restLength.

(9) Lines 9 and 21:

a) Compare the first node's information (role1, senderM1and

receiverM1) with the second node's information (role2, senderM2

and receiverM2);

b) If there are other nodes in the restArcsList, then recall the

checkProperty3Part1 function (recurs).

(10) Line 23: Return the control back to CheckPropert3AllTN function.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 190

(11) Lines 24 to 27: Check the result of the comparison (turnTaking variable). A

positive (negative) result indicates that Property3 is satisfied (unsatisfied).

(12) Line 29: Create the Property3 result file and write the result of

CheckProperty3AllTN.

Property-4 Message Sequence

This property is used to verify that the LCC protocol message exchange respects the

DID. For instance, for the DID depicted in Figure 4.3 in chapter 4 one thing that

should be checked is that after an agent makes a claim the other agent can only

answer with a "concede" or a "why" locution. Figure 6.6 shows the CPN SML

specification of this property:

(1) Line 1: Read the state space graph information from the Property4 text file and

save this information in the SS.

(2) Line 2: Read the information of the DID diagram from the Possible Locutions

and Reply Locutions DID properties files and save this information in the

DIDPosM and DIDRepM where:

a) DIDPosM represents the set of possible locutions in the DID;

b) DIDRepM represents the set of legal reply locutions in the DID.

(3) Line 3: Call function CheckPropert4 which is used to compare the message

exchange sequence in the SS with the message sequence in the DID (DIDPosM

and DIDRepM).

(4) Line 4: Function inputs are SS, DIDPosM and DIDRepM.

(5) Line 5: Extract the arcs information from SS. AllArcs represents the All arcs

information in the SS.

(6) Line 6: Compare the message sequence in the state space graph (AllArcs) with

the message sequence in the DID (DIDPosM and DIDRepM) where:

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 191

1. Read&Save SS= state space information

2. Read&Save (DIDPosM,DIDRepM)

3. Call CheckPropert4

4. Input (SS, DIDPosM,DIDRepM)

5. Extract (allArcs)

6. Val messageSeq = checkMessageS(allArcs,DIDPosM,DIDRepM)

7. if (messageSeq= true) then

8. "Property 4(Message Sequence) is Satisfied"

9. else

10. "Property 4(Message Sequence) is not Satisfied"

11. end CheckPropert4

12. Create&Save Property4 result file

Figure 6.6: Property 4 as an Standard ML Function

a) checkMessageS function is used to compare messages;

b) messageSeq represents the checkMessageS function result. It is

considered true if the message sequence in the state space graph is

identical to the message sequence in the DID.

(7) Lines 7 to 10 are used to check the result of the comparison. A positive

(negative) result indicates that Property 3 is satisfied (unsatisfied).

(8) Line 12: Create the Property4 result file and write the result of CheckProperty4

in this file.

Property-5 Recursive Message

This property is defined to verify that the LCC protocol recurs when an agent sends a

message with an Intermediate DID Locution. Figure 6.7 shows the CPN SML

specification of this property:

(1) Line 1: Read the state space graph information from the Property5 text file and

save this information in SS.

(2) Line 2: Read the DID recursive locution information from the Intermediate

Locutions DID property file and save this information in DIDRecursiveMessages.

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 192

1. Read&Save SS= state space information

2. Read&Save DIDRecursiveMessages

3. Call CheckProperty5

4. Input (SS, DIDRecursiveMessages)

5. Extract (Openingmessage,TNodes)

6. val checkopeningDM = findElementInTheList(DIDRecursiveMessages,

7. Openingmessage)

8. val checkTerminationM =

9. checkAllTeminatedMessags(DIDRecursiveMessages,TNodes)

10. if (not (checkopeningDM)) andalso (not (checkTerminationM)) then

11. "Property 5(Recursive Message) is Satisfied"

12. else

13. "Property 5(Recursive Message) is not Satisfied"

14. end CheckProperty5

15. Create&Save Property5 result file

Figure 6.7: Property 5 as an Standard ML Function

(3) Line 3: Call function CheckProperty5. This function gets the expected

intermediate (recursive) locutions from DID and attempts to prove that these

locutions are also recursive locutions in the state space by proving the following:

a) The target locution is not the starting or opening locution in the state

space;

b) The target locution is not the terminating locution in the state space.

(4) Line 4: Function inputs are SS and DIDRecursiveMessages.

(5) Line 5: Extract the starting locutions information from SS and save this

information in Openingmessage. Then extract the termination locutions

information from SS and save this information in TNodes.

(6) Lines 6 and 7: Check if the recursive locution in the DID is a Starting

Locution in the state space, where:

a) findElementInTheList function is used to check if the recursive

locution in the DID is a Starting Locution in the state space;

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 193

b) checkopeningDM represents the findElementInTheList function

result. It is considered true if the recursive locution in the DID is a

Starting Locution in the state space.

(2) Lines 8 and 9: Check if the recursive locution in the DID is a Termination

Locution in the state space, where:

a) checkAllTeminatedMessags function is used to check if the recursive

locution in the DID is a Termination Locution in the state space;

b) checkTerminationM represents the checkAllTeminatedMessags

function result. It is considered true if the recursive locution in the

DID is a Termination Locution in the state space.

(3) Lines 10 to 13: Check the result of the comparison(checkopeningDM and

checkTerminationM) . A positive (negative) result indicates that Property5 is

satisfied (unsatisfied).

(4) Line 15: Create Property5 result file and write the result of CheckProperty5 in

this file.

These five properties are provided by our verification model system. However, the

system allows users to add and run more properties. Appendix A shows more

properties, which are different from these five properties and are dependent on the

dialogue types.

 6.5 Summary

This chapter has explained how we perform the automatic validation of LCC

protocols based on their DID properties. It describes in detail the four stages of the

verification model approach: (1) automatically transforming the LCC specification

into an equivalent CPNXML file; (2) construction of state space graph from the

resulting CPNXML file; (3) automatically creating DID properties; (4) automatically

verifying the satisfaction of the CPN SML specification in the state-space graph

Bridging the Specification Protocol Gap in Argumentation

Chapter 6: Verification Method based Coloured Petri Nets and SML 194

computed from the LCC protocol by applying a verification model. The proposed

validation tool can be used to analyse the correctness of LCC.

As proof of this concept, in the next chapter we will describe the implemented LCC

argumentation protocol automated synthesis and validation tool.

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 195

Chapter 7

Design and Implementation

This chapter ties together all of the separate sections of the thesis. It discusses the

architecture of our systems and the implementation of the GenerateLCCProtocol tool

that has been developed as part of this thesis. As explained in chapters 5 and 6, this

tool enables the user to automatically generate LCC protocols from DID

specifications, along with semi-automatically checking the correctness of the

generated LCC protocols.

As shown in Figure 7.1, the GenerateLCCProtocol tool receives a DID as an input

and returns:

(1) The LCC argumentation agent protocol resulting from applying LCC–Argument

patterns over the DID given as input (as explained in chapters 4 and 5).

(2) The result of verifying if the resulting LCC protocol satisfy the DID properties

(as explained in chapter 6).

This chapter begins by providing a brief overview of the system architecture in

section 7.1. Section 7.2 discusses, in detail, an example of use of the tool. Lastly,

Section 7.3 summarises this chapter.

Figure 7.1: GenerateLCCProtocol Tool

LCC Protocol
GenerateLCCProtocol

Tool

Output

DID

Input

LCC Protocol Verification

model result

1

2

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 196

7.1 Architecture

The synthesis protocol tool (GenerateLCCProtocol tool) has been designed and

implemented in the Java programing language. The tool constis of two parts, as

shown in Figure 7.2.

7.1.1 Part One: Synthesis of Concrete Protocols Architecture

Part one of the thesis architecture (as shown in Figure 7.2) is used to bridge the gap

between AIF and LCC using transformational synthesis. Part one, explained in detail

in chapters 4 and 5, was built in two stages:

(1) Specification of multi-agent protocols in a new dialogue game high level control

flow specification language called Dialogue Interaction Diagram (DID. The DID

is provided in chapter 4;

(2) Automatic synthesis of concrete LCC protocols from DID specifications by

recursive applying of LCC-Argument patterns. The fully automated synthesis is

provided in chapter 5.

7.1.2 Part Two: Verification Model Architecture

Part two of the system architecture (as shown in Figure 7.2) provides a verification

methodology based on CPN and SML language to verify the semantics of the DID

specification against the semantics of the synthesised LCC protocol. The verification

methodology is provided in chapter 6. It was built in four stages:

(1) Automatically transforming the LCC specification (the resulting LCC protocol

from part one) into an equivalent Coloured Petri Net (CPN) model. The formal

semantics of the CPN model allows us to prove that certain (un)desirable

properties are (un)satisfied in the LCC protocol. The proof of properties in the

LCC protocols mapped into CPNs is supported by a state-space technique,

which is used to compute exhaustively all possible execution states;

(2) Manual construction of the state space by the user (as explained in chapter 6);

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 197

Figure 7.2: Overall Architecture

1

2

3

4

By using Design Patterns

(LCC-Argument Patterns)

Part 1(Synthesis of Concrete Protocols)

Automatic

generation

Verification model

(General behaviour

property checking

code in CPN SML)

Result

True /False

Resulting LCC

Protocol

(LCC =

Multi-agents

Development

Language)

Automatic

transformation

CPNXML

State space

Construction

Automatic

Creation

DID

Properties

files

DID

(Argument

Specification

Language)

Part 2 (Verification Model)

1

2

Chapter 5

Chapter 4

Chapter 6

Input

Output 1

Output 2

Automatic

verification

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 198

(3) Automatically creating DID (DID diagram from part one) property files;

(4) Automatically verifying the satisfaction of the CPN SML specifications in the

state-space graph computed from the LCC protocol.

7.2 An Example Scenario

This section presents an example scenario (Figure 7.3) which demonstrates how, by

using the GenerateLCCProtocol tool, the process of creating a DID diagram, the

process of synthesising concrete LCC protocols and the verification process can be

applied. This section does not provide details of the underlying implementation. For

more information about the GenerateLCCProtocol tool and to see the options in each

window, please see appendix E.

1.Creating Dialogue Interaction Diagram Process

In order to create a DID diagram for a persuasion dialogue (see chapter 3, section

3.4), the user needs to use the create new DID diagram screen (as shown in Figure

7.4). Using this screen, the user can create the DID by writing one piece of locution

icon information at a time:

(1) The first step is to identify the persuasion dialogue game locutions: there are five

locutions: claim, argue, why, concede and retract;

(2) The next step is to write one piece of locution icon information beginning from

the locution in the top of the DID. In this example, we must begin with claim (as

shown in Figure 7.4):

a) Locution Type = Starting. Note that if locution Type= Intermediate or

Termination, the user has to select one locution from the 'reply to' locution

list (structural rules which represent the previous locution name) (as shown in

Figure 7.5);

b) Locution Name= claim(T);

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 199

Figure 7.3: An Example Scenario of GenerateLCCProtocol Tool

1. Creates the DID diagram for a

persuasion dialogue using 'create new

DID diagram' screen in the

GenerateLCCProtocol tool

2. Synthesises the LCC protocol of

the persuasion dialogue using

'Generate LCC protocols' button in

the GenerateLCCProtocol tool

Generate LCC Protocol

4. Transforms the LCC protocol of

the persuasion dialogue into an

equivalent CPN model as well as

creates the DID properties files using

'Create CPN File' button in the

GenerateLCCProtocol tool

Create CPN File

5. Constructs the state space of the

CPN model of the LCC protocol of

the persuasion dialogue using 'the

CPN state space tool' palette in the

CPN Tool

6.Applies the verification model

using 'Evaluates a Text as ML

Code(ML!)' icon in the simulation

tool palette in the CPN Tool

Verification Model Result

7. Displays the verification model

result of the five basic properties

using 'Verification Model Result'

button in the GenerateLCCProtocol

tool

Verification Process

Synthesising Concrete LCC Protocols Process

Creating a DID Diagram Process

Agents KB
3. Specifies agents Knolwledge Base

(KB) using 'Agents KB' button in the

GenerateLCCProtocol tool

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 200

Figure 7.4: Create New Dialogue Interaction Diagram Example (Claim

Locution Icon)

Figure 7.5: Create New Dialogue Interaction Diagram Example

(Add Locution Formal Definition to DID)

Locution Formal definition (DID textual representation)

(2)-a) Locution Type= Starting
(2)-b) Locution Name= claim(T)

(2)-c)

Sender

information
(2)-d)

Receiver

information

(3) Level

Number =1 (4) Add

locution to

level

(level 1)

Reply to locution

(structural rules)

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 201

Figure 7.6: Open DID File Dialogue Box

c) Sender information: Role name = claimSenderP; Role arguments = KBP,

CSP,CSO,T,IDO; Agent ID = IDP and Role conditions=

addTopicToCS(T,CSP).

d) Receiver information: Role name = claimReciverO; Role arguments = KBO,

CSO, CSP, IDP; Agent ID = IDO; and Role conditions = null.

(3) Following this, we must select a locution level number (in this example, select

1);

(4) After that, we click on 'Add locution to level' button. Note that clicking on this

button adds the locution icon's information to the DID textual representation (as

shown in Figure 7.5). See appendix E for more information about the DID

textual representation;

(5) Then, we move to the next locution icon and repeat steps 2, 3 and 4 (section

4.2.3 in chapter 4 describes in detail a persuasion dialogue)

(6) Finally, when adding the last locution icon in the DID (see appendix E):

a) Write the DIDs properties in the properties text field;

b) Load the DID image by clicking on the 'Load DID image' (if there is an

image or graphical representation for this dialogue);

c) Click on 'Save DID' button to save the DID. When the user clicks on this

button a dialogue box will appear asking whether the user would like to

open the DID file (see Figure 7.6). The DID file's textual representation

screen will appear when the user clicks on 'Yes' button (see Figure 7.7).

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 202

Figure 7.7: The DID Textual Representation of the Persuasion Dialogue

2.Synthesising Concrete LCC Protocol Process

In order to synthesise LCC protocol from the DID of the persuasion dialogue by

recursively applying the LCC-Argument patterns, the user needs to click on the

'Generate LCC Protocol' button (on the LCC menu bar in the DID textual

representation screen of a persuasion dialogue in Figure 7.7). See appendix E for

more information.

In this example, when the user clicks on the 'Generate LCC Protocol' button, the tool

will ask the user for an LCC protocol file name and then generate the LCC protocol.

After that the LCC file dialog box will appear. The user has to click on the 'Yes'

button to display the generated LCC protocol (as shown in Figure 7.8). This process

is fully automatic (requiring no human assistance). The LCC-Argument patterns and

the automated synthesis process are exhibited in chapter 5 and appendix C gives a

detailed description of how to transfer a DID of a persuasion dialogue to an LCC

protocol by using LCC-Argument patterns.

3. Verification Process

In order to verify the generated LCC protocol of the persuasion, the user needs to:

1-Specify agents' Knowledge Base (KB)

In order to verify the generated LCC protocol, the tool needs to work with a specific

example. In other words, the user must provide the tool with the agents Knowledge

Base (KB).

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 203

Figure 7.8: Synthesises of LCC Protocol of the Persuasion Dialogue

In this example, when the user clicks on the 'Agents KB' button (on the Verification

Model menu bar in the DID textual representation screen of a persuasion dialogue in

Figure 7.9), the tool will show a message dialogue screen which informs the user

when he/she is able to add the agent's KB information. The user has to click on the

'Ok' button to display the Agent Knowledge Base screen (as shown in Figure 7.9).

Then, the user has to add the knowledge base (add one element at a time to the agent

KB list) for both agents (agent 1 and agent 2). After that, the user has to click on the

'Add Agent1 and Agent 2 KB' button to save the KB list for both agents (as shown in

Figure 7.9). In this example, the agent1's KB= [("The car is safe", "it has an

airbag")] and the agent2's KB= [("it has an airbag", "The car is safe")] (see

Appendix C).

Please note that the user can only add agent's KB lists using GenerateLCCProtocol

Tool before creating the CPN file. Otherwise, the user can add the agent's KB list

manually using the CPN Tool (edit the initial marking of the role argument places).

See Jensen et al. [Jensen et al., 2007] for more information about place initial

marking.

1.Name of the LCC

protocol file (save file

dialogue) screen

2. LCC file open dialog

box

 3. The Generated LCC

protocol screen

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 204

Figure 7.9: Specifying Agents Knowledge Base Screens

2- Click on 'Ok' button

4- Click on 'Add Agent1 and Agent 2 KB)

3- Add the Knowledge Base for both agents

2- Click on 'Agent KB' button

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 205

2- Transform the LCC Protocol into an Equivalent CPN Model

To transform the LCC protocol of the persuasion dialogue into an equivalent CPN

model (CPNXML file), as well as to create the DID properties files, the user must

click on the 'Create CPN File' button (on the Verification Model menu bar in the

DID textual representation screen of a persuasion dialogue in Figure 7.10).

In this example, when the user clicks on the 'Create CPN File' button, the tool will

ask the user for a CPN model file name and then generate the CPN model

(CPNXML) file as well as the DID property files (see chapter 6 and appendix C).

After that the CPN model dialogue will appear. The user has to click on the 'Yes'

button to display the topic input dialogue (as shown in Figure 7.10).

Following this action the user must enter the topic. Then, the CPN model opens a

dialog box. This box asks the user if he/she would like to open the CPN model file.

The generated CPN model file screen will appear when the user clicks on 'Yes'

button. This process is fully automatic. The automated transformation of an LCC

protocol into an equivalent CPN model (CPNXML file) is examined in chapter 6 and

appendix C gives a detailed description of how to transfer an LCC protocol of a

persuasion dialogue to a CPN model.

3- Construct the State Space of the CPN Model

After creating the CPN model file, the user needs to click on the 'Instruction' button

in the Generated CPN model (CPNXML file) screen in Figure 7.10. An instruction

screen (see Figure 7.11) will appear asking the user to perform eight manual steps in

order to construct the state space and to apply the verification model.

In order to construct the state space of the CPN model of the persuasion dialogue,

the user needs to follow the first four steps which appears in the instruction screen

(see chapter 6, section 6.2 and appendix C):

(1) Open CPN Tool.

(2) Open CPN file of the generated LCC file.

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 206

Figure 7.10: Transforming LCC Protocol into an Equivalent CPN Model
Screens

1. The 'Create CPN File'

Button on the Verification

Model Menu Bar

3. CPN model dialog box

2. Name of the CPN

model file (save file

dialogue) screen

4. Topic input dialog box

 5. CPN model open dialog

box

6. The Generated. CPN

model (CPNXML file)

screen

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 207

Figure 7.11: Instruction Screen

(3) Select the state space tool palette.

(4) Select the Enter State Space (Enter SS) in the state space tool palette, and apply

it to one of the pages in the CPN model.

4- Apply the Verification Model

To Apply the verification model, the user needs to follow the steps numbered 5, 6

and 7 which appears in the instruction screen (see chapter 6 and appendix C):

 Step 5: Select the simulation tool palette.

 Step 6: Select the 'Evaluates a text as ML code (ML!)' in the simulation tool

palette, and apply it to one of the property pages in the CPN model.

 Step 7: Repeat step 6 for all properties pages.

5- Display the Verification Model Result

To display the verification model result, the user needs to follow step numbered 8

which appears in the instruction screen (see chapter 6 and appendix C). The user

needs to click on the 'Verification Model Result' button (on the Verification Model

menu bar in the DID textual representation screen of a persuasion dialogue in Figure

7.12).

In this example, when the user clicks on the 'Verification Model Result' button, the

reminder dialog box will appear to remind the user to construct the state space and to

apply the verification model activities. The user has to click on the 'Yes' button to

display the verification model result screen (as shown in Figure 7.12).

Bridging the Specification Protocol Gap in Argumentation

Chapter 7: Design and Implementation 208

Figure 7.12: Verification Model Result Screen

7.3 Summary

This chapter has given an overview of the architecture of the thesis. It also has

discussed an example which illustrates how the GenerateLCCProtocol tool is used to

create DID diagrams, synthesise the concrete LCC protocols, and verify the

synthesised protocols.

2. Reminders dialog box

3. Verification Model

Result screen

1. The'Verification Model

Result' button on the DID

textual representation

screen

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 209

Chapter 8

Evaluation and Discussion

This chapter discusses and summarises the main contributions of this thesis. It is also

points out limitations of the thesis. Discussions on the synthesiser (synthesis of

concrete protocols), the verification method and the GenerateLCCProtocol tool are

given in Sections 8.1, 8.2 and 8.3, respectively. Lastly, Section 8.4 summarises this

chapter.

8.1 Synthesis of Concrete Protocols

The purpose of this thesis, as mentioned in chapter 1, has been to bridge the gap

between dialogue game argument specification and protocol implementation using an

extension of the Argument Interchange Format (AIF), that we called Dialogue

Interaction Diagram (DID), as the specification language and the Lightweight

Coordination Calculus (LCC) as an implementation language.

Both chapter 4 and 5 as well as appendices A, B and C have demonstrated how

automated synthesis method can connect argumentation to MAS interaction

protocols in a process language. This, potentially, could allow developers of

argumentation systems to use specification languages to which they are accustomed

(in our case AIF/DID) to generate systems capable of direct deployment on open

infrastructures (in our case LCC).

The following subsections discuss the relation between DID and AIF, the difference

between DID and related languages (AIF extensions) and the limitations of the

synthesis methods (including DID and LCC-Argument patterns).

8.1.1 Relation between DID and AIF

The synthesis of concrete protocols approach presented in this thesis began with AIF.

However, as mentioned in chapter 3 and 4, a fully automated synthesis beginning

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 210

from the AIF is not possible because AIF is an abstract language that does not

capture dialogue game concepts (e.g. locutions, starting rules and turn taking rules),

nor does it capture some protocol implementation concepts (e.g. sender and receiver

agent's roles concept) that are needed to support the interchange of arguments

between agents. An example of the AIF obstacle is shown in chapter 3 section 3.7.3.

The only two studies which have attempted to solve the AIF obstacle are Modgil and

McGinnis [Modgil and McGinnis, 2007] and Reed et al. [Reed et al., 2008 ; Reed et

al., 2010]. The limitations of these two approaches are demonstrated with examples

in chapter 3. Modgil and McGinnis' [Modgil and McGinnis, 2007] work extends AIF

to represent argumentation-based dialogues. [Reed et al., 2008] extended AIF to

AIF+ so that it can handle argumentation dialogue games as well as represent the

relation between the locution (in AIF+) and its propositional content (in AIF).

However, similarly to AIF, AIF+ is used to represent data, not to process data. In

fact, both Modgil and McGinnis [Modgil and McGinnis, 2007] and Reed et al. [Reed

et al., 2010; Reed et al., 2008] attempted to solve the dialogue game problem of AIF

(by adding dialogue games concepts to AIF), while failing to address the

implementation problem (adding protocol concepts to AIF). See Section 8.1.2 for

more details.

To remedy this, this thesis proposes a new intermediate language between the AIF

and LCC called DID, which requires additional information that cannot be deduced

from AIF. In practice, DID is a new layer on top of AIF. DID is used to represent

interaction protocol rules between two agents. It has the dialogue games concepts

(locutions, participants commitment store and commitment rules, structural rules,

turn taking rules, pre-condition rules, post-condition and locution types) and protocol

implementation concepts (sender and receiver agent's roles concept). The definition

of DIDs and the example of DIDs are provided in chapter 4.

As mentioned above, this research attempts to close the gap between standard

argument specification and protocol implementation by automating the synthesis of

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 211

Figure 8.1:The Relationship between AIF and DID Locutions Icon

protocols in LCC from dialogue game argument specifications written in the

AIF/DID. However, by the time we get to the DID, little of the AIF remains.

In fact, AIF could be embedded inside the agent and used by agent to express his

knowledge and check the satisfaction of the message constraints. Therefore, DID is

not an extension of AIF. It is important to point out that DID can work with any

argument format (written in AIF, or another argumentation-based formalism) where

DID coordinates argument exchange between agents and the argument format (such

as AIF) expresses the agent knowledge for the constraints.

DID can be used to describe all dialogue game argumentation systems that can be

described as a sequence of turn taking recursive steps terminating in a base case.

The Relationship Between the DID and AIF Example

The relationship between DID and AIF is that DID arguments could be expressed in

AIF (see Figure 8.1). The following example in Figure 8.2(a) and Figure 8.2(b)

concerns the flying abilities of birds and penguins (see chapter 3 for more details)

Locution name (arguments)

Sender Role Name Receiver Role

Name

Sender Role

Arguments

Receiver Role

Arguments

Sender Agent ID

(e.g. IDP)

Receiver Agent ID

(e.g. IDO)

Sender

Pre-

condition

AIF

DID Locution

icon

Receiver

Post-

condition

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 212

Figure 8.2 (a): Illustrating the Link between Argument (AIF Nodes) and DID

Locutions

Argument DID Locutions

L2= why("Why does Tweety fly?")

KBA2,CSA2,CSA1,T,IDA1

replyToClaimReceiverA1 replyToClaimSenderA2

IDA2 IDA1

KBA1,CSA1,CSA2,T,IDA2

L1= claim("Tweety flies")

claimSenderA1 claimReceiverA2

KBA2,CSA2 ,CSA1, IDA1

IDA2

KBA1,CSA1,CSA2,T,IDA2

IDA1

I1= flies(Tweety) 0.8

I2= bird(Tweety)

I3= bird(Tweety)

 0.8 flies(Tweety)

RA1

addTopicToCS(T,CSP)

addPreToCS

(T,Pre,CSP)

Pre=
findPremise

(T, KBP,CSP)

L4= argue("Tweety does not fly because

Tweety is a penguin, penguins do not fly." , "

Tweety flies)

L3= argue("Tweety flies because Tweety is a bird , birds

generally fly.", "Tweety flies")

ReplyToWhyReceiverA1

ReplyToWhySenderA1

IDA1

KBA1,CSA1,CSA2,T,IDA2 KBA2,CSA2,CSA1,T,IDA1

IDA2

notFindTopicInKB

(T,KBO)

notFindTopicInCS

(T,CSO)

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 213

Figure 8.2 (b): Illustrating the Link between Argument (AIF Nodes) and DID

Locutions

L4= argue("Tweety does not fly because Tweety is

a penguin, penguins do not fly.", "Tweety flies")

ReplyToArgueSenderA2

ReplyToArgueReceivererA1

KBA2,CSA2,CSA1,T,Pre,
IDA1

IDA2 IDA1

KBA1,CSA1,CSA2,T,Pre
,IDA2

L5= concede(You are right. Tweety does not fly)

replyToArgueSenderA1

replyToArgueReceivererA2

IDA1

KBA1,CSA1,CSA2,T,Pre
,IDA2

KBA2,CSA2,CSA1,T,Pre,
IDA1

IDA2

I5= penguin(Tweety)

I6= penguin(Tweety)

 ~flies(Tweety)

RA2

L3= argue("Tweety flies because Tweety is

a bird , birds generally fly.", "Tweety flies")

notFindPreInCS

(Pre, CSO)

I4= ~flies(Tweety)

addDefeatsToCS

(not(T'),Def,CSO)

Def =

findDefeats
(T,Pre,KBO,

CSO)

I1= flies(Tweety) 0.8

RA1

findPreInKB

(Pre, KBO)
addPreToCS

(T,Pre, CSO)

notFindOppPreInCS

(not(Pre), CSO)

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 214

and shows the relationship between DID diagram (in Figure 4.3 in chapter 4) and the

AIF diagram (in Figure 3.3 in chapter 3) (please note that this relationship is not

added automatically):

In this dialogue between A1 and A2, the dialogue game consists of five locutions

which are represented by L1, L2, L3, L4 and L5 icons. The argument consists of six

propositions which are represented by I1, I2, I3, I4, I5 and I6 nodes. The interaction

between the argument (AIF diagram) and the dialogue game (DID diagram) is

described by the thick arrows and the relation between the argument (AIF diagram)

and the constraint in the dialogue game (DID diagram) is described by the dotted

arrows. The L1 and L2 have a direct link with the propositional content I1 (see

Figure 8.2(a)). The links between L3 with I2 and I3 (see Figure 8.2(a)) are

represented by RA1 node (the RA1 node connects I1 "flies(P)" with its premises I2

and I3).

The RA2 node links L4 and its propositional content I5 and I6 (the RA2 node

connects I4 "~flies(P)" with its premises I5 and I6). Finally, L5 has a direct link with

I4 (see Figure 8.2(b)).

In this example:

(1) A1 opens the discussion by sending claim(I1) in L1 locution.

(2) DID diagram (in Figure 4.3 in chapter 4) specifies that A2 can reply with why(T)

or concede(T).

(3) A2 sends why(I1)in L2.

(4) DID diagram (in Figure 4.3 in chapter 4) specifies the legal replies argue(,T)

where ’s conclusion is T, or retract(T).

(5) A1 responds to the challenge by declaring the supporting premises I2 and I3 for

I1 [sends argue(I2 and I3) in L3 node]. Note that A1 satisfies the argue message

constraint Pre=findPremise(T, KBP,CSP) using AIF which describes the relation

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 215

between A1's argument (T="Tweety flies" in I1) and its supporting premises

(Pre= "Tweety is a bird, birds generally fly" in I2 and I3) (see Figure 8.2(a)).

(6) DID diagram (in Figure 4.3 in chapter 4) specifies the legal replies why(),

argue() where ’s conclusion is T, or concede(T).

(7) A2 responds by declaring its supporting premises I5 and I6 for I4 [sends

argue(I5 and I6) in L4 node]. Note that A2 satisfies the argue message constraint

Def=findDefeats(T,Pre,KBO,CSO) using AIF which describes the relation

between A2's argument (T="Tweety does not fly" in I4) and the its supporting

premises (Def= "Tweety is a penguin, penguins do not fly" in I5 and I6) (see

Figure 8.2(b)).

(8) DID diagram (in Figure 4.3 in chapter 4) specifies the legal replies why(),

argue(,T) where ’s conclusion is T, or concede(T).

(9) A1 responds by sending I4 [sends concede(I4) in L5 node].

This example shows that the DID can work with argument formats written in the

AIF.

8.1.2 The Difference between DID and AIF Extension

As explained in detail in chapter 3 section 3.7.5, two studies have attempted to solve

the AIF problem by extending the AIF to handle some dialogue game concepts:

(1) Modgil and McGinnis [Modgil and McGinnis, 2007];

(2) Reed et al. [Reed et al., 2008; Reed et al., 2010] (Please note that the AIF+ is

still an ongoing work and our research was developed in parallel to this work).

Table 8.1 summarises the major differences between these two studies and DID:

(1) Locution Concept (Figure 8.3):

 DID: locutions are represented in the form of Locution icon (see chapter 4);

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 216

 DID Modgil and McGinnis

[Modgil and McGinnis,

2007]

Reed et al.

[Reed et al., 2008]

Represent

Locutions

Locutions are

represented in the form

of Locution icon.

Expands I-nodes content

to represent locution

Locutions are

represented in the form

of L-nodes

Dialogue Games

Concepts

DID has the following

dialogue games

concepts: locutions,

participants

commitment store,

commitment rules

(post-conditions),

structural rules, turn

taking rules, pre-

condition rules and

locution types.

Modgil and McGinnis

work has the following

dialogue games

concepts: locutions, pre-

conditions and structural

rules.

AIF+ has the following

dialogue games

concepts: locutions,

pre and post conditions

and structural rules.

Protocol automated

synthesis

The user can perform

fully automated

synthesis of multi-

agent protocols using

LCC–Argument

patterns

The user cannot perform

fully automated

synthesis of multi-agent

protocols

The user cannot

perform fully

automated synthesis of

multi-agent protocols

Argument Format
DID can work with any

argument format

Only AIF Only AIF

Table 8.1: Differences between Modgil and McGinnis

[Modgil and McGinnis, 2007], Reed et al. [Reed et al., 2008] and DID

Figure 8.3: Locution Concepts

Locution name

Sender role

name

Receiver role

name

Sender role

argument

Receiver role

argument

Sender ID Receiver ID

DID Locution icon

Modgil and McGinnis I-node

Reed et al. L-node

Locution Type

I: Locution name

)

L: Locution name

)

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 217

 Modgil and McGinnis [Modgil and McGinnis, 2007] expand Information

nodes (I-nodes) content to represent locution (see chapter 3, section 3.7.5 for

more detail about I-node);

 Reed et al. [Reed et al., 2008]: locutions are represented in the form of

Locution nodes (L-nodes), a subclass of Information nodes (I-nodes) (see

chapter 3, section 3.7.5 for more detail).

(2) Dialogue Game Concepts (Figure 8.4(a) and (b)):

 DID represents eight concepts of the dialogue games [Locutions; Pre-

condition rules; Post-condition rules; Structural rules; Participants

Commitment Store and Commitment rules; Locution types (Starting rules and

Termination rules which are used to specify when the dialogue starts and

when the dialogue ends);Turn Taking rules] using the locution icon (see

chapter 4);

 Modgil and McGinnis [Modgil and McGinnis, 2007] represent three dialogue

game concepts (as shown in Figure 8.4 and Figure 8.5):

a) Locutions: are represented by an I-node;

b) Pre-conditions: are represented by PIA-node (see chapter 3, section 3.8.5

for more detail about PIA-node);

c) Structural rules: are represented by PIA-node;

 AIF+ (by Reed et al. [Reed et al., 2010]) represents four dialogue games

concepts (as shown in Figure 8.4 and Figure 8.6):

a) Locutions: are represented by an L-node;

b) Pre- and post-conditions: are represented by a Locution Description

(LDesc-nodes) nodes [Reed et al., 2010]. In AIF+, for each locution,

represented by an L-node, there is a corresponding LDesc-node. Each

LDesc-node is linked to a corresponding PreCondDesc node (it describes

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 218

Figure 8.4 (a): Dialogue Games Concepts

Locution name

Sender Role Name Receiver Role

Name

Sender Role

Arguments

Receiver Role

Arguments

Sender Agent ID

(e.g. IDP)

Receiver Agent ID

(e.g. IDO)

Locution name

Sender Role

Name

Sender Role

Name

Sender Role

Arguments

Sender Role

Arguments

Sender

Agent ID

(e.g. IDO)

Sender Agent

ID

(e.g. IDP)

Locution name

Sender Role

Name

Sender Role

Name

Sender Role

Arguments

Sender Role

Arguments

Sender

Agent ID

(e.g. IDO)

Sender Agent

ID

(e.g. IDP)

DID Dialogue Game

Concepts

Modgil and McGinnis

Dialogue Game

Concepts

I: Locution name

)

 PIA:

-Structural rules

(Pre-condition)

Sender Agent ID

Locution type

Sender

Pre-

condition

Receiver

Post-

condition

Locution concept

1

Commitment rules and

Post-condition concept
Commitment rules and

Pre-condition concept

3 & 5
2 &5

Structural

rules concept

4

Locution concept

1
Pre-condition

concept

2

Structural

rules concept

3

Locution types (Starting rules

and Termination rules

6 & 7

Turn Taking rules

8

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 219

Figure 8.4 (b): Dialogue Games Concepts

Figure 8.5: Modgil and McGinnis Example of Dialogue Games Concepts

Reed et al. Dialogue

Game Concepts

Structural rules concept

Post-condition

concept

Pre-condition

concept

Locution concept

Structural rule

name

PreCondDesc PostCondDesc

hasPreCondDesc hasPostCondDesc

LocutionDesc

is-a

is-a

L2: Locution name

)

L1: Locution name

)

Transitional

Inference Scheme

hasEnd hasStart

hasStart

hasEnd

has-a

1
2 3

4

I3: argue(Tweety is a bird, birds generally fly)

)

 PIA 2:

- argue(,T)

(conc() = Ʊ)

- retract(Ʊ)

A1

Structural rules
Pre-condition

Locution

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 220

Figure 8.6: AIF+ Description of Persuasion Dialogue Games

the pre-conditions of locution) and PostCond-Desc nodes (it describes the

post-conditions of locution). In the AIF+ (Figure 8.6) representation of

persuasion dialogue in chapter 3, there are five LDesc-nodes corresponding

to the five locutions: claim, why, concede, argue and retract;

Transitional

Inference Scheme

hasEnd

hasStart

PresumptionDesc has

has-a

is-a
Form

PreCondDesc

PostCondDesc

hasPreCondDesc
hasPostCondDesc

is-a

LocutionDesc

is-a

is-a

is-a

is-a

is-a

claim

why

argue

concede

retract

Conceding a

claim

Asking for

grounds for a

claim

Starting a

counterargument

Arguing

Conceding an

argument

hasStart

hasStart

hasEnd

hasStar

t

hasEnd

hasStart

Retracting a

claim

Asking for

grounds for an

argument

hasStart

hasEnd

hasEnd

hasEnd

hasEnd

hasStart
hasEnd

hasStart

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 221

Figure 8.7: DID Protocol Implementation Concepts

c) Structural rules: the structural rules (the order sequence of locutions) are

represented by a transitional inference schemes node which describes, for

a given locution, the available locutions that a participant can select to

follow from the previous locution. In the AIF+ (Figure 8.6)

representation of persuasion dialogue in chapter 3, there are seven

transitional inference scheme nodes which describe the available

responding persuasion dialogue locutions for an uttered locution (e.g. the

why locution may be followed by either an argue or a retract locution);

(3) Protocol automated synthesis:

 DID: The user can perform a fully automated synthesis of multi-agent

protocols using LCC–Argument patterns since DID represents dialogue game

protocols [it has eight dialogue games concepts as well as protocol

implementation concept (Sender and receiver agents roles) as shown in Figure

8.7] (see chapter 5 for more detail);

 Modgil and McGinnis [Modgil and McGinnis, 2007]: The user cannot perform

a fully automated synthesis of multi-agent protocols. Their work does not

present all concepts which are needed in order to perform the automated

synthesis: (1) Post-conditions (helps to control agent behaviour); (2) Turn

Taking rules (help to control agent behaviour); (3) Starting rules (help to

control the starting of a dialogue); (4) Termination rules (help to control the

Locution name

Sender role

name

Receiver role

name

Sender role

argument

Receiver role

argument

Sender ID Receiver ID

Locution Type

Sender and Receiver

agent's roles concept

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 222

ending of a dialogue); (5) Sender and receiver agents roles (help to control the

way the dialogue proceeds).

 AIF+ (by Reed et al. [Reed et al., 2008]): The user cannot perform a fully

automated synthesis of multi-agent protocols. AIF+ does not present all

concepts which are needed in order to perform the automated synthesis: (1)

Turn Taking rules (help to control agent behaviour); (2) Starting rules (help to

control the starting of a dialogue); (3) Termination rules (help to control the

ending of a dialogue); (4) Sender and receiver agents roles (help to control the

way the dialogue proceeds).

(4) Argument Format

 DID can work with any argument format written in the AIF, or in other

argumentation-based formalism such as The Legal Knowledge Interchange

Format (LKIF) [Gordon, 2008]. See section 8.1.1.

 Modgil and McGinnis’s approach [Modgil and McGinnis, 2007] can only

work with AIF.

 AIF+ (by Reed et al. [Reed et al., 2008]) can only work with AIF.

8.1.3 DID Limitation

The DID can model large classes of argumentation systems (dialogue games) that

can be described as a sequence of turn taking recursive steps terminating in a base

case such as persuasion and negotiation dialogues (see chapter 4 and appendices A

and C). However, the DID has two limitations:

(1) Two agents:

We limited the DID diagram to two agents since the DID for N-agents needs more

concepts (e.g. recursive-conditions and recursive-arguments) which could make the

DID too close to an agent protocol and make the drawing of the DID diagram for N-

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 223

agents more difficult than writing the agent protocol in LCC notation (see chapter 4,

section 4.4.5).

However, in chapter 4, section 4.4.4 we were able to extend the DID locution icon to

represent N-agents dialogue games (see appendix B for more detail), although this is

not the most elegant solution (it is too complex for the user to create, understand and

edit). In doing so, we showed that it is possible to extend DID diagram.

To overcome the complexity of drawing the DID for N-agents, we hid the details of

DID diagrams for N-agents in a reusable black box and we used parameters to get the

information needed from the user. Besides, we performed automated synthesis of the

protocol and used a specific type of LCC-Argument pattern called broadcasting

pattern (see chapter 5, section 5.2.2). See section 8.1.4 for more detail.

(2) Unique-moves and Immediate-reply:

We restricted an agent's moves to unique-moves (an agent can make a single reply

for each possible move of the other agent. In other words, agents are not able to

send more than one message in one round of turn taking) and immediate-reply

moves (the turn taking between agents switches after each move and each agent

must reply to the move of the previous agent) (see chapter 4, section 4.2).

Although, many current systems [Prakken, 2005] enforce control structure (unique-

moves and immediate-reply), sometimes agents in dialogue games must have

freedom to explore multiple moves and alternative replies in one turn, returning to

earlier choices or to postpone replies. For example, unique-moves and immediate-

reply dialogue games are more appropriate when a quick decision has to be reached,

since this restriction forces agents to move their strongest arguments without wasting

time on other choices [Prakken, 2005]. However, multi-moves (when agents can

make several moves before the turn taking between agents switches) and non-

immediate-reply (the turn taking between agents may switch after each move or may

switch later) dialogue games are more appropriate when the quality of the outcome is

more important than the time spent on it [Prakken, 2005].

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 224

We chose to enforce this restriction in order to be able to perform protocol automated

synthesis directly from a DID specification. However, if we want to use the DID to

model multi-moves and non-immediate-reply dialogue games, we do not need to

change the DID. We need to add new set of LCC-Argument patterns to our library to

allow the synthesiser to generate LCC argumentation protocols for multi-moves and

non-immediate-reply dialogue games. See section 8.1.4 for more detail.

8.1.4 LCC-Argument Patterns Limitations

The LCC-Argument patterns can be used with the DID to generate agent protocols

for many standard types of argumentation systems such as persuasion and

negotiation dialogues (see chapter 5 and appendices A, B and C). However, the

LCC-Argument patterns have some limitations:

LCC-Argument Patterns for Two Agents

Two patterns (Starting pattern and Termination-Intermediate Pattern) were proposed

to synthesise LCC protocols, for two agents, automatically. At this stage we could

claim that we have a full set of patterns to synthesise LCC argumentation protocols

for two agents. However, as explained in section 8.1.3, these protocols are limited to

unique-moves and immediate-reply dialogue games.

We believe that if we want to provide a solution for multi-moves and non-

immediate-reply dialogue games, we will need to add a new set of LCC-Argument

patterns (which may contain a lot of detailed information) to our library. For

example, if we want to allow a Termination-Intermediate Pattern to work with multi-

moves, we have to add a set of Rewriting methods which have the ability to consider

all different collections of possible sequences of moves (locutions).

Let us consider the example in Figure 8.8 (some details are omitted from Figure 8.8

for clarity). In this example, Level 3 has 3 locutions which means there are 15

different collections of possible sequences of reply moves to locution icon argue in

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 225

Figure 8.8: Partial DID Diagram

Figure 8.9: Possible Sequence Of Reply Moves

level 2 (Figure 8.9 shows 15 possible sequences of reply moves for locution icon

argue in level 2). This means that the new Rewriting methods must be able to:

(1) Use a specific mathematical function to find the number of possible sequences

of reply moves;

argue

Agent Send

retract

Agent Send

why

Agent Send
One move

why

argue

Agent Send

then

why

retract

Agent Send

then

argue

why

Agent Send

then

argue

retract

Agent Send

then

retract

why

Agent Send

then

retract

argue

Agent Send

then

Two moves

why

argue

Agent Send

then

why

retract

Agent Send

then

retract

then

argue

then

argue

Agent Send

then

argue

retract

Agent Send

then

retract

then

why

then

why

retract

argue

Agent Send

then

retract

why

Agent Send

then

why

then

argue

then

Three moves

argue

--

Level 2

Level 3

Level 4

Level 1

why argue retract

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 226

(2) Provide a way (an algorithm) to select the correct next move(s).

(3) Provide a way (an algorithm) to avoid repeating the same sequences of moves

(locutions).

Therefore, it would require adding algorithmic information to this pattern, which

could be very difficult to edit by non-technical users (see chapter 9 for more detail).

LCC-Argument Patterns for N-agents

Part of our research focused on dialogue games involving more than two agents.

However, we generated one type of LCC argumentation protocols for N-agents.

Practically, our automated synthesis method uses an LCC-argument broadcasting

pattern to divide agents into groups composed of two agents. Then it follows the

automated synthesis process of two agents' protocols (see chapter 5, section 5.2.2) to

generate the LCC protocols, which allows pair of groups to communicate with each

other.

This means that our tool limits the LCC argumentation protocol for N-agent to a

broadcasting pattern. However, it is interesting to consider what it would be like to

actually build more patterns that can deal with any type of N-agent protocol. Can we

have a full set of patterns to synthesis LCC argumentation protocols for N-agent? To

do this we would need to either:

(1) Create one pattern and add more detail to it (to be able to work with different

types of N-agent protocols), which could make it very difficult for non-technical

users to edit.

(2) Add more detailed patterns to the LCC-Argument patterns library. It is true that

more detailed patterns are more useful than abstract ones, in the sense that they

can model more dialogue games. However, detailed patterns usually become too

specific and are less likely to occur frequently.

(3) Extend the DID diagram to represent N-agent diagrams (be able to represent

recursive concepts) and add more patterns to the library in order to work with

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 227

the new notations in the DID diagram which we previously performed (see

appendix B). Although this is not the most elegant solution (it is too complex for

the user to create, understand and edit DID diagram for N-agent), we showed

that it is possible to extend the DID diagram and synthesise N-agent protocols.

However, it would appear that in the case of N-agents, we cannot obtain a

complete set of LCC-Argument patterns. Futhermore, there are some limitations

in the LCC language itself. The LCC language supports only sequential

definitions of roles. For example, if an agent in a given role wants to send the

same message to a group of agents all at exactly the same time, LCC cannot

model that, although it could send a number of copies of the same message in

sequence.

8.2 Verification Method based on Coloured Petri Net and SML

This thesis explained a verification method based on CPNs and SML (see chapter 6).

Given the DID and the LCC specification, our verification tool could answer the

question: Does the LCC specification satisfy the DID behaviour properties? To

answer this question, the tool performs the following tasks:

(1) Automatically transforms the LCC specification into an equivalent CPNXML

file;

(2) Constructs from the CPNXML file the state space;

(3) Automatically creates DID properties files;

(4) Automatically verifies the satisfaction of the DID properties in the state-space

graph computed from the LCC protocol by applying a verification model.

The next subsections discuss the limitations of the four steps of our verification

method.

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 228

8.2.1 Limitations of Transforming the LCC Specification into an

Equivalent CPNXML File

Our verification method generates a hierarchical CPN model from an LCC

specification by using a set of transformational rules. Although many steps of our

approach are automatic, our approach is not able to automatically transform LCC

parameters to colour set types of the CPN model which is a result of LCC being an

untyped language. This means that the user needs to manually supply colour set

types information to the generated CPNXML file.

By default our verification tool defines three types of colour set and thirteen

functions (see chapter 6, section 6.1 for more detail) and saves them in the Global

Declaration file. The user does not need to know about them unless he/she needs to

define new types or functions. That means the user needs to learn CPN colour sets

and function concepts as well as the CPN SML language in order to supply this

information to the generated CPNXML file. However, the user does not need to

become a CPN SML programmer in order to supply this information. He/she needs

only to learn how to declare colour sets (data types) and variables along with

knowing how to compare one data (datum) value with another.

8.2.2 Limitations of Constructing of the State Space

The second step of the verification method is to construct from the CPN model its

state space (directed graph, which represents all possible executions of the CPN

model). The fourth step of the verification method concerns the full state space

analysis which is possible if the state space of the CPN model has a fixed size (i.e.

the state space graph has a finite number of nodes). Although, we have not

experienced a state space explosion problem with the persuasion and negotiation

dialogues examples (appendices C and A) as explained in chapter 6, our verification

method is likely to encounter the state space explosion problem (state space analysis

will be prohibited because of the infinite number of the state space graph nodes).

This is because the CPN model could have a finite number of agents but for instance

it could describe an LCC protocol where agents can be involved in an infinite loop.

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 229

8.2.3 Limitations of the Verification Method

Our verification method identifies five basic properties, which are independent of

any dialogue games types (Dialogue opening property, Termination of a dialogue

property, Turn taking between agents property, Message sequencing property and

Recursive message property). See chapter 6, section 6.4 for more detail. If the user

needs to verify different properties than these five properties, the user needs to

manually add the new properties to the generated CPNXML file (Appendix A

describes how to add new properties to the generated CPNXML file with examples).

That means that the user needs to learn the CPN SML language (in other words,

become a CPN SML programmer) in order to write the new property code.

8.3 GenerateLCCProtocol Tool

The GenerateLCCProtocol tool (see chapter 7 for more detail) enables the user to

synthesise LCC protocols automatically from DID specifications and verify the

semantics of the DID specification against the semantics of the synthesised LCC

protocol automatically.

This tool has been designed and implemented to perform two tasks:

(1) Synthesis of concrete protocols;

(2) Model verification.

 The next two subsections discuss the limitations of these two tasks.

8.3.1 Task One: Synthesis of Concrete Protocols

The GenerateLCCProtocol tool receives a DID as an input and returns the

corresponding LCC specification protocol. One advantage of the DID is that it is a

high-level graphical language (see chapter 4, section 4.2 for more detail) and people

in the agent community are familiar with high-level language or graphical notation

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 230

languages like Agent Unified Modelling Language (UML)
19

 [Bauer et.al., 2001].

Also, specifying argumentation protocols using programming-level protocol

languages is error-prone, and a higher-level graphical language can help avoiding

low-level errors.

Unfortunately, our tool does not have a graphical representation for all DID diagram

files. In fact, the tool allows the user to create the DID diagram by providing one

locution icon information at a time using locution icon graphical representation (see

chapter 7, Figure 7.4). For each locution icon the tool generates a textual

representation for it and saves it in the DID diagram file (see chapter 7 for more

detail). Then, if the user needs to edit the DID diagram file, the user has to edit the

DID textual representation. This means that the user has to know the formal

representaion of the DID as well as the graphical noation of the DID diagram.

To avoid this problem it would be useful for the user to create, review and edit the

DID diagram in a graphical way which means that more work is needed to improve

our tool (see chapter 9 for more detail).

8.3.2 Task Two: Model Verification

For this task, the GenerateLCCProtocol tool receives a DID and the LCC

specification protocol as an input, verifies them and then answers the question: Does

the LCC specification satisfy the DID propertiers? This is explained in chapter 6 and

section 8.2. Four steps are needed to answer this question:

(1) Transforming the LCC specification into an equivalent CPNXML file. This step

is processed by the GenerateLCCProtocol tool in a fully automatic way;

(2) Constructing the state space. Unfortunately, the GenerateLCCProtocol tool is

not able to construct the state space in an automatic way. The user needs to open

19
 UML is a graphical language which consists of a set of graphic symbols. It is used to create,

process, and model agent-based software, object-oriented software and workflows.

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 231

the CPNXML file using the CPN Tool and construct the state space in a manual

way (see chapter 6, section 6.2 and chapter 7). In fact, the CPN Tool team

created the Access/CPN [Westergaard and Kristense, 2009] tool to connect the

CPN tool with external applications (e.g. Java applications) which could help to

construct the state space in a fully automatic way. Unfortunately, we were not

able to use the Access/CPN tool to connect the CPN Tool with the

GenerateLCCProtocol because there are some problems in the Access/CPN tool

itself
20

.

(3) Creating DID properties files. This step is processed by the

GenerateLCCProtocol tool in a fully automatic way;

(4) Verifying the satisfaction of the CPN SML specification in the state-space graph

computed from the LCC protocol by applying a verification model. This step is

processed by the GenerateLCCProtocol tool in a semi-automatic way. The

GenerateLCCProtocol tool generates the CPN SML code of the five basic

properties (chapter 6, section 6.4). To verify these five basic properties, the user

needs to:

 Open the generated CPNXML file;

 Select, in the CPN Tool, the simulation tool palette;

 Select the Evaluates a Text as ML Code(ML!) icon in the simulation tool

palette and apply it to one of the property pages;

 Repeat these steps for all properties pages;

 Select Verification Model Result from the verification menu bar in the

GenerateLCCProtocol tool.

20
 We spent three months trying to connect the CPN Tool with the GenerateLCCProtocol tool using

the Access/CPN tool. We contacted the CPN tool team and they acknowledged the bugs we found in

the tool.

Bridging the Specification Protocol Gap in Argumentation

Chapter 8: Evaluation and Discussion 232

8.4 Summary

This chapter has discussed the thesis findings and contributions as well as provided

an overview of the limitations of this thesis. Our evaluation also highlighted areas

where more work is needed. The next chapter will discuss how the work could be

improved and outline directions for future research.

Bridging the Specification Protocol Gap in Argumentation

Chapter 9: Conclusion and Future Work 233

Chapter 9

Conclusion and Future Work

This chapter summarises the thesis contributions in Section 9.1 and also outlines

directions for future research in Section 9.2.

9.1 Summary of Contributions

This thesis, as mentioned in chapter 1, has investigated the problem of the gap

between argument specification languages and multi-agent implementation

languages. One way of addressing this issue is through an automated synthesis

method, so the specific question that we asked is whether a generic argumentation

representation (acting as a high-level specification language) could be used to

automate the synthesis of executable specifications in a protocol language capable of

expressing a class of multi-agent social norms. As our argumentation language we

have chosen the Argument Interchange Format (AIF). As our protocol language we

have chosen the Lightweight Coordination Calculus (LCC).

Fully automated synthesis starting only from the AIF, as mentioned in chapter 3, is

not possible because AIF is an abstract language that does not capture some concepts

that are related to the interchange of arguments between agents (e.g. sequence of

argument, locutions and pre- and post-conditions for each argument). An example of

this obstacle is shown is chapter 3.

To remedy this obstacle, in chapter 4, we extended the AIF diagrammatic notation to

give a new, intermediate recursive visual dialogue game high-level language between

the AIF and LCC called a Dialogue Interaction Diagram (DID). DID provides

mechanisms to represent, in an abstract way, the dialogue game protocol rules by

giving an overview of the permitted moves (messages) and their relationship to each

other. It restricts agent moves to unique-moves and immediate-reply moves. This

restriction is quite strict but it still allows the user to include a large class of

Bridging the Specification Protocol Gap in Argumentation

Chapter 9: Conclusion and Future Work 234

argumentation systems in the synthesizer, for instance all argumentation systems that

can be described as dialogue games. In general, we can synthesise arguments that can

be described as a sequence of turn taking recursive steps (each of which involves

turn taking between the pair of agents) terminating in a base case. Given the turn-

taking assumption, we can synthesise LCC protocols (which are executable) directly

from DID specifications. However, a DID cannot explain how two or more agents

can cooperate and interact with each other in situations where more complex

protocols involving more than turn taking are required.

To overcome this problem, in chapter 5, we supplied LCC-Argument patterns, which

are re-usable, parameterisable LCC specifications that can be embedded in

automated synthesis tools and used with DID to support agent protocol development.

By re-using design patterns repeatedly it is possible to reduce the effort of building

complex argumentation protocols. The set of these more complex design patterns is,

in theory, unbounded (for the same reason that design patterns in traditional software

engineering are unbounded) but in practice families of interaction patterns occur. We

have focused on those involving more than two agents where synthesized LCC

protocols specify broadcasting methods to divide agents into groups composed of

two agents (with these two-agent dialogues then being specified using DID).

Because design patterns could introduce errors in the synthesis process (since a

poorly designed interaction pattern may result in an inappropriate LCC protocol even

with a perfect synthesis mechanism), in chapter 6, we provided a verification

methodology. The proposed verification strategies are based on SML and CPN to

check the semantics of the DID specification used as a starting point against the

semantics of the synthesised LCC protocol.

In conclusion, although the resulting synthesis and verification system is not an

industry-strength specification tool, it demonstrates how automated synthesis

methods can connect argumentation to MAS interaction protocols in a process

language. This, potentially, could allow developers of argumentation systems to use

specification languages to which they are accustomed (in our case AIF/DID) to

Bridging the Specification Protocol Gap in Argumentation

Chapter 9: Conclusion and Future Work 235

generate systems capable of direct implementation on open infrastructures (in our

case LCC).

9.2 Improvements and Future Work

The results of this thesis point to several interesting directions for future work, in the

hope of introducing further improvements to the DID, the automated synthesis

method and the semi-automated verification method:

9.2.1 DID Future Work

So far, we have developed a high-level dialogue game protocol abstract language

called DID. This language can represent any argument (dialogue game) system that

can be described as a sequence of turn taking recursive steps terminating in a base

case. DID can be used with LCC-Argument patterns for the automatic synthesis of

LCC agent protocols, which means that users do not need to learn LCC language.

But despite this fact, there are still several open issues and we want to point out two

of them:

 Natural Language:

Although the DID language can model a large class of dialogue game

argumentation systems, it is interesting to consider who is likely to be able to use

the DID notation. Will some users be able to use the DID notation while others

cannot? Unfortunately, we do not know those answers ourselves since we did not

test that. However, we assume that some users may have some problems working

with DID notation. DID diagrams can become complicated simply because of the

complexity of the modelled argumentation system. That means we need to find

new ways to make DID easier to use. One way of addressing this issue is through

connecting DID (formal language) with natural language, which might reduce the

effort and time needed to build a DID diagram. In the future we would like to

investigate the use of the natural language to get the dialogue game protocol

information from the user.

Bridging the Specification Protocol Gap in Argumentation

Chapter 9: Conclusion and Future Work 236

 Graphical Representation:

As indicated in Chapter 8, the GenerateLCCProtocol tool does not have a

graphical representation for all DID diagram files. Although the user creates the

DID diagram by providing one locution icon information at a time in graphical

way, the user needs to learn the formal representation of the DID in order to be

able to edit the DID diagram. In other words, more work is needed to improve the

GenerateLCCProtocol tool to enable the user to create, review and edit the DID

diagram in a graphical way.

9.2.2 Automated Synthesis Method Future Work

 Deductive Synthesis:

A DID cannot explain how two or more agents can cooperate and interact with

each other, therefore we cannot go directly from DID to LCC. To overcome this

problem, this thesis used structured synthesis method (pattern based approach).

However, it is interesting to check whether this approach (structure synthesis) is

the right way to address DID problem. Is there another way to solve this problem?

In fact, another way to generate the LCC agent protocol from the DID would be to

use deductive synthesis
21

 methods, where the protocol generation task is viewed

as a problem of proving a mathematical theorem. As a future work we would like

to investigate the use of the deductive synthesis method to generate the LCC agent

protocols. In other words, we would like to answer the following question: Is a

deductive synthesis method easier and more effective than our structured

synthesis method?

21
 A deductive approach [Manna and Waldinger, 1980] "is presented for the construction of recursive

programs. This approach regards program synthesis as a theorem-proving task and relies on a

theorem-proving method that combines the features of transformation rules, unification, and

mathematical induction within a single framework".

Bridging the Specification Protocol Gap in Argumentation

Chapter 9: Conclusion and Future Work 237

 LCC-Argument Pattern Library:

Currently, the LCC-argument pattern library is limited (as explained in Chapter 8)

to two agent dialogue games, unique-moves and immediate-reply dialogue games

and a broadcasting approach for N-agents dialogue games. This means that the

investigation of new LCC-argument patterns is needed to improve our tool. Such

improvements involve a better understanding of dialogue games, the LCC

language and LCC-argument patterns.

One of the common patterns we would like to add is non-immediate-reply

dialogue games (these systems do not typically require agents to reply

immediately to the other agents' messages).

9.2.3. Semi-automated Verification Method Future Work

At this moment, our semi-automated verification method has some limitations (as

explained in Chapter 8). The most important one is a verified properties issue.

The verification has succeeded in verifying five basic properties (Dialogue opening

property, Termination of a dialogue property, Turn taking between agents property,

Message sequencing property and Recursive message property) which are general

properties that may be applied to several dialogue games. However, if the user needs

to verify different properties, the user needs to specify these properties and feed them

to the generated CPNXML file manually. Therefore, we believe further research

needs to be carried out to address this issue. In fact, we intend to investigate three

questions: Can the user modify the available properties to suit their specific dialogue

game using the GenerateLCCProtocol tool? Can the GenerateLCCProtocol tool

specify new properties in an automated manner? Can the GenerateLCCProtocol tool

take the new properties information from the user using a constrained form of natural

language?

Bridging the Specification Protocol Gap in Argumentation

Chapter 9: Conclusion and Future Work 238

9.2.4. Other Future Work

Because we had to extend the AIF to get a language that has enough information in it

to generate the MAS protocols, we ended up with versatile language called DID. We

believe that the DID can represent things beyond arguments but we have not

investigated this aspect. Perhaps a more immediate direction for future work is the

investigation of applying the automated synthesis and verification method to

different fields (besides argumentation).

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 239

Appendix A

Negotiation Dialogue

This appendix presents an example of the negotiation dialogue [Sadri et. al., 2001;

Sadri et. al., 2002]. The summary of the paper is presented in Section A.1. Section

A.2 represents the DID formal definition of the negotiation dialogue. Section A.3

represents the DID of the negotiation dialogue. Section A.4 represents the picture

hanging example of the negotiation dialogue. Section A.5 represents the generated

LCC protocol from the automated agent protocol synthesis tool

"GenerateLCCProtocol". Finally, Section A.6 represents the CPN model and

verification model properties of the negotiation dialogue.

A.1 Negotiation Dialogue Example

Sadri et. al [Sadri et. al., 2001; Sadri et. al., 2002] work focuses on negotiation

dialogue (see chapter 3 section 3 for more details) which allows two agents to

request resources or knowledge, propose resource exchanges and suggest alternative

resources. Practically, it provides a language as well as a protocol for negotiation

dialogues in the domain of resource exchanging that allows each agent in the

dialogue to achieve his main goal.

In this negotiation dialogue, there are only two agents. Each agent has only one goal

G, one missing resource R, and they have only one plan P to get the missing resource

and to achieve its goal. During the dialogue, both agents will try to get the missing

resources. In order to achieve this they may suggest alternative plans and resources

to each other.

In fact, an agent can open a negotiation dialogue by making a request move with the

topic (missing resource) R. To terminate a negotiation dialogue an agent must send

either accept or refuse moves [Sadri et. al., 2001; Sadri et. al., 2002].

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 240

A.2 DID Formal Definition of the Negotiation dialogue

(7) Players:

In this dialogue, there are two participant: 'A' and 'B'.

Players={A,B}

(8) There are six locutions (Acts):

Acts ={request(R), challenge(R), accept(R), refuse(R), justify(R,P,G),

 promise(R'',R')}

(9) ActType(Act):

Act ActType (Act)

request
{Starting}

challenge { Intermediate }

accept {Termination}

refuse {Termination}

justify {Intermediate}

promise {Intermediate}

(10) Replies(Act):

In the persuasion dialogue the Replies rules are as follows:

Act Replies(Act) Note

request(R)
{challenge(R), accept(R), refuse(R)} R= missing resource for

the speaker

challenge(R) {justify(R,P,G)} P and G= support for R

accept(R) Ø

refuse(R) Ø

justify(R,P,G) {refuse(R), promise(R'',R')} R'= missing resource for

the speaker and R''= new

resource for new plan

for the audience

promise(R'',R') {accept(R'',R'), refuse(R'',R')}

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 241

(11) PreC(Act,KB,CS):

Let Player = A

In the negotiation dialogue the Pre-conditions are as follows:

Act PreC(Act,KB,CS) Note

request(R) miss(KBA,R) = true miss function returns true if agent

A misses a resource R for a plan P

to achieve a goal G.

challenge(R) (

(have(KBA,R) and

need (KBA,R) = true)

 or

notHave(KBA,R) = true

or

missResource(KBA, P,G) = true

)

 have function returns true if agent

A has a resource R.

 need function returns true if agent

A has a resource R needed for a

plan P to achieve a goal G.

 notHave function returns true if

agent A does not have a resource

R.

 missResource function returns

true if agent A needs R' resource

for a plan P to achieve a goal G.

accept(R) have (KBA,R) = true

and

notNeed (KBA,R) = true

and

notmissResource(KBA,P,G) = true

and

gaveAway(CSA,R) = true

 have function returns true if agent

A has a resource R.

 notNeed function returns true if

agent A has a resource R which is

not needed for a plan P to achieve

a goal G.

 notmissResource function returns

true if agent A does not miss a

resource R' for a plan P to

achieve a goal G.

 gaveAway function always

returns true and results in agent A

giving away a resource R (agent

A subtract R from its commitment

store CSA).

refuse(R) (

notHave(KBA,R)

 or

need(KBA,R) = true

)

and

notmissResource(KBA, P,G) = true

These pre-conditions must be

satisfied in order for A to move

refuse after request move where,

 notHave function returns true if

agent A does not have a resource

R.

 need function returns true if agent

A has a resource R needed for a

plan P to achieve a goal G.

 notmissResource function returns

true if agent A does not miss a

resource R' for a plan P to

achieve a goal G.

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 242

Act PreC(Act,KB,CS) Note

refuse(R) missResource(KBB,P,G)

= true

and

notExistAlternativePlane(G,

without(R,R')) = true

These pre-conditions must be

satisfied in order for A to move

refuse after justify move where,

 missResource function returns

true if agent A needs R' resource

for a plan P to achieve a goal G.

 notExistAlternativePlane

function returns true if agent A

cannot find an alternative plan for

agent B's goal without R and R'.

justify(R,P,G) miss(KBA,R) = true

and

getPlan(KBA,P) = true

and

getGoal(KBA,G) = true

 miss function returns true if agent

A needs R resource for a plan P to

achieve a goal G.

 getPlan function returns true if

agent A is able to find a plan P in

its Knowledge Base KBA (A

needs R resource for a plan P to

achieve a goal G).

 getGoal function returns true if

agent A is able to find a goal G in

its Knowledge Base KBA (A

needs R resource for a plan P to

achieve a goal G).

promise(R'',R') missResource (R', P, G) = true

and

have (KBA,R'') = true

and

notNeed (KBA,R'') = true

and

choosealternativeplane

(KBA,G,NewPlan,without(R,R'),with

(R'')) = true

 R'= missing resource for the

speaker A and R''= new resource

for new plan for the audience B

 missResource function returns

true if agent A needs R' resource

for a plan P to achieve a goal G.

 have function returns true if agent

A has a resource R''.

 notNeed function returns true if

agent A has a resource R'' which

is not needed for a plan P to

achieve a goal G.

 choosealternativeplane function

returns true if agent A finds a new

and different plan NewPlan for

other agent B's goal that requires

neither of R and R' and needs R''.

refuse(R'',R') miss(KBA,R) = true

and

 notChooseBetterPlan(KBA,G,

NewPlan, oldPlan, without(R,R’),

with(R’’)) =true

These pre-conditions must be

satisfied in order for A to move

refuse after promise move where,

 miss function returns true if agent

A has a resource R needed for a

plan OldPlan (P) to achieve a

goal G.

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 243

 notChooseBetterPlan function

compare the OldPlan and the

NewPlan and returns true if

NewPlan is not acceptable.

accept(R'',R') miss(KBA,R) = true

and

have(KBA,R') = true

and

notNeed(KBA,R') = true

and

chooseBetterPlan(KBA,G,NewPlan,

OldPlan,without(R,R'),with(R'')) =

true

and

gaveaway(CSA, R') = true

and

obtained(CSA,R'')= true

These pre-conditions must be

satisfied in order for A to move

accept after promise move where,

 miss function returns true if agent

A has a resource R needed for a

plan OldPlan (P) to achieve a

goal G.

 have function returns true if agent

A has a resource R'.

 notNeed function returns true if

agent A has a resource R' which is

not needed for a plan P to achieve

a goal G.

 chooseBetterPlan function

compare the OldPlan and the

NewPlan and returns true if agent

the NewPlan (that requires

neither of R and R' and needs R'')

is acceptable.

 gaveAway function always

returns true and results in agent A

giving away a resource R' (agent

A subtract R' from its

commitment store CSA).

 obtained function always returns

true and results in agent A

obtaining a resource R'' (agent A

adding R'' to its commitment

store CSA).

(12) PostC(Act,KB,CS):

let Player(Mt)= A and NextPlayer =B,

In a negotiation dialogue the Post-Conditions (conditions for receiver player B of Mt)

are as follows:

Act PostC(Act,KB,CS) Note

request(R) true

challenge(R) true

accept(R) obtained (CSB,R) = true

 obtained function always returns true

and results in agent B obtaining a

resource R (agent B adding R to its

commitment store CSB).

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 244

Act PostC(Act,KB,CS) Note

refuse(R) true

justify(R,P,G) true

promise(R'',R') true

accept(R'',R') obtained(CSB, R') = true

and

gaveaway(CSB,R'') = true

These post-conditions must be satisfied in

order for A to move accept after promise

move where,

 gaveAway function always returns true

and results in agent B giving away a

resource R'' (agent B subtract R'' from its

commitment store CSB).

 obtained function always returns true

and results in agent B obtaining a

resource R' (agent B adding R' to its

commitment store CSB).

refuse(R'',R') true

(13) LegalMoves(Mt , CSA, CSB)

From Figure A.1 the negotiation dialogue, we can see that:

 Dialogues open by making a request move

 M1 = initial move, ActType(Act(M1)) = Starting and Act(M1)= {request}

 In the negotiation dialogue, the argument terminates once the agents send

accept or refuse. In other words, both accept and refuse ϵ {Termination}.

There is no reply move to these moves (there are no arrows coming out from

these moves).

 Challenge, justify and promise ϵ {Intermediate}. There are several moves to

these moves (there are arrows coming out from these moves).

 The turn-taking between participants switches after each move:

a) if M1 then Player = A,

b) else NextPlayer = B iff Player = A

and NextPlayer = A iff Player = B

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 245

Figure A.1: The Negotiation Dialogue Legal Moves

A, request

M1

B, challenge

M2

B, accept

M3

B, refuse

M4

A, justify

M5

B, refuse

M6

B, promise

M7

A, refuse

M9

A, accept

M8

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 246

A.3 DID of the Negotiation Dialogue

Figure A.2 illustrates a DID structure of a negotiation dialogue (Note that pre-

conditions and post-conditions for locutions are not shown in this figure. Rather, it is

shown in Figures A.3(a), A.3(b), A.3(c), and A.3(d) .In Figure A.2, there are six

locutions: request, challenge, accept, refuse, justify and promise locutions (a subset

of locutions in [Amogud et.al. 2000]
22

). There are three types of locution: starting

(request), termination (accept and refuse), and intermediate (challenge, justify and

promise)) locution.

In this example, a dialogue always starts with a request and ends with an accept or

refuse locution. A can open the dialogue by sending a request(R) locution if he is

able to satisfy the condition which is connected to the sender role of this locution.

Then, turn-taking switches to B. B has to choose between three different possible

reply locutions: challenge(R), accept(R) or refuse(R). B will make his choice using

the conditions which appear in the rhombus shape (for example, in order to choose

challenge (R), B must be able to satisfy the two conditions which connect with

challenge). After that, the turn switches to A, and so on. The argument terminates

once an agent sends either an accept or refuse locution.

A.4 The Picture Hanging Example

Figure A.4 represents the negotiation dialogue graph of the picture hanging example

(adapted from [Parsons et al., 1998; Maudet et al., 2007]) (see chapter 3 for more

details):

(1) Dialogue takes place between two agents, A and B.

(2) A has KBA and CSA, and B has KBB and CSB (Note that the agent's knowledge

bases are shown at the top of the figure).

22
 In this example, we follow the Commitment rules in Amogud et.al [Amogud et.al. 2000] work).

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 247

Figure A.2: DID Structure of a Negotiation Dialogue

request (R)

requestReciver
B

 requestSender
A

KB

B
, CS

B
, CS

A
,IDA KB

A
,CS

A
, CS

B
 ,IDB

ID
B

 ID
A

challenge(R)
replayToRequest

Reciver
A

replayToRequest

Sender
B

KB
A

,CS
A

, CS
B

,R,IDB

KB
B
,CS

B
, CS

A

,R,IDA

ID
A

 ID
B

refuse(R)
replayToRequest

Reciver
A

replayToRequest

Sender
B

KB
A

,CS
A

, CS
B

,R,IDB

KB
B
,CS

B
, CS

A

,R,IDA

ID
A

 ID
B

accept(R)
replayToRequest

Reciver
A

replayToRequest

Sender
B

KB
A

,CS
A

, CS
B

,R,IDB

KB
B
,CS

B
, CS

A

,R,IDA

ID
A

 ID
B

justify (R,P,G)

replayToChallengeRecive
B

 replayToChallengeSender
A

KB
B
,CS

B
, CS

A
,R,IDA KB

A
,CS

A
, CS

B
 ,R,IDB

ID
B

 ID
A

promise(R'',R')

replayToJustify

Reciver
A

replayToJustify

Sender
B

KB
A

,CS
A

, CS
B

,R,IDB
KB

B
,CS

B
, CS

A

,R,IDA
ID

A
 ID

B

refuse(R)

replayToJustify
Reciver

A

replayToJustify
Sender

B

KB
A

,CS
A

, CS
B

,R,IDB

KB
B
,CS

B
, CS

A

,R,IDA
ID

A
 ID

B

accept(R'',R')

replayToPromise

Reciver
B

replayToPromise

Sender
A

KB
B
,CS

B
, CS

A
,R,

R'',R',IDA

KB
A

,CS
A

, CS
B
 ,R,

R'',R',IDB

ID
B

 ID
A

refuse(R'',R')

replayToPromise

Reciver
B

replayToPromise

Sender
A

KB
B
,CS

B
, CS

A
,R,

R'',R',IDA

KB
A

,CS
A

, CS
B
 ,R,

R'',R',IDB

ID
B

 ID
A

Starting Locution

Intermediate Locution

Termination Locution

Intermediate Locution

Termination Locution

Intermediate Locution

 A

 B

 A

Termination Locution

 B

Termination Locution

Termination Locution

 A

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 248

Figure A.3(a): Negotiation Dialogue Locutions Pre-Conditions and Post-

Conditions

request (R)

requestReciver
B

 requestSender
A

KB

B
, CS

B
 ,

CS
A
 , ID

A,

KB
A

,CS
A
 ,

CS
B
 ,ID

B

ID
B

 ID
A

challenge(R)
replayToRequest

Reciver
A

replayToRequest

Sender
B

KB
A

,CS
A

,

CS
B
 ,R,IDB

KB
B
,CS

B
, CS

A

,R,IDA

ID
A

 ID
B

accept(R)
replayToReque

stReciver
A

replayToReque

stSender
B

KB
A

,CS
A

,

CS
B
 ,R,IDB

KB
B
,CS

B
,

CS
A

,R,IDA

ID
A

 ID
B

Starting Locution

miss(KBA,R)

Intermediate Locution

Termination Locution

(have(KBB,R) and

need (KBB,R))

or
 notHave(KBB,R)

or

missResource
(KBB,P,G)

1

have(KBB,R)

notNeed(KBB,R)

1

2

3

gaveAway(CSB,R)

obtained(CSA,R)

notmissResource

(KBB,P,G)
 4

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 249

Figure A.3 (b): Negotiation Dialogue Locutions Pre-conditions and Post-

conditions

refuse(R)
replayToRequest

Reciver
A

replayToRequest

Sender
B

KB
A

,CS
A

, CS
B

,R,IDB

KB
B
,CS

B
, CS

A

,R,IDA

ID
A

 ID
B

justify(R,P,G)

replayToChal

lengeRecive
B

replayToChall

engeSender
A

KB
B
,CS

B
, CS

A

,R,IDA

KB
A

,CS
A

, CS
B

,R,IDB

ID
B

 ID
A

refuse(R)

replayToJusti

fyReciver
A

replayToJustif

ySender
B

KB
A

,CS
A

,

CS
B
 ,R,IDB

KB
B
,CS

B
, CS

A

,R,IDA
ID

A
 ID

B

Intermediate Locution

notHave(KBB,R)

or

need(KBB,R)

1

miss

(KBA,R)

getPlan(KBA,P)

1

2

Termination Locution

Termination Locution

1

missResource
(KBB, P,G)

notExist AlternativePlane

(KBB,G, without(R , R'))

notmissResource

(KBB,P,G)

2

2

refuse after justify

refuse after request

getGoal(KBA,G)

3

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 250

Figure A.3 (c): Negotiation Dialogue Locutions Pre-conditions and Post-

conditions

promise(R'',R')

replayToJusti

fyReciver
A

replayToJusti

fySender
B

KB
A

,CS
A

, CS
B

,R,IDB
KB

B
,CS

B
, CS

A

,R,IDA
ID

A
 ID

B

accept(R'',R')

replayToPromise

Reciver
B

replayToPromise

Sender
A

KB
B
,CS

B
, CS

A
,R,

R'',R',IDA

KB
A

,CS
A

, CS
B
 ,R,

R'',R',IDB

ID
B

 ID
A

Intermediate Locution

miss(KBA,R)

 1

Termination Locution

2

notNeed(KBA,R')

4

5

chooseBetterPlan

(KBA, G, NewPlan, oldPlan,

without(R,R'), with(R''))

have(KBA,R')

 3

6
gaveaway(CSA,R')

 obtained(CSB,R')

1

gaveaway(CSB,R'')

2
obtained(CSA,R'')

missResource

(KBB,P, G)

 1

2 have(KBB,R'')

notNeed(KBB,R'')

3

4

choosealternativeplane
(KBA,G,NewPlan,Without(R,R'),

With(R''))

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 251

Figure A.3 (d): Negotiation Dialogue Locutions Pre-conditions and Post-

conditions

(3) A and B can access CSA and CSB.

(4) The goal of the dialogue is to exchange knowledge (resources), since an

agent's knowledge is not sufficient to achieve its own goals. The goal of A is

to hang a picture and the goal of B is to hang a mirror. A has a hammer.

However, to hang the picture A needs a nail in addition to the hammer. In

contrast, B has a nail, screw and screw-driver. B needs a hammer, in addition

to the nail, to hang the mirror. A plans to get a nail from B and B plans to get

a hammer from A.

(5) A begin the discussion by sending request("Can you please give me a nail?").

(6) B consults its argumentation system ASB (ASB = {KBB, CSB}) whether he has a

nail or not, and if he has a nail does he need it. In this example, B finds that

he has a nail and needs to hang a mirror.

(7) B challenges "Can you please give me a nail?". In others words, he asks the

reason behind A's request of "a nail". In this example, B will challenge "Can

you please give me a nail?" by sending challenge("why do you need a

nail?") locution.

refuse(R'',R')

replayToPromise

Reciver
B

replayToPromise

Sender
A

KB
B
,CS

B
, CS

A
,R,

R'',R',IDA

KB
A

,CS
A

, CS
B
 ,R,

R'',R',IDB

ID
B

 ID
A

Termination Locution

miss

(KBA,R)

notChooseBetterPlan
(KBA,G, NewPlan, OldPlan,

without(R,R'), with(R''))

1

2

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 252

Figure A.4: The Picture Hanging Example

concede(Ʊ)

A B

request(Can you please give me a nail?)

challenge(why do you need a nail?)

justify(Because I want to hang a picture

and for that I need a nail)

promise(But you can you use a screw

and a screw driver to hang the picture!

And if you ask me I can provide you

with these in exchange for the hammer.)

accept(Really, I guess in that case, I do

not need the hammer. Here you go.)

1

2

3

4

5

KBA={ ("have", "picture"),(" have","hammer"), ("plan-Obtain","nail"), ("plan-Goal","hang a

picture"), ("goal","hung a picture") , ("missing","nail"), ("better-Plan-Obtain", "screw and

screwdriver"), ("better-Plan-Goal","hang a picture") }

KBB={ ("have","mirror"),(" have","nail"), ("have","screw"), ("have","screwdriver"), ("plan-

Obtain,"hammer"),("plan-Goal","hang a mirror"), ("goal","hung a mirror"), ("missing",

"hammer"), ("promise-Plane-Obtain", "screw and screwdriver"),("promise-Plan-Goal", "hang a

picture")}

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 253

(8) A responds to the challenge by declaring the supporting premises S (S=A's

goal and A's plan) for "Can you please give me a nail?". In this example, A

offers a reason for the request by sending justify("Because I want to hang a

picture and for that I need a nail") locution.

(9) B checks with its argumentation system ASB whether he could provide an

alternate plan for A that allows both A and B to achieve their goal. In this

example B finds a new plan for A's goal and sends promise("But you can you

use a screw and a screw driver to hang the picture! And if you ask me I can

provide you with these in exchange for a hammer") locution.

(10) A checks with its argumentation system ASA whether the new plan is

acceptable (whether the new plan is better than the old plan or not). In this

example, A finds that it is acceptable and accepts the new plan by sending

accept("Really, I guess in that case, I do not need the nail. Here you go")

locution.

(11) The commitment stores of A and B at the end of the dialogue are:

o CSA={(" gaveAway","hammer"), ("obtained", "screw and screwdriver")}

o CSB={("obtained","hammer"), ("gaveAway", "screw and screwdriver")}

A.5 LCC Synthesis Protocol of the Negotiation Dialogue

This section represents the generated LCC protocol from the automated agent

protocol synthesis tool "GenerateLCCProtocol". In this example, the tool receives

as input the DID of the negotiation dialogue, which is shown in Figure A.2, and then

the tool generates the negotiation dialogue LCC protocol by using LCC-Argument

patterns. The final LCC protocol is illustrated in Figure A.5(a) and Figure A.5(b):

(1) The tool begins with the locution icon at the top of the DID of the negotiation

dialogue, which is request(R).

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 254

Agent A Agent B

a(requestSender
A
(KBA,CSA,CSB ,IDB),IDA)::=

request(R) => a(requestReceiverB(KBB,CSB,

CSA,IDA),IDB)

 miss(KBA,R)

 then

a(replyToRequestReceiver

A
(KBA,CSA,CSB,

R,IDB),IDA).

a(requestReceiverB(KBB,CSB, CSA,IDA),IDB)::=

request(R) <= a(requestSender

A
(KBA,CSA, CSB,

IDB),IDA)

then

a(replyToRequestSenderB(KBB,CSB, CSA

,R,IDA),IDB).

a(replyToRequestReceiver
A
(KBA,CSA,CSB,

R,IDB), IDA)::=

obtained(CSA,R) accept(R) <=

a(replyToRequestSenderB(KBB,CSB, CSA

,R,IDA),IDB)

or

refuse(R) <=

a(replyToRequestSenderB(KBB,CSB, CSA

,R,IDA),IDB)

or

(

challenge(R) <=

a(replyToRequestSenderB(KBB,CSB, CSA

,R,IDA),IDB)

then

a(replyToChallengeSenderA(KBA,CSA, CSB,

R,IDB), IDA)).

a(replyToRequestSenderB(KBB,CSB, CSA ,R,

IDA),IDB) ::=

accept(R) =>

a(replyToRequestReceiver
A
(KBA,CSA,CSB,

R,IDB),IDA)

 have(KBB,R) and notNeed(KBB,R) and

notmissResource(KBB,P,G) and

gaveAway(CSB,R)

or

refuse(R) =>
a(replyToRequestReceiver

A
(KBA,CSA,CSB,

R,IDB),IDA)

 (notHave(KBB,R) or need(KBB,R)) and

notmissResource(KBB,P,G)

or

(

challenge(R) =>

a(replyToRequestReceiver
A
(KBA,CSA,CSB,

R,IDB),IDA) ((have(KBB,R) and need (KBB,R))

or notHave(KBB,R)) or

 missResource(KBB,P,G)

then

a(replyToChallengeReceiverB(KBB,CSB, CSA

,R,IDA), IDB)

).

a(replyToChallengeSenderA(KBA,CSA,CSB,

R,IDB), IDA) ::=

justify(R,P,G) =>

a(replyToChallengeReceiverB(KBB,CSB, CSA

,R,IDA), IDB) miss(KBA,R) and

getGoal(KBA, G) and getPlan(KBA,P)

then

a(replyToJustifyReceiverA(KBA,CSA, CSB, R,IDB),

IDA).

a(replyToChallengeReceiverO(KBB,CSB, CSA ,R,

IDA), IDB)::=

justify(R,P,G) <=

a(replyToChallengeSenderA(KBA,CSA, CSB,

R,IDB), IDA)

then

a(replyToJustifySenderB(KBB,CSB, CSA ,R,IDA),

IDB).

Figure A.5(a): Generated LCC Protocol

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 255

Agent A Agent B

a(replyToJustifyReceiverA(KBA,CSA,CSB,

R,IDB), IDA)::=

refuse(R) <= a(replyToJustifySenderB(KBB,CSB,

CSA ,R,IDA), IDB)

or

(

addToCS(CSA,R'') promise(R'',R') <=

a(replyToJustifySenderB(KBB,CSB, CSA ,R,IDA),

IDB)

then

a(replyToPromiseSenderA(KBA,CSA, CSB, R,

R'',R',IDB),IDA)

).

a(replyToJustifySenderB(KBB,CSB, CSA ,R,

IDA), IDB)::=

refuse(R) => a(replyToJustifyReceiverA(KBA,CSA,

CSB, R,IDB), IDA)

(

missResource(KBB, P,G)

and

notExistAlternativePlane(KBB,G, without(R,R'))

)

or

(
promise(R'',R') =>

a(replyToJustifyReceiverA(KBA,CSA, CSB, R,IDB),

IDA)

(
missResource (KBB,P, G)

 and have(KBB,R'')

and notNeed(KBB,R'') and choosealternativeplane

(KBB,G,NewPlan,Without(R,R'),With(R''))

)

 then

a(repltToPromiseReceiver
B
(KBB,CSB, CSA ,R,

R'',R',IDA),IDB)

).

a(replyToPromiseSenderA(KBA,CSA,CSB, R,

R'',R',IDB),IDA)::=

(

accept(R'',R') =>
a(repltToPromiseReceiver

B
(KBB,CSB, CSA ,R,

R'',R',IDA),IDB)

(

 miss(KBA ,R) and

 have(KBA ,R') and notNeed(KBA ,R') and

 chooseBetterPlan

(KBA,G,NewPlan,oldPlan,without(R,R'),with(R''))

and gaveaway(CSA,R') and obtained(CSA,R'')

)

or

(

refuse(R'',R') =>
a(repltToPromiseReceiver

B
(KBB,CSB, CSA ,R,

R'',R',IDA),IDB) miss(KBA,R) and

notChooseBetterPlan

(KBA ,G,NewPlan,OldPlan,without(R,R'),with(R''))

).

a(repltToPromiseReceiver
B
(KBB,CSB, CSA ,R,

R'',R',IDA), IDB)::=

(

(obtained(CSB,R') and gaveaway(CSB,R''))

 accept(R'',R') <=

a(replyToPromiseSenderA(KBA,CSA, CSB, R,

R'',R',IDB),IDA)

)

or

(

refuse(R'',R')<=

a(replyToPromiseSenderA(KBA,CSA, CSB, R,

R'',R',IDB),IDA)

).

Figure A.5(b): Generated LCC Protocol

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 256

(2) The tool then selects the Starting Pattern (since the locution type is the

Starting Locution).

(3) Applies the Starting Pattern by matching formal parameters in the Starting

Pattern with its corresponding values in the request(R) icon, starting from the

top-down and moving left to right.

(4) Moves to the next level (level two of the DID of the negotiation dialogue).

(5) Following this, the tool selects the Termination- Intermediate Pattern.

(6) Applies the Termination- Intermediate Pattern.

(7) Moves to the next level in the DID and repeats steps 4,5 and 6. Note that the

automated synthesis process finishes when the tool matches the last level (level

five) in the DID of the negotiation dialogue with the Termination- Intermediate

Pattern.

A.6 Verification Model of the LCC Synthesis Protocol of the

Negotiation Dialogue

In this section, we will give a brief description of how to verify the semantics of the

DID of a negotiation dialogue (shown in Figure A.2) against the semantics of the

synthesised LCC protocol (shown in Figures A.5(a) and A.5(b)). In this example, the

initial marking of:

(1) OpenDialogue place = "request a nail". This place represents dialogue game

topic.

(2) A place = ("IDA",[], [("have", "picture"), ("have", "hammer"), ("planObtain",

"nail"),("planGoal","hang picture"), ("goal", "hung picture"), ("missing", "nail")

,("betterPlanObtain", "screw"), ("betterPlanGoal", "hang picture")],

"requestSenderA","","",[],"IDB","","",""). This place represents agent A

arguments.

(3) B place = ("IDB",[],[("have","mirror"),("have","nail"),("have","screw"),

("have","screwdriver"),("planObtain","hammer"),("planGoal","hang mirror"),

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 257

("goal","hung mirror"),("missing","hammer"),("promisePlanObtain", "screw"),

("promisePlanGoal", "hang picture")], "requestReceiverB", "", "", [],

"IDA","","", ""). This place represents agent B arguments.

Step One: Automated Transformation from LCC to CPN/XML

The generated LCC protocol for negotiation dialogue in Figures A.5(a) and A.5(b)

was used as input to the verification tool. The verification tool generated a

negotiation dialogue CPN/XML file which has:

(1) Ten CPN subpages generated by the GenerateLCCProtocol tool (subpage for

each LCC role in the Figures A.5(a) and A.5(b)). See Figures A.6, A.7, A.8, A.9,

A.10, A.11, A.12, A.13, A.14 and A.15.

(2) One CPN superpage generated by the GenerateLCCProtocol tool. This page

connects the ten CPN subpages (requestSenderA, requestReceiverB,

replyToRequestSenderB, replyToRequestReceiverB, replyToChallengeSenderA,

replyToChallengeReceiverB, replyToJustifySenderB, replyToJustifyReceiverA,

replyToPromiseSenderA and replyToPromiseReceiverB) together and describes

the interaction between these ten subpages. See Figure A.16.

The CPN model generated by the verification tool for the negotiation dialogue was

not completed. It needed manual translations of LCC protocol message conditions to

guards (SML conditions) in the CPN model. These translations had to be done

manually because the LCC conditions code is not in the LCC protocol file

[Robertson, 2004; Hassan et.al., 2005].

Step Two: Construction of State Space

After finishing manual translations of the LCC protocol message in the last step, the

state space (shown in Figure A.17) for the CPN model of an LCC protocol for a

negotiation dialogue was generated using the SS tool palette in CPN Tools (see

chapter 6, section 6.2).

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 258

Figure A.6: The requestSenderA CPN Subpage

Figure A.7: The requestReceiverB CPN Subpage

(s,sCSL,sKB,"replyToRequestReceiverA",t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,sR,"", goal,rCSL,r,plan,rD,rDD)

t ("request",t,goal,s,r,plan,rD,rDD)
Sendrequest1

[miss(sKB,t)=true]

changeRoleToreplyToRequestReceiverA1

Out Role

request1

Out Message

A

1`("IDA",[],
[("have", "picture"), ("have", "hammer"),
 ("planObtain", "nail"),("planGoal","hang picture"),
("goal", "hung picture"), ("missing","nail"),("betterPlanObtain", "screw"),
("betterPlanGoal", "hang picture")],"requestSenderA","","",[],"IDB","","","")

Role

OpenDialogue

In

1` "nail"

TOPICIn

Out

Out

1

1`("IDA",[],[("have","picture"),("have
","hammer"),("planObtain","nail"),("pl
anGoal","hang picture"),("goal","hung
 picture"),("missing","nail"),("betterPl
anObtain","screw"),("betterPlanGoal"
,"hang picture")],"requestSenderA",""
,"",[],"IDB","","","")

1 1`"nail"

(r,rCSL,rKB,"replyToRequestSenderB",t,goal,sCSL,s,plan,rD,rDD)

(r,rCSL,rKB,rR,"",goal,sCSL,s,plan,rD,rDD)

(l,t,goal,s,r,plan,rD,rDD)
Receiverequest2

changeRoleToreplyToRequestSenderB2

Out Role

request2

In

Message

B

1`("IDB",[],[("have","mirror"),("have","nail"),("have","screw"),
("have","screwdriver"),("planObtain", "hammer"),("planGoal","hang mirror"),

("goal","hung mirror"),("missing","hammer"),("promisePlanObtain", "screw"),
("promisePlanGoal", "hang picture")],"requestReceiverB","","",[],"IDA","","","")

Role

In

Out

1
1`("IDB",[],[("have","mirror"),("have",
"nail"),("have","screw"),("have","scre

wdriver"),("planObtain","hammer"),("
planGoal","hang mirror"),("goal","hun
g mirror"),("missing","hammer"),("pro

misePlanObtain","screw"),("promisePl
anGoal","hang picture")],"requestRec
eiverB","","",[],"IDA","","","")

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 259

Figure A.8: The replyToRequestSenderB CPN Subpage

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,"replyToChallengeReceiverO",t,goal,rCSL,r,plan,rD,rDD)

("challenge",t,goal,s,r,plan,rD,rDD)

(s,sCSL,sKB,"replyToRequestSenderB",t,goal,rCSL,r,plan,rD,rDD)

("refuse",t,goal,s,r,plan,rD,rDD)

(s,gaveAway(sCSL,t),sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

("accept",t,goal,s,r,plan,rD,rDD)

Sendchallenge5

[(have(sKB,t)=true
andalso

need(sKB,t)= true)
orelse
have(sKB,t)=false
orelse
missResource(sKB)= true]

Sendrefuse4

[(have(sKB,t)=false
orelse
need(sKB,t)= true)
andalso
missResource(sKB)=false]

Sendaccept3

[have(sKB,t)=true
andalso
need(sKB,t)= false
andalso
missResource(sKB)=false]

changeRoleToreplyToChallengeReceiverO5
Out

Role

challenge5

Out

Message

end4
Out

Role

refuse4

Out
Message

end3
Out

Role

accept3

Out
Message

changeRoleToreplyToRequestSenderB3
In RoleIn

Out

Out

Out

Out

Out

Out

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 260

Figure A.9: The replyToRequestSenderB CPN Subpage

Figure A.10: The replyToChallengeSenderA CPN Subpage

Figure A.11: The replyToChallengeReceiverB CPN Subpage

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD,rDD)

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD,rDD)

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD,rDD)

(r,rCSL,rKB,"replyToChallengeSenderA",t,goal,sCSL,s,plan,rD,rDD)

(l,t,goal,s,r,plan,rD,rDD)

(r,rCSL,rKB,rR,t,goal,sCSL,s,plan,rD,rDD)

(l,t,goal,s,r,plan,rD,rDD)

(r,obtained(rCSL,t),rKB,rR,t,goal,sCSL,s,plan,rD,rDD)

(l,t,goal,s,r,plan,rD,rDD)

Receivechallenge8

Receiverefuse7

Receiveaccept6 changeRoleToreplyToChallengeSenderA8

Out Role

challenge8

In

Message

end7

Out Role

refuse7

In Message

end6

Out

Role

accept6

In Message

changeRoleToreplyToRequestReceiverA6

In RoleIn

In

Out

In

Out

In

Out

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,"replyToJustifyReceiverA",t,getGoal(sKB),rCSL,r,getPlan(sKB),rD,rDD)

("justify",t,getGoal(sKB),s,r,getPlan(sKB),rD,rDD)
Sendjustify9

[miss(sKB,t) =true]

changeRoleToreplyToJustifyReceiverA9

Out
Role

justify9

Out Message

changeRoleToreplyToChallengeSenderA9

In
Role

In Out

Out

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD,rDD)

(r,rCSL,rKB,"replyToJustifySenderB",t,goal,sCSL,s,plan,rD,rDD)

(l,t,goal,s,r,plan,rD,rDD)

Receivejustify10

changeRoleToreplyToJustifySenderB10

Out Role

justify10

In Message

changeRoleToreplyToChallengeReceiverB10

In RoleIn

In

Out

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 261

Figure A.12: The replyToJustifySenderB CPN Subpage

Figure A.13: The replyToJustifyReceiverA CPN Subpage

(s,sCSL,sKB,sR,t,goal,rCSL

,r,plan,rD,rDD)

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,"repltToPromiseReceiverB",

t,goal,rCSL,r,plan,rD,rDD)

("refuse",t,goal,s,r,plan,rD,rDD)
getRDresource

[missResource(sKB)=true]

Sendpromise12

[missResource(sKB)=true

andalso

have(sKB,rDD) =true

andalso

need(sKB,rDD) =false]

Role
resource

Role

changeRoleTorepltToPromiseReceiverB12

Out Role

Message

end11

Out Role

Message

Role
Out

Out

getAlternativePlane

(s,sCSL,sKB,sR,t,goal,

rCSL,r,plan,rD,rDD)

[missResource(sKB)=true

andalso
notExistAlternativePlane(rDD)=true]

(s,sCSL,sKB,sR,t,goal,rCSL,r,getAPlan(sKB),rD,

getAlternativePlanResource(sKB))flow1

(s,sCSL,sKB,sR,t,goal,rCSL,r,
plan,getMissingResource(sKB),rDD)

promise12

OutOut

("promise",t,goal,s,r,plan,rD,rDD)

Sendrefuse11 refuse11

OutOut

(s,sCSL,sKB,"replyToJustifySenderB",t,goal,rCSL,

r,plan,rD,rDD)

changeRoleToreplyToJustifySenderB11

InIn

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD2,rDD2)

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD2,rDD2)

(r,rCSL,rKB,"replyToPromiseSenderA",t,goal,sCSL,s,plan,rD,rDD)(l,t,goal,s,r,plan,rD,rDD)

(r,rCSL,rKB,rR,t,goal,sCSL,s,plan,rD,rDD)(l,t,goal,s,r,plan,rD,rDD)

Receivepromise14

Receiverefuse13

changeRoleToreplyToPromiseSenderA14

Out Role

promise14

In Message

end13
Out

Role

refuse13

In
Message

changeRoleToreplyToJustifyReceiverA13

In
Role

In

In
Out

In Out

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 262

Figure A.14: The replyToPromiseSenderA CPN Subpage

Figure A.15: The replyToPromiseReceiverB CPN Subpage

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

(s,sCSL,sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

("refuse",t,goal,s,r,plan,rD,rDD)

(s,gaveAwayAndObtained(sCSL,rD,rDD),sKB,sR,t,goal,rCSL,r,plan,rD,rDD)

("accept",t,goal,s,r,plan,rD,rDD)

Sendrefuse16

[miss(sKB,t)= true

andalso

notChooseBetterPlan(sKB,plan)=true]

Sendaccept15

[miss(sKB,t)= true
andalso

have(sKB,rD)= true

andalso

notNeed(sKB,rD)=true]

end16
Out

Role

refuse16
Out

Message

end15

Out Role

accept15

Out
Message

changeRoleToreplyToPromiseSenderA15

In RoleIn

Out

Out

Out

Out

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD,rDD)

(r,rCSL,rKB,rR,t,goal2,sCSL,s,plan2,rD,rDD)

(l,t,goal,s,r,plan,rD,rDD)

(r,gaveAwayAndObtained(rCSL,rDD,rD),rKB,
rR,t,goal,sCSL,s,plan,rD,rDD)(l,t,goal,s,r,plan,rD,rDD)

Receiverefuse18

Receiveaccept17

end18
Out Role

refuse18
In Message

end17
Out Role

accept17
In

Message

changeRoleTorepltToPromiseReceiverB17

In
Role

In

In Out

In Out

(r,rCSL,rKB,rR,t,goal,sCSL,s,plan,rD,rDD)

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 263

Figure A.16: The protocol CPN Superpage

repltToPromiseReceiverB

repltToPromiseReceiverB

replyToPromiseSenderA

replyToPromiseSenderA

replyToJustifyReceiverA

replyToJustifyReceiverA

replyToJustifySenderB

replyToJustifySenderB

replyToChallengeReceiverB

replyToChallengeReceiverB

replyToChallengeSenderA

replyToChallengeSenderA

replyToRequestReceiverA

replyToRequestReceiverA replyToRequestSenderB

replyToRequestSenderB

requestReceiverB

requestReceiverB

requestSenderA

requestSenderA

refuse16

Message

accept15

Message

changeRoleToreplyToPromiseSenderA14

Role

promise12

Message

changeRoleTorepltToPromiseReceiverB12

Role

refuse11

Message

changeRoleToreplyToJustifySenderB10

Role

justify9

Message

changeRoleToreplyToJustifyReceiverA9

Role

changeRoleToreplyToChallengeSenderA8

Role

challenge5

Message

changeRoleToreplyToChallengeReceiverO5

Role

refuse4

Message

accept3

Message

changeRoleToreplyToRequestSenderB2

Role

request1

Message

changeRoleToreplyToRequestReceiverA1

Role

OpenDialogue

1`"nail"

TOPIC

Role

requestSenderA
requestReceiverB

replyToRequestSenderB

replyToRequestReceiverA

replyToChallengeSenderA replyToChallengeReceiverB

replyToJustifySenderBreplyToJustifyReceiverA

replyToPromiseSenderA repltToPromiseReceiverB

end

1 1`"nail"

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 264

Figure A.17: The State Space Graph

Figure A.18: Possible Locutions File

 Figure A.19: Reply Locutions File

Figure A.20: Starting Locutions File

Step Three: Automated Creation of DID Properties

In this step, the verification tool succeeded in automatically creating the nine

property files. See Figures A.18, A.19, A.20, A.21, A.22, A.23, A.24, A.25 and A.26.

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 265

Figure A.21: Intermediate Locutions File

Figure A.22: Termination Locutions File

Termination Locutions Effect CS File

Effective CS Files

Figure A.23: Termination Locutions Effect CS and Effective CS Files

Figure A.24: Player Types File

Figure A.25: Player Ids File

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 266

Figure A.26: Termination Role Names File

Figure A.27: The Verification Result of the Five Basic Properties

Step Four: Applying the Verification Process

The verification of the negotiation dialogue LCC protocol CPN Model (verifying of

the five properties: Dialogue opening property, Termination of a dialogue property,

Turn taking between agents property, Message sequencing property and Recursive

message property) was done using the steps explained in chapter 7 and the results

obtained were corresponding to the expected behaviour of the system (Figure A.27

shows the verification result of the five basic properties).

Step Five: Adding and Verification of New Properly

Paper [Sadri et. al., 2001] explains two properties:

(1) Successful request dialogue property: a negotiation dialogue between agents A

and B is consider to be a successful if (see Figure A.28):

a. Agent B accepts a request of agent A;

b. Agent A accepts a promise of agent B;

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 267

c. Agent B accepts a promise of agent A.

(2) C-Successful request dialogue property: a negotiation dialogue between agents

A and B is consider to be a c-successful if (see Figure A.29):

a. Agent A accepts a promise of agent B and commits to give R' resource

in exchange for R'';

b. Agent B accepts a promise of agent A and commits to give R''

resource in exchange for R'.

The CPN model generated by the verification tool for the negotiation dialogue was

not able to verify these two properties. It needed manual translations of the textual

explanation of these properties to SML functions in the CPN model. These

translations had to be done manually by creating new pages in the CPM model and

then writing the SML functions in the new page. The following two subsections

explain the SML functions of successful and c-successful dialogue properties.

Successful Request Dialogue Property SML Representation

Figure A.30 shows the algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph Termination nodes information from the

Property6 text file and save this information in TNodes variable.

(2) Line 2: Call function CheckProperty6.

(3) Line 3: Function inputs are TNodes.

(4) Line 4: Extract the message information from TNodes (message represents

termination message).

(5) Lines 5: Check that the termination message in the state space is equal to the

"accept" where:

a. SuccessfulRequestChecking function is used to compare the termination

message in the state space with "accept" ;

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 268

Figure A.8: Successful and Unsuccessful Dialogue Examples

A, request

M1

B, accept

M2

A, request

M1

B, challenge

M2

A, justify

M3

B, promise

M4

A, accept

M5

A, request

M1

B, challenge

M2

A, justify

M3

B, promise

M4

A, refuse

M5

Successful Dialogue (1)

Successful Dialogue (2)

Unsuccessful Dialogue (3)

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 269

Figure A.9: C-successful Dialogue Example

1. Read&Save TNodes = state space termination nodes information

2. Call CheckProperty6

3. Input (TNodes)

4. Extract (message)

5. val mResult= SuccessfulRequestChecking(message)

6. if (mResult >= 0) then

7. "Property 6(Successful request dialogue) is Satisfied"

8. else

9. "Property 6(Successful request dialogue) is not Satisfied"

10. End CheckProperty6

11. Create&Save Property6 result file

Figure A.30: Property 6 (Successful Dialogue) as a Standard ML Function

A, request

M1

B, challenge

M2

A, justify

M3

B, promise(R'',R')

M4

A, accept(R'',R')

M5

C-successful Dialogue

The commitment stores of agents A and B at the end of the dialogue are:

CSA={("obtained",R''), ("gaveAway", R')}

CSB={("obtained",R'), ("gaveAway", R'')}

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 270

b. mResult represents the SuccessfulRequestChecking function result. It is

considered true if the termination message in the state space is equal to

"accept".

(6) Lines 6 to 9: Check the result of the comparison. A positive (negative) result

indicates that Property 6 is satisfied (unsatisfied).

(7) Line11: Create Property6 result file and write the result of CheckProperty6 in

this file.

C-successful Request Dialogue Property SML Representation

Figure A.31 shows the algorithm of the CPN SML specification of this property:

(1) Line 1: Read the state space graph Termination nodes information from the

Property6 text file and save this information in TNodes variable.

(2) Line 2: Call function CheckProperty7.

(3) Line 3: Function inputs are TNodes.

(4) Line 4: Extract the needed information from TNodes where:

b) message represents termination message;

c) sender represents termination message sender ID;

d) receiver represents termination message receiver ID;

e) sCS represents sender commitment store;

f) rCS represents receiver commitment store;

(5) Lines 5: Check that the termination message in the state space is equal to the

"accept" where:

a. SuccessfulRequestChecking function is used to compare the termination

message in the state space with "accept" ;

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 271

1. Read&Save TNodes = state space termination nodes information

2. Call CheckProperty7

3. Input (TNodes)

4. Extract (message, sender, receiver, sCS, rCS)

5. val mResult= SuccessfulRequestChecking(message)

6. val csContant = checkTheContantofCS(message, sCS,rCS)

7. if (mResult >= 0) andalso (csContant= true) then

8. "Property 7(C-successful request dialogue) is Satisfied"

9. else

10. "Property 7(C-successful request dialogue) is not Satisfied"

11. End CheckProperty7

12. Create&Save Property7 result file

Figure A.31: Property 7 (C-successful Dialogue) as a Standard ML Function

b. mResult represents the SuccessfulRequestChecking function result. It is

considered true if the termination message in the state space is equal to

the "accept".

(6) Lines 6: Check that the content of the CS in the termination message of the

sender agent in the state space have ("obtained",R'') and ("gaveAway", R') items.

This line also checks the content of the CS in the termination message of the

receiver agent in the state space have ("obtained",R') and ("gaveAway", R'')

items where:

a. checkTheContantofCS function is used to compare the content of the

CSs;

b. csContant represents the checkTheContantofCS function result.

(7) Lines 7 to 10: Check the result of the comparison. A positive (negative) result

indicates that Property 7 is satisfied (unsatisfied).

(8) Line12: Create Property7 result file and write the result of CheckProperty7 in

this file.

Bridging the Specification Protocol Gap in Argumentation

Appendix A: Negotiation Dialogue 272

Figure A.32: Property 6 (successful Dialogue) Verification Result

Figure A.33: Property 7 (C-successful Dialogue) Verification Result

Applying the Verification Process

After finishing manual translations of the textual explanation of these properties to

SML functions in the CPN model, the verification of the negotiation dialogue LCC

protocol CPN Model (verifying of the successful and c-successful properties) was

done using the steps explained in chapter 7 and the results obtained were

corresponding to the expected behaviour of the system (Figures A.32 and A.33 show

the verification result of the these two properties).

Successful property is satisfied

C-Successful property is satisfied

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 273

Appendix B

N-agents Dialogue

To handle N-agents dialogue games, we extended DID diagram. This appendix

presents the formal definition of DID for N-agents in Section B.1. An example of the

persuasion dialogue between N-agents is presented in Section B.2. A description of

LCC-Argument protocol general N-agents design patterns is presented in Section

B.3.

B.1 DID for N-agents Formal Definition

In this section we extend the formal definition of DID for two agents to handle N-

agents.

Definition 14: N-agents Players

A multi-agent system consists of a finite set of players (agents).

Players = {A1, A2, ...An},

Where,

 Ai ϵ Players, where i=1,2,3, ……, n

 Each player Ai has its own commitment store set CSi (Args(L)), which

contains a set of propositions to which the player is committed in the

discussion.

 Each player Ai has its own knowledge base or beliefs set KBi (Args(L)),

which represents the propositions on which the agent believes.

Definition 15: N-agents Act Type

'ActType' is a function which determines the type of 'Act'.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 274

ActType: Acts (Types)

Where,

 Types={RecursiveStarting, Intermediate, RecursiveSending,

RecursiveReceiving, RecursiveTermination, Divided },

 RecursiveStarting: this type can be used to open a dialogue,

 Intermediate: this type can be used to remain in the dialogue,

 RecursiveSending: this type can be used to send a message to more than one

agent,

 RecursiveReceiving: this type can be used to receive a message from more

than one agent,

 RecursiveTermination: this type can be used to terminate the dialogue,

 Divided: this type can be used to divide agents into groups and then to change

the multi agent dialogue to two agents dialogue.

Definition 16: Recursive-conditions

'ReC' is a function which specifies the move recursive-conditions according to the

dialogue protocol. It takes as input parameters an act and the recursive arguments

and returns a Boolean and new recursive arguments.

ReC: Acts (args(L))

 Boolean (args(L))

Definition 17: Divided conditions

'DC' is a function which specifies the agent divided conditions according to the

dialogue protocol. It takes as input parameters an act, players, the commitment store

of all players and the knowledge based of all players and returns a Boolean.

DC: Acts (Players)

 (args(L))

n
 (args(L))

n
 Boolean

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 275

Definition 18: Next Player in N-agents dialogue

'NextPlayer ' is a function which determines the next players to move at specific

moment of a dialogue.

NextPlayer: Move (Players)

Definition 19: N-agents Dialogue Move

In the N-agents dialogue, there are three types of move:

(1) One sender and more than one agent will take the next turn (N-receiver):

A move Mt Moves, t >= 1, is defined as:

Mt= (playert, actt, SetMt-1, setPlayerj, sendert, rSetRolet),

Where,

 playert Players represents the player of the move,

 playert setPlayerj

 actt Acts represents the speech act performed in the move,

 SetMt-1 (Moves) {null} represents the previous moves (Mt is a reply

to SetMt-1),

 setPlayerj (Players) represents the next players in the dialogue,

 sendert Roles represents the role identifier of player (sender agent),

 rSetRolee (Roles) represents the role identifiers of the setPlayerj

(receiver agents),

(2) One sender agent and one receiver agent:

A move MtMoves, t >= 1, is defined as:

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 276

 Mt= (playert, actt , SetMt-1, playerj, sRolet, rRoleplayer),

Where,

 playert Players represents the player of the move,

 actt Acts represents the speech act performed in the move,

 playert playerj,

 playerj Players represents the next player in the dialogue,

 SetMt-1 (Moves) {null} represents the previous moves (Mt is a reply

to SetMt-1),

 sRolee Roles represents the role identifiers of the playert (sender agent),

 rRoleplayer Roles represents the role identifier of the playerj (receiver agent).

(3) More than one sender (N-sender) and one receiver agent:

A move Mt Moves, t >= 1, is defined as:

Mt= (setPlayert, actt, SetMt-1, playerj, sSetRolet, rRolet),

Where,

 setPlayerj (Players) represents the players of the move,

 actt Acts represents the speech act performed in the move,

 SetMt-1 (Moves) {null} represents the previous moves (Mt is a reply

to SetMt-1),

 playert Players represents the next player of the move,

 playert setPlayerj

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 277

 sSetRolee (Roles) represents the role identifiers of the playert sender

agents,

 rRolet Roles represents the role identifier of the playerj (receiver agent).

Definition 20: Legal move for N-agents

'legalMoveNAgent' is a function which specifies the legal moves at a particular

moment in the N-agents dialogue. It takes the dialogue history at a particular moment

and the commitment store of all players:

LegalMovesNAgent: MoveSeq ((args(L)) (args(L)))
n
 (Moves)

Rule 4: (Start N-agents Dialogue)

This rule says that a N-agents dialogue always starts with a RecursiveStarting act by

proposal agent:

LegalMovesNAgent([] , CS1, CS2,........CSn) = { M1}

Where,

 M1= (proposal, act1, null, setPlayerj, sRoleproposal1, rSetRole1) ,

 proposal setPlayerj

 ActType(act1) = {RecursiveStarting},

 PreC(act1,KBproposal, CSproposal) = true, where KBproposal represents proposal

agent's knowledge base and CSproposal represents proposal agent's commitment

store.

 PostC(act1,KBj, CSj) = true (for each player setPlayerj), where KBj

represents agent knowledge base and CSj represents agent commitment store.

Rule 5: (Reply to a Proposal Agent's Move)

This rule says that more than one move will reply to a proposal agents' move:

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 278

LegalMovesNAgent ([M1,M2,…….Mt] , CS1, CS2,CSn)= SetMt+1

if

 Mt= (proposal, actt, SetMt-1, setPlayerj, sRoleproposal, rSetRolet) ,

 proposal setPlayerj

 PreC(actt,KBproposal, CSproposal) = true, where KBproposal represents proposal

agent's knowledge base and CSproposal represents proposal agent's commitment

store.

 PostC(actt,KBj, CSj) = true (for each player setPlayerj), where KBj

represents agent knowledge base and CSj represents agent commitment store.

 Mt+1= (setPlayerj, actt+1 , Mt, proposal, sSetRolet+1, rRoleproposal),

 Mt+1 SetMt+1

 ActType(actt+1) = {Intermediate},

 actt+1 ϵ Replies(actt) (Mt+1 replies to Mt),

 PreC(actt+1,KBj, CSj) = true (for each player setPlayerj), where

KBj represents agent knowledge base and CSj represents agent commitment

store.

 PostC(actt+1,KBproposal, CSproposal) = true, where KBproposal represents proposal

agent's knowledge base and CSproposal represents proposal agent's commitment

store.

With this rule we are specifying also the turn-taking restriction. The sender of move

Mt is the receiver of all the move from the SetMt+1 and the receiver of move Mt is the

sender of all the move from the SetMt+1.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 279

Rule 6: (N-agents Dialogue Termination)

This rule says that a N-agents dialogue always terminates with a

RecursiveTermination act by the proposal agent:

LegalMovesNAgent ([M1,M2,…….Mt] , CS1, CS2,CSn) = Ø

if

 Mt= (proposal, actt, Mt-1, null, sRoleproposal, rSetRolet) ,

 ActType(actt) = {RecursiveTermination},

 PreC(actt,KBproposal, CSproposal) = true , where KBproposal represents proposal

agent's knowledge base and CSproposal represents proposal agent's commitment

store.

 PostC(actt,KBj, CSj) = true (for each player setPlayerj, setPlayerj

represents the previous players and proposal setPlayerj), where KBj

represents agent knowledge base and CSj represents agent commitment store.

Rule 7: (Divide Agents in to Groups)

This rule says that proposal agent is responsible for dividing agents into groups

composed of two agents and sending Divided act to all other agents to inform them

about the groups. Once agents are divided in the group, dialogues take place between

two agents (the next move is a move in dialogue between two agents):

LegalMovesNAgent ([M1,M2,…….Mt] , CS1, CS2,CSn) = {Mt+1}

 Mt= (proposal, actt, setMt-1, setPlayerj, sRoleproposal, rSetRolet),

 ActTypes(actt) = {Divided},

 proposal setPlayerj,

 Mt+1 is a move in dialogue between two agents (Note that Mt+1 must be a

legal move in the two agents dialogue. See Definition 14),

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 280

 PreC(actt,KBproposal, CSproposal) = true, where KBproposal represents proposal

agent's knowledge base and CSproposal represents proposal agent's commitment

store,

 PostC(actt,KBj, CSj) = true (for each player setPlayerj), where KBj

represents agent knowledge base and CSj represents agent commitment store,

 DC(actt, Players, SetKB, SetCS) = true, where

o each playeri Players has KBi SetKB and has CSi SetCS

o KBi represents agent knowledge base

o and CSi represents agent commitment store

o i =1,2,.....n

Rule 8: (Return Back to Dialogue Between N-agents)

This rule says that :

LegalMovesNAgent ([M1,M2,…….Mt+1] , CS1, CS2,CSn)= {Mt+2}

If

 Mt+1 is a move in dialogue between two agents

 Mt+1= (playeri, actt+1, Mt-1, null, sRolet+1, rRolet+1) ,

 ActType(actt+1) = {Termination},

 PreC(actt+1,KBi, CSi) = true, where KBi represents agent I's knowledge base

and CSI represents agent I's commitment store.

 PostC(actt+1,KBk, CSk) = true, where KBk represents agent K's knowledge

base and CSk represents agent K's commitment store.

 Mt+2= (proposal, actt+2, Mt+1, setPlayerj, sRoleproposal, rSetRole t+2),

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 281

 Mt+2 is a move in dialogue between N-agents

 ActTypes(actt+2) = { RecursiveStarting }

 proposal setPlayerj

 PreC(actt+2,KBproposal, CSproposal) = true, where KBproposal represents proposal

agent's knowledge base and CSproposal represents proposal agent's commitment

store.

 PostC(actt+2,KBj, CSj) = true (for each player setPlayerj), where KBj

represents agent knowledge base and CSj represents agent commitment store.

B.2 DID for N-agents Example

Figure B.1, which was adapted from [Ito and Shintani, 1997], illustrates an example

of a persuasion dialogue between N-agents:

 The system will randomly select a proposal agent

 A proposal agent sends (broadcasting) a proposal(Topic) locution to all other

agents.

 Each agent who receives the proposal(Topic) reports acceptance of the

proposal(Topic) by sending an accept(Topic) locution or rejection of the

proposal(Topic) by sending a reject(Topic) locution.

 If the agents reach an agreement (if Acceptance number >= The number of

supporter agents), the proposal sends reachAgreement(Topic) to all other

agents.

 If the agents could not reach an agreement on the proposal(Topic), the

proposal divides agents into groups composed of two agents and sends

argueWith locution to all other agents to inform them about the groups.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 282

Figure B.1: Persuasion Dialogue Between N-agents

Randomly select proposal agent

Proposal agent sends a proposal to all other agents

Each agent, who receives the proposal, sends the

acceptance or rejection of the proposal

Proposal agent sums up the acceptance and rejection

Where the termination conditions is

Acceptance number >= The number of supporter agents

Proposal agent divided agents into groups composed of

two agents (one rejection agent and one accepting

agent)

Persuasion take place between two agents

(e.g. agent A and agent B)

Acceptance number

>=

The number of supporter agents

Reach an agreement

No

Yes

Acceptance number

>=

The number of supporter agents

No

Yes

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 283

DID formal definition for a persuasion dialogue between N-agents

(1) Players: Players={Agent1, Agent2,..........Agentn}

Each player has its own KB and CS such that: Agent1 argumentation system ASAgent1

(ASAgent1 = {KBAgent1 , CSAgent1})

(2) There are five locutions (Acts):

Acts ={proposal(Topic), accept(Topic), reject(Topic), reachAgreement(Topic),

argueWith(Topic,AgentP,AgentO)}

(3) ActType(Act):

Act ActType (Act)

proposal {RecursiveStarting}

accept { Intermediate }

reject {Intermediate}

reachAgreement {RecursiveTermination}

argueWith {Divided}

(4) Replies(Act):

Act Replies(Act) Note

proposal(Topic)
{ accept(Topic),

reject(Topic)}

accept(Topic) {

reachAgreement(Topic),

argueWith(Topic)}

reject(Topic) {

reachAgreement(Topic),

argueWith(Topic)}

reachAgreement(Topic)

argueWith(Topic,AgentP,AgentO) {claim(Topic)}
Replies(Act) for argueWith

locution represents the Starting

Loctuion icon in the DID for two

agents (e.g. Replies(Act)=

claim(Topic) which represents the

Starting Loctuion icon in the

persuasion dialogue between two

agents in section 4.2.1). In other

words, we need to connect

argueWith with the Starting

Locution icon in the DID for two

agents.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 284

(5) PreC(Act,KB,CS):

Lets Player = Proposal

Act PreC(Act,KB,CS) Note

proposal(Topic) addTopicToCS(Topic,CSProposal)=

true

See chapter 4 for more

information about function

accept(Topic) findTopicInKB(Topic, KBID) =

 true

and

notFindTopicInCS (Topic,CSID) =

true

and

notFindOppTopicInCS

(not(Topic),CSID) = true

and

addTopicToCS(Topic,CSID) =

 true

See chapter 4 for more

information about functions

reject(Topic) notFindTopicInKB(Topic,KBProposal)

= true

and

notFindTopicInCS(Topic,CSProposal)

= true

See chapter 4 for more

information about functions

reachAgreement(Topic) greaterThanOrEequal(NAccepting,

NSupporters) = true

greaterThanOrEequal function

returns true if the number of

accepting agents NAccepting is

greater than or equal to the

number of supporter agents

NSupporters.

 (NAccepting >= NSupporters)

argueWith(Topic,

AgentP,AgentO)
lessThan(NAccepting,NSupporters)

= true

and

isNotEmpty(RejectionList) = true

and

 isNotEmpty(AcceptingList)) =

true

 lessThan function returns true

if the number of accepting

agents NAccepting is less

than the number of supporter

agents NSupporters.

(NAccepting <NSupporters)

 isNoEmpty function returns

true if the list is not empty.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 285

(6) PostC(Act,KB,CS):

let Player(Mt)= Proposal

Act PostC(Act,KB,CS) Note

proposal(Topic) true

accept(Topic) addToAcceptingList

(AcceptingList, AccList ,ID)

= true

and

increaseAccepting

(NAccepting,NAcc)

= true

 and

addIDToList(AgentList,

SendingList, ID) = true

 addToAcceptingList function always

returns true and results in proposal

agent adding the accepting agent ID

to the AcceptingList

(AccList =AcceptingList {ID}).

 increaseAccepting function increases

the number of accepting agents

(NAcc = NAccepting +1)

 addIDToList function always returns

true and results in proposal agent

adding the agent ID to the

SendingList

reject(Topic) addToRejectingList

(RejectingList,RejList,ID)

= true

 and

increaseRejecting

(NRejecting,NRej)

= true

 and

addIDToList(AgentList,

SendingList, ID) = true

 addToRejectingList function always

returns true and results in proposal

agent adding the rejecting agent ID

to the RejectingList

(RejList=RejectingLsit {ID}).

 increaseRejecting function increases

the number of rejecting agents

(NRej =NRejecting+1)

reachAgreement

(Topic)

true

argueWith(Topic,

AgentP,AgentO)

true

(7) ReC(Act,KB,CS):

let Player(Mt)= Proposal

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 286

Act ReC(Act,KB,CS) Note

proposal(Topic) getAgentIDFromList

(AgentList,

otherAgents,ID)

= true

getAgentIDFromList function gets agent ID

from the AgentsList and puts the remainding

agents in the otherAgents list

(OtherAgents = AgentsList – {ID})

accept(Topic) notEqual(AgentList,

OtherSendingList)

notEqual function compare the AgentList with

the OtherSendingList and returns true if these

two lists are equal

reject(Topic)
notEqual(AgentList,

SendingList)

reachAgreement(Topic) getAgentIDFromList

(AgentList,

otherAgents)=true

See proposal(Topic)for more information

about function

argueWith(Topic,

AgentP,AgentO)

creatOneAgentGroups

(RejectingList,Re,

AcceptingList,Ac,

AgentGroup,

AGroup,P,O) = true

creatOneAgentGroups function:

(1) creates one agent group by getting one

agent O from the Rejectinglist and one

agent P from the Acceptinglist.

(2) adds the new agents groups to AGroup list

(AGroup = AgentGroup + {(P,O)}.

(3) Saves the remained rejection agent in Re

list and saves the remained accepting

agents in Ac.

(8) LegalMovesNAgent(Mt , CSAgent1, CSAgent2,.......CSAgentN)

From Figure B.2, we can see that:

 Dialogues open by making a proposal move

 In this dialogue, the argument terminates once one agent sends

reachAgreement.

 Both accept and reject ϵ {Intermediate}. There are several moves to these

moves. (there are arrows coming out from these moves).

 After argueWith ϵ {Divided}, the dialogue between two agents begins.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 287

Figure B.2: The Persuasion Dialogue Between N-agents Legal Moves

 The turn-taking between participants switches after each move (the agents

take it in turns to make moves):

o if M1 then Player = Proposal,

o else NextPlayer = All other agents iff Player = Proposal

and NextPlayer = Proposal iff Player = All other agents

Others, accept

M2

Others, reject

M3

Dialogue Interaction Legal Moves

for two agents

(See Figure 4.5)

Proposal Agent, proposal

M1

Proposal Agent, argueWith

M5

Proposal Agent, reachAgreement

M4

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 288

 After dialogue between two agents terminates, the dialogue between N-agents

starts again (proposal agent sends proposal message to all other agents)

DID for a persuasion dialogue between N-agents

The DID of this example is shown in Figure B.3 (Note that pre-conditions and post-

conditions for locutions are not shown in this figure since they are shown in Figures

B.4(a), B.4(b), and B.4(c).) In Figure B.3, a dialogue always starts with a proposal

and ends with a reachAgreement locution. Proposal Agent can open the discussion

by sending a proposal(Topic) locution, if it is able to satisfy both the pre-condition

and the recursive condition that are connected to the sender role of this locution: 1)

getAgentIDFromList(AgentList,otherAgents,ID) that returns true if AgentList is not

empty, gets agent ID from the AgentsList and puts the remaining agents in the

otherAgents list; 2) addTopicToCS(Topic,CSproposal) that returns true if Proposal

Agent is able to add Topic to its commitment store CSProposal (if Topic is not already

in the CSProposal), which is always returned true. Then, turn-taking switches to All

other agents. Each of them has to choose between two different possible reply

locutions: accept(Topic) or reject(Topic). Each agent will make its choice using the

pre-conditions which appear in the rhombus shape. An agent sends accept(Topic), if

it is able to satisfy:1) findTopicInKB(Topic, KBID) that returns true if the agent is

able to find Topic in its knowledge base KBID; 2) notFindTopciInCS(Topic,CSID)

that returns true if the agent is not able to find Topic in its commitment store CSID;

3) notFindOppTopicInCS(not(Topic),CSID)) that returns true if the agent is not able

to find the opposite of Topic in its commitment store CSID; 4)

addTopicToCS(Topic,CSID) that returns true if the agent is able to add Topic to its

commitment store CSID which always returns true. An agent sends reject(Topic), if it

is able to satisfy:1) notFindTopicInKB(Topic,KBID) that returns true if the agent is

not able to find Topic in its knowledge base KBID; 2) notFindTopciInCS(Topic,CSID)

that returns true if the agent is not able to find Topic in its commitment store CSID.

After that, the turn switches to Proposal Agent, and so forth. The argument

terminates when Proposal Agent sends reachAgreement locution to all other agents.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 289

Figure B.3: Dialogue Interaction Diagram for N-agents (DIDN)

proposal(Topic)

proposalReciver proposalSender

IDproposal AgentList,NAgent,NSupporters,Topic

ID IDproposal

accept(Topic)

CollectResp-
Receiver

replyToProposal-
Sender

AgentList,NAgent,NS

upporters,Topic,
NReply,

AcceptingList,

RejectionList,
NAccepting,

NRejection

,SendingList

KB,CS, IDproposal

IDproposal ID

reject(Topic)

replyToProposal-

Receiver

replyToProposal-

Sender

AgentList,NAgent,N

Supporters,Topic,N
Reply,

AcceptingList,
RejectionList,
NAccepting,
NRejection,
SendingList

KB,CS, IDproposal

IDproposal ID

argueWith(Topic,AgentP,AgentO)

ResultReciver ResultSender

KB,CS,

IDproposal
AgentList,NAgent,NSupport

ers,Topic, AcceptingList,
RejectionList, AgentGroup

ID IDproposal

reachAgreement(Topic)

ResultReciver ResultSender

KB,CS,

IDproposal

AgentList,NAgent,NS

upporters,Topic,

AcceptingList,
RejectionList,
AgentGroup

ID IDproposal

RecursiveStarting Locution

RecursiveReceiving

Locution

Divided Locution

RecursiveTermination Locution

Others

Agent1

Agent1

Dialogue Interaction Diagram for two agents

(See Figure 4.3)

All other agents

Output:

Topic,IDProposal

Input: Topic, IDproposal, IDP, IDO

All agents

Proposal

RecursiveReceiving

Locution

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 290

Figure B.4 (a): DIDN Locutions Pre-conditions and Post-conditions

proposal(Topic)

proposalReciver proposalSender

KBID,CSID,
IDproposal

AgentList,NAgent,NSupporters,Topic

ID IDproposal

accept(Topic)

replyToProposal-

Receiver

replyToProposal-

Sender

AgentList,NAgent,N

Supporters,Topic,

NReply,
AcceptingList

RejectionList,

NAccepting,
NRejection,

SendingList

KBID,CSID,

IDproposal

IDproposal ID

RecursiveStarting Locution

getAgentIDFromList

(AgentList,otherAgents,ID)

addTopicToCS

(Topic,CSProposal)

1

2
 AgentList

otherAgents

findTopicInKB

(Topic, KBID)

notFindTopciInCS

(Topic,CSID)

notFindOppTopicInCS

(not(T),CSID)

addTopicToCS

(Topic,CSID)

1

2

3

4

addToAcceptingList
(AcceptingList, AccList,

ID)

increaseAccepting

(NAccepting,NAcc)

addIDToList
(SendingList,

OtherSendingList,

ID)

2
3 1

notEqual(AgentList,

SendingList),

SendingList

OtherSendingList

AcceptingList

AccList

NRejection

NRej

NAccepting

NAcc

RecursiveReceiving

Locution

RejectingList

RejList

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 291

Figure B.4(b): DIDN Locutions Pre-conditions and Post-conditions

reject(Topic)

replyToProposal-
Receiver

replyToProposal-
Sender

AgentList,NAgent,N

Supporters,Topic,
NReply,

AcceptingList,

RejectionList
,NAccepting,
NRejection

SendingList

KBID,CSID,

IDproposal

IDproposal ID

reachAgreement(Topic)

resultReciver resultSender

KBID,CSID,

IDproposal

AgentList,NAgent,NSupporters,

Topic, AcceptingList,

RejectionList, AgentGroup

ID IDproposal

notFindTopicInKB

(Topic,KBProposal)

notFindTopicInCS

(Topic,CSProposal)

1

2

RecursiveTermination Locution

getAgentIDFromList

(AgentList,otherAgents,ID)

greaterThanOrEequal

(NAccepting,NSupporters)

2

1

 AgentList

OtherAgents

notEqual(AgentList,

SendingList),

SendingList

OtherSendingList

addToRejectingList

(RejectingList,RejListID)

1 3

2
increaseRejecting

(NRejecting,NRej)

addIDToList
(SendingList,

OtherSendingList,

ID)

AcceptingList

AccList

NRejection

NRej

NAccepting

NAcc

RecursiveReceiving

Locution

RejectingList

RejList

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 292

Figure B.4(c): DIDN Locutions Pre-conditions and Post-conditons

Note that in this example, each dialogue game between two agents has four input

parameters: 1) Topic (which represents the main topic of the dialogue between N-

agents); 2) IDProposal (which represents the proposal agent ID); 3) IDP (which

represents the first agent ID in the current group); 4) IDO (which represents the

second agent ID in the current group). Each of the dialogue games between two

agents has two output parameters: 1) Topic (which represents the main topic of the

dialogue between N-agents); 2) IDProposal (which represents the sender agent ID).

The basic Scenario of Interaction Protocol of Persuasion Dialogue between N-agents

An example (see Figure 4.14) of the persuasion dialogue among seven agents is

shown in Figure B.5 (note that the DID between two agents is not shown in this

diagram). The goal of the dialogue is to persuade all agents that A's car is safe. In this

example:

(1) A opens a discussion by sending a proposal("My car is safe") to all other

agents(B,C,D,E,F and G).

argueWith(Topic,AgentP,AgentO)

ResultReciver ResultSender

KBID,CSID,

IDproposal

AgentList,NAgent,NSupporters,

Topic,AcceptingList,

RejectionList, AgentGroup

ID IDproposal

Divided Locution

creatOneAgentGroups
(RejectingList,Re,AcceptingList,

Ac,AgentGroup, AGroup,

P,O)

lessThan(NAccepting,

NSupporters)

1

4

 RejectingList

Re

AcceptingList

Ac

isNoEmpty(RejectionList)

2

3

isNotEmpty(AcceptingList)

AgentGroup

AGroup

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 293

(2) Each agent checks with its argumentation system AS (AS = {KB, CS}) whether

"A's car is safe" is acceptable:

 If an agent finds that " A's car is safe", it sends accept("My car is safe")

to A,

 If an agent does not find " A's car is safe" , it sends reject("My car is

safe") to A,

In this example, C accepts the proposal and B ,C, D, E, F and G reject the proposal.

(3) A sums up the acceptance and rejection locutions.

 If the acceptance number is equal to the number of agents (termination

condition), the agents have reached an agreement and A sends a

reachAgreement("My car is safe") locution to all other agents.

 If the number of rejections is equal or greater than one (Divided

condition), A divides agents into groups of two under the condition that it

cannot put two accepting agents or two rejection agents together in one

group (note that if the number of agents is even, every agent has a

partner. If the number of agents is odd, the last agent lacks a partner).

Then, A sends an argueWith locution to all other agents to inform them

about the groups.

In this example, group one consists of A and B and group two consists of C and

D (note that E, F and G have rejected the proposal so we cannot put them

together in one group.)

(4) Within each group, dialogues take place between two agents. In this example,

each group will use the DID between two agents given in Figure 4.3.

(5) Each agent in the group sends either an accept("My car is safe") or reject("My car

is safe") locution to A.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 294

Figure B.5: The Complex Car Safety Example Among N-agents

A

B

1- proposal("My car is safe") 2- reject("My car is safe")

2- accept("My car is safe")

3- argueWith(A)

D

C

E

F

G

1- proposal("My car is safe")

1- proposal("My car is safe")

1- proposal("My car is safe")

1- proposal("My car is safe")

1- proposal("My car is safe")

2- reject("My car is safe")

2- reject("My car is safe")

2- reject("My car is safe")

2- reject("My car is safe")

3- argueWith(D)

3- argueWith(C)

4- accept("My car is safe")

4- reject("My car is safe")

4- reject("My car is safe")

5- argueWith(F)

5- argueWith(B)

6- accept("My car is safe")

6- accept("My car is safe")

6- accept("My car is safe")
5- argueWith(A)

7- argueWith(C)

7- argueWith(B)

7- argueWith(E)

7- argueWith(D)

7- argueWith(G)

7- argueWith(F)
8- accept("My car is safe")

8- accept("My car is safe")

8- accept("My car is safe")

8- accept("My car is safe")

8- accept("My car is safe")

8- accept("My car is safe")
 9- reachAgreement(T)

 9- reachAgreement(T)

 9- reachAgreement(T)

 9- reachAgreement(T)

 9- reachAgreement(T)

 9- reachAgreement(T)

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 295

(6) Then, A repeats step 3. The following are the new groups: group one consists of A

and E, group two consists of B and F. Within each group, dialogues take place

between two agents.

(7) Each agent in the group sends either an accept("My car is safe") or reject("My car

is safe") locution to A.

(8) Then, A repeats step 3. The following are the new groups: group one consists of B

and C, group two consists of E and D, and group three consists of F and G. Within

each group, dialogues take place between two agents.

(9) Each agent in the group sends either an accept("My car is safe") or reject("My car

is safe") locution to A. Finally, A sums up the acceptance and rejection locutions

and finds that the acceptance number is equal to the number of agents, which

means that the agents have reached an agreement. A sends reachAgreement("My

car is safe") to all other agents.

B.3 General N-agents Patterns

As mentioned in chapter 4 and 5, we have focused on those involving more than two

agents where synthesized LCC protocols specify broadcasting methods to divide

agents into groups composed of two agents (with these two-agent dialogues then

being specified using DID). That means our tool limited the LCC argumentation

protocol for N-agents to a broadcasting notation. However, we believe that we are

able to extend it to work with different types of N-agents protocols by adding more

general patterns to the library. These new patterns must be able to work with

recursive concepts of DID for N-agents (since recursive concept is considered the

most important concepts of N-agents protocols).

B.3.1 General LCC-Argument N-agents Patterns

This section describes three general LCC recursive patterns:

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 296

Pattern6:

Name: Recursive Starting (Sending) pattern (RSP)

Problem: How to start an argument (dialogue) for N>= 3? or how to send a message

to more than one agents.

Solution: Both agents send/receive a message (locution) and then change their roles

so as to remain in the dialogue (Figure B.6).

(1) Sender (speaker) agent proposes an action (start dialogue) by sending a

Recursive Starting locution to all agents and then changes its role.

(2) Other agents (all agents except the sender agent) receive a Recursive Starting

locution and then change their role

Context (Pre-conditions):

 Use this pattern when a sender agent has not already started a dialogue for

N>= 3 agents;

 Or, use this pattern when one agent wants to send a message to more than one

agents.

Consequence (Post-conditions):

 Sender and other agents engaged in a dialogue.

 Sender and all other agents (receivers) change their roles to remain in the

dialogue.

Structure:

a(R1Sender(AgentList,NAgent,Topic),IDSender)::=

RSender
RSL

≈> RReceiver

then

(

 a(R2sender (OtherAgents, NAgent,Topic),IDsender) FailureRecursiveC

 or

 a(R1sender (OtherAgents, NAgent,Topic),IDsender)

).

a(R1Recevier(KBID,CSID,IDSender), ID)::=

R Receiver <≈
 RSL

 R Sender

then

 a(R2Receiver(KBID,CSID, IDSender), ID).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 297

Figure B.6: Recursive Starting(Sending) Pattern Solution

Sender

Sender Role 1

Sender

Sender Role 2

Agent1

Audience Role 1

Agent1

Audience Role 2

RSL (Topic)

Change to
Change to

Agent2

Audience Role 1

Agent2

Audience Role 2

Change to

Agentn

Audience Role 1

Agentn

Audience Role 2

Change to

1

2

2

2

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 298

This pattern represents a generic recursive clause. In this pattern, and in the rest of

the patterns, RSL represents Recursive Starting Locution, '≈>' represents outgoing

messages from a role, and '<≈' represents incoming messages. FailureRecursiveC

represent a condition when it is true the recursive end (usually, FailureRecursiveC is

a condition over AgentList).

In this LCC code, there are two roles: R1Sender and R1Receiver. The R1Sender role of the

sender agent IDsender has three input parameters: (1) AgentList which represents the

agents ID list; (2) NAgent which represents the number of agents (note that the

number of agents is > = 3). (3) Topic to open dialogue. The R1Sender role begins by

sending a Recursive Starting locution RSL to the R1Receiver role (the '≈>' symbol

indicates that the R1Sender role may send one or more different RSLs to the R1Receiver

role.). Then, the R1Sender role check FailureRecursiveC. If this condition is true, the

R1Sender changes its role to the R2Sender, otherwise, it recurse.

The R1Receiver role of receiver agent IDReceiver has three input parameters: (1) KB Receiver

which represents the agent knowledge base list; (2) CSReceiver which represents the

agent commitment store list. Note that CSA is empty, since R1Receiver represents the

first role of the audience agent in the LCC protocol; (3) IDSender which represents the

sender agent identifier. The R1Receiver role begins by receiving a Recursive Starting

locution RSL from R1Sender. Then, it changes its role to the R2Receiver.

Rewriting methods:

First (Sending method): Rewriting of the "RSender
RSL

≈> RReceiver"

The main function of rewriting is to allow generic relations between the RSender and

the RReceiver to be rewritten in a specific way. There might be a direct, complex or

indirect relation between them. If there is a general relation "RSender
RSL

≈> RReceiver",

then it is possible to specialise it within two different statements:

Rewrite 1: (one locution)

We might specialise "RSender
RSL

≈> RReceiver" to an interaction statement that sends a

RRL(Topic) message to agent IDReceiver, which is achieved by the RecursiveC and C1

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 299

constraints. In practice, RecursiveC represents a recursive condition (usually,

RecursiveC is a condition over AgentList), C1 represents a condition (C1 may

represent more than one condition that is connected by or and and operators) that

must be satisfied in order for a sender agent to send the Recursive Starting locution

(usually, C1 is a condition over Topic).

 RSL(Topic) => a(Rrecevier(KBID,CSID,IDSender), ID) RecursiveC and C1

Rewrite 2:(multiple locution)

We might specialise "RSender
RSL

≈> RReceiver" to an interaction statement that sends a

RSL(Topic) message to agent IDReceiver which is achieved by the constraints

RecursiveC and C1. Then, there is another relation between RSender1 and RReceiver1.

 RSL(Topic) => a(Rrecevier(KBID,CSID,IDSender), ID) RecursiveC and C1

 or

 R Sender
RSL

≈> R Receiver

Second (Receiving method): Rewriting of the " RReceiver <≈
RSL

 RSender "

If there is a general relation "RReceiver<≈
RSL

 RSender", then it is possible to specialise it

within two different statements:

Rewrite 1: (one locution)

We might specialise " RReceiver<≈
RSL

 RSender" to an interaction statement that receive a

RSL(Topic) message from agent IDSender. C2 represents a condition that must be

satisfied after receiver agent receives the Recursive Sending locution. In practice, C2

may represent more than one condition that is connected by or and and operators.

Usually, C2 is a condition over the role arguments (e.g. KB and CS).

 C2 RSL(Topic) <= a(R1sender(KBSender , CSSender, IDReceiver),IDsender)

Rewrite 2:(multiple locution)

We might specialise " RReceiver<≈
RSL

 RSender" to an interaction statement that receive a

RSL(Topic) message from agent IDSender. Then, there is another relation between

RSender1 and RReceiver1.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 300

C2 RSL(Topic) <= a(R1sender(KBSender , CSSender, IDReceiver),IDsender)

or

 RReceiver <≈
RSL

 RSender

Pattern7:

Name: Recursive Receiving Pattern (RRP)

Problem: How to receive a message from more than one agents

Solution :

(1) One or more agents send(s) the same RRL to the receiver agent and then

change(s) their role(s).

(2) Receiver receive RRL from all other agents (senders) and then change its role to

remain in the dialogue.

Context (Pre-conditions): Use this pattern when more than one agents want to send a

message to one agent.

Consequence (Post-conditions): Receiver and all other agents (senders) change their

roles to remain in the dialogue.

Structure:

a(R1Sender (KB,CS,Topic,IDReceiver), IDSender) ::=

RSender
RRL

≈> RReceiver
 then

 a(R2sender (KB,CS,Topic,IDReceiver), IDsender).

a(R1Receiver (AgentList, SendingList, NAgent,Topic),IDReceiver) ::=

R Receiver <≈
 RRL

 R Sender

then

(

 a(R1Receiver (AgentList, OtherSendingLists, NAgent,Topic),ID Receiver)

 RecursiveC

 or

 a(R2 Receiver (AgentList,OtherASendingLists, NAgent,Topic),ID Receiver)

).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 301

RecursiveC represents a recursive condition (usually, RecursiveC is a condition over

AgentList and SendingList e.g. RecursiveC= notEqual(AgentList,SendingList)).

In this LCC code, there are two roles: R1Sender and R1Receiver. The R1Sender role of the

sender agent IDsender has three input parameters: (1) KB which represents the agent

knowledge base list; (2) CS which represents the agent commitment store list; (3)

IDReceiver which represents the receiver agent identifier.

The R1Receiver role of audience agent IDA has four input parameters: (1) AgentList

which represents the agents ID list.; (2) SendingList which represents the sender

agents ID list. Initially, SendingList is empty; (3) NAgent which represents the

number of agents (note that the number of agents is > = 3). (4) Topic which

represents the dialogue game topic.

The R1Receiver role begins by receiving a RRL message from the R1Sender role (the '<≈'

symbol indicates that the R1Receiver role may receive one or more different RRLs from

the R1Sender role). Then, the R1Receiver role check RecursiveC. If this condition is true,

the R1Receiver recurse, otherwise, it changes its role to the R2Receiver.

Rewriting methods:

First (Sending method): Rewriting of the "RSender
RRL

≈> RReceiver"

If there is a general relation "RSender
RRL

≈> RReceiver", then it is possible to specialise it

within two different statements:

Rewrite 1: (one locution)

We might specialise "RSender
RRL

≈> RReceiver" to an interaction statement that sends a

RRL(Topic) message to agent IDReceiver, which is achieved by the constraint C1. In

practice, C1 may represent more than one condition that is connected by or and and

operators. Usually, C1 is a condition over the role arguments (e.g. KB and CS).

 RRL(Topic) => a(R Receiver(AgentList,SendingList,NAgent,N,Topic),IDReceiver)

 C1

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 302

Rewrite 2:(multiple locution)

We might specialise "RSender
RRL

≈> RReceiver" to an interaction statement that sends a

RRL(Topic) message to agent IDReceiver which is achieved by the constraint C1. Then,

there is another relation between RSender1 and RReceiver1.

RRL(Topic) => a(R Receiver(AgentList,SendingList , NAgent,N,Topic),IDReceiver)

 C1

or

R Sender
RRL

≈> R Receiver

Second(Receiving method): Rewriting of the " RReceiver <≈
RRL

 RSender "

If there is a general relation "RReceiver<≈
RRL

 RSender", then it is possible to specialise it

within two different statements:

Rewrite 1: (one locution)

We might specialise " RReceiver<≈
RRL

 RSender" to an interaction statement that receive a

RRL(Topic) message from agent IDSender. C2 represents a condition that must be

satisfied after receiver agent receives the Recursive Receiving locution. In practice,

C2 may represent more than one condition that is connected by or and and operators.

Usually, C2 is a condition over the recursive arguments. (Note that if C2 does not

work with all recursive arguments, the tool will write the recursive argument as the

C2 condition automatically. See section B.2.2 for more a detailed example).

 C2 RRL(Topic)<= a(RSender1(KBID,CSID,IDReceiver), IDSender1)

Rewrite 2:(multiple locution)

We might specialise " RReceiver<≈
RRL

 RSender" to an interaction statement that receive a

RRL(Topic) message from agent IDSender. Then, there is another relation between

RSender1 and RReceiver1.

C2 RRL(Topic)<= a(RSender1(KBID,CSID,IDReceiver), IDSender1)

or

 RReceiver1 <≈
RRL

 RSender1

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 303

Pattern8:

Name: Recursive Termination-Sending Pattern (RTSP)

Problem: How to send and change roles or terminate an argument (dialogue) for

N>=3 agents.

Solution :

(1) Dialogue Termination (Recursive Termination locution) (Figure B.7):

 The sender agent sends Recursive Termination locution to all other agents and

then terminates its role.

 All other agents receive Recursive Termination locution and then terminate

their roles.

(2) Sending and Changing roles (Figure B.6):

 Sender agent sends a Recursive Sending locution to all agents and then

changes its role .

 All receiver agents receive a Recursive Starting and then change their roles.

Context (Pre-conditions): Use Recursive Termination-Sending pattern to send a

message and change roles, or to terminate a dialogue between 3 or more agents

(when agents reach an agreement).

Consequence (Post-conditions):

(1) Dialogue Termination :

 The dialogue between N-agents is terminated

(2) Sending and Changing roles:

 The sender agent and all receiver agents change their roles to remain in the

dialogue.

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 304

Figure B.7: Recursive Termination-Sending Pattern (Termination) Solution

Agent1

 Receiver Role

RTL(Topic)

Agent 2

Receiver Role

Agent n

Receiver Role

--

Sender

Sender Role 1

RTL(Topic)

RTL(Topic)

RTL(Topic)

Terminate

1

1

1

1

1

2

2

2

Terminate

Terminate

Terminate

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 305

Structure:

This pattern represents a generic recursive clause. RTL represents the Recursive

Termination locution and FailureRecursiveC represents a condition that when it is

true forces the recursion to end (usually, FailureRecursiveC is a condition over

AgentList).

In this LCC code, there are two roles: RSender and RReceiver. The RSender role of the

sender agent IDsender has two input parameters: AgentList and Topic. It begins by

a(Rsender(AgentList, Topic),IDsender)::=

 (

 RSender
RTL

≈> RReceiver

then

(

 null FailureRecursiveC1

 or

 a(Rsender (OtherAgents, Topic),IDsender)

)

)

 or

 (

 RSender
RSL

≈> RReceiver

then

(

 a(R2sender (OtherAgents, Topic),IDsender)

 FailureRecursiveC2

 or

 a(Rsender (OtherAgents, Topic),IDsender)

)

).

a(RRecevier(KBID,CSID,IDSender), ID)::=

R Receiver <≈
 RTL

 R Sender

 or

(

 R Receiver <≈
 RSL

 R Sender

 then

 a(R2Receiver(KBID,CSID, IDSender), ID)

).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 306

either: (1) sending a Recursive Termination locution. Then, the RSender role checks

FailureRecursiveC1. If this condition is true, the RSender terminates, otherwise, it

recurse; (2) sending a Recursive Sending locution RSL to the RReceiver role (the '≈>'

symbol indicates that the RSender role may send one or more different RSLs to the

RReceiver role.). Then, the RSender role check FailureRecursiveC1. If this condition is

true, the RSender changes its role to the R2Sender, otherwise, it recurse.

The RReceiver role of audience agent ID has three input parameters: (1) KB Receiver

which represents the agent knowledge base list; (2) CS Receiver which represents the

agent commitment store list.; (3) IDSender which represents the sender agent identifier.

The RReceiver role begins by either receiving: (1) a Recursive Termination locution

from RSender (the '<≈' symbol indicates that the RReceiver role may receive one or more

different RTLs from the RSender role); or (2) a Recursive Sending locution RSL from

RSender. Then, it changes its role to the R2Receiver.

Rewriting methods:

First (Sending Termination method): Rewriting of the "RSender
RTL

≈> RReceiver"

If there is a general relation "RSender
RTL

≈> RReceiver", then it is possible to specialise it

within two different statements:

Rewrite 1: (one termination locution)

We might specialise "RSender
RTL

≈> RReceiver" to an interaction statement that sends a

RTL(Topic) Recursive Termination message to agent IDReceiver, which is achieved by

the RecursiveC and C1 constraints. In practice, RecursiveC represents a recursive

condition (usually, RecursiveC is a condition over AgentList), C1 represents a

condition (C1 may represent more than one condition that is connected by or and and

operators) that must be satisfied in order for a sender agent to send the Recursive

Termination locution (usually, C1 is a condition over Topic).

 RTL(Topic) => a(Rrecevier(KBID,CSID,IDsender), ID) RecursiveC and C1

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 307

Rewrite 2:(multiple termination locution)

We might specialise "RSender
RTL

≈> RReceiver" to an interaction statement that sends a

RTL(Topic) Recursive Termination message to agent IDReceiver which is achieved by

the RecursiveC and C1 constraints. Then, there is another termination relation

between RSender and RReceiver.

 RTL(Topic) => a(Rrecevier(KBID,CSID,IDsender), ID) RecursiveC and C1

Or

R Sender
RTL

≈> R Receiver

Second (Receiving Termination method): Rewriting of the "RReceiver <≈
RTL

 RSender"

If there is a general relation "RReceiver<≈
RTL

 RSender", then it is possible to specialise it

within two different statements:

Rewrite 1: (one locution)

We might specialise " RReceiver<≈
RTL

 RSender" to an interaction statement that receive a

RTL(Topic) message from agent IDSender. C2 represents a condition that must be

satisfied after receiver agent receives the Recursive Termination locution. In

practice, C2 may represent more than one condition that is connected by or and and

operators. Usually, C2 is a condition over the role arguments (e.g. KB and CS).

 C2 RTL(Topic) <= a(R1sender(KBSender , CSSender, IDReceiver),IDsender)

Rewrite 2:(multiple locution)

We might specialise " RReceiver<≈
RTL

 RSender" to an interaction statement that receive a

RTL(Topic) message from agent IDSender. Then, there is another relation between

RSender1 and RReceiver1.

C2 RTL(Topic) <= a(R1sender(KBSender , CSSender, IDReceiver),IDsender)

or

 RReceiver <≈
RTL2

 RSender

Third (Sending method): Rewriting of the "RSender
RSL

≈> RReceiver"

See rewriting method of Recursive Sending Pattern (Rewriting of the "RSender
RSL

≈>

RReceiver").

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 308

Fourth(Receiving method): Rewriting of the " RReceiver <≈
RSL

 RSender "

See rewriting method of Recursive Sending Pattern (Rewriting of the " RReceiver <≈

RSL
 RSender ").

Pattern9:

Name: Recursive Termination-Divided Pattern (RTDP)

Problem: How to divide agents into groups of two or terminate an argument

(dialogue) for N>=3 agents.

Solution :

(1) Dialogue Termination (Recursive Termination locution) (Figure B.7):

 The sender agent sends Recursive Termination locution to all other agents and

then terminates its role.

 All other agents receive Recursive Termination locution and then terminate

their roles.

(2) Divide agents (chapter 5, Figure 5.3):

 The sender agent sends argueWith(Topic,AgentP,AgentO) locution for a pair

of agents: AgentP and AgentO (telling them to interact together) and then

recurses or changes its role.

 Both AgentP and AgentO receive argueWith(Topic,AgentP,AgentO) locution

and then change their roles to startDID role.

Context (Pre-conditions): Use Recursive Termination-Divided pattern to divide

agents into groups or to terminate a dialogue between 3 or more agents (when agents

reach an agreement).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 309

Consequence (Post-conditions):

(1) Dialogue Termination :

 The dialogue between N-agents is terminated

(2) Divide agents:

 Divide agents into groups of two and start dialogues between two agents.

Structure:

Figure B.8 illustrates the structure of this pattern. This pattern represents a generic

recursive clause. FailureRecursiveC represents a condition when it is true the

recursive end (usually, FailureRecursiveC is a condition over AgentList).

In this LCC code, there are four roles: RSender, terminaitonRSender, divideGroupSender

and RReceiver. The RSender role of the sender agent IDsender has nine input parameters:

AgentList, NAgent, NSupporters, Topic, NReply, AcceptingList, RejectionList,

NAccepting and NRejection. The RSender role begins by checking TerminationC

condition. If this condition is true, then the proposal agent changes its role to the

TerminationRsender role. Otherwise, the RSender role checks DivideC condition. If this

condition is true, then the sender agent changes its role to the divideGroupproposal

role.

The TerminaitonRSender role of the sender agent IDsender has two input parameters:

AgentList and Topic. It begins by sending a Recursive Termination locution (the '≈>'

symbol indicates that the TerminaitonRSender role may send one or more different

RTLs to the RReceiver role). Then, the TerminaitonRSender role check

FailureRecursiveC1. If this condition is true, the TerminaitonRSender terminates,

otherwise, it recurse;

The divideGroupSender role of the sender agent IDsender has six input parameters:

AgentList, NAgent, NSupporters, Topic, AcceptingList and RejectionList. It also has

one output parameter: AgentGroup. This role is responsible for dividing the agents in

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 310

Figure B.8: Recursive Termination-Divided Pattern Structure

a(Rsender(AgentList,NAgent,NSupporters,Topic,AcceptingList,

RejectionList, AgentGroup),IDsender)::=

a(TerminationRsender (AgentAgents, Topic),IDsender) TerminationC

or

a(divideGroupsender (AgentList , NAgent,NSupporters,Topic,

AcceptingList,RejectionList, []),IDproposal) DivideC.

a(TerminaitonRsender(AgentList, Topic),IDsender)::=

 TerminaitonRSender
RTL

≈> RReceiver

then

(null FailureRecursiveC1

 or

 a(Rsender (OtherAgents, Topic),IDsender)).

a(divideGroupSender (AgentList, NAgent,NSupporters,Topic,

AcceptingList,RejectionList,AgentGroup), IDSender)::=

 (

argueWith (Topic,P,O) => a(RRecevier (KBp,CSp,IDSender), P)

 RecursiveC

then

argueWith (Topic,O,P) => a(RRecevier (KBo,CSo,IDSender), O)

)

then

(

a(recursSender(AgentList, NAgent,NSupporters ,0 ,Topic),IDSender)

 FailureRecursiveC2

or

a(divideGroupSender(AgentList ,NAgent,NSupporters,Topic,Ac,Re,AGroup),

IDSender))

).

a(RRecevier(KBID,CSID,IDSender), ID)::=

R Receiver <≈
 RTL

 TerminationR Sender

 or

(

 argueWith(Topic,ID,ID2) <= a(divideGroupSender(_ , _, _ ,_ , _ , _ , _),IDSender)

 then

 a(startDID(KBID,CSID ,Topic, IDSender, ID2),ID)

).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 311

the AgentList list into a group composed of two agents. It begins by checking

RecursiveC. If this condition is true, then this role creates the first agent group by

taking one agent from the head of the AcceptingList and one agent from the head of

the RejectionList. It then sends the argueWith message to the first group (agent P and

agent O) and asks them to start arguing together about the dialogue Topic. Then, if

the FailureRecursiveC2 condition is true, the sender agent changes its role to the

recursProposal role (see chapter 5, Recurs-To-N-Dialogue Pattern), otherwise, it

recurses.

The RReceiver role of audience agent ID has three input parameters: (1) KBReceiver which

represents the agent knowledge base list; (2) CSReceiver which represents the agent

commitment store list.; (3) IDSender which represents the sender agent identifier. The

RReceiver role begins by either: (1) receiving a Recursive Termination locution from

TerminaitonRSender (the '<≈' symbol indicates that the RReceiver role may receive one

or more different RTLs from the TerminaitonRSender role); (2) receiving an argueWith

message from divideGroupSender. Then, it changes its role to the startDID role(see

chapter 5, Move-To-Dialogue Pattern).

Rewriting methods:

First (Sending Termination method): Rewriting of the " TerminaitonRSender
RTL

≈>

RReceiver"

See rewriting method of Recursive Termination-Sending Pattern (Rewriting of the

"RSender
RTL

≈> RReceiver").

Second (Receiving Termination method): Rewriting of the "RReceiver <≈
RTL

TerminaitonRSender "

See rewriting method of Recursive Termination-Sending Pattern (Rewriting of the

"RReceiver <≈
RTL

 RSender").

Pattern10:

Name: Receiving/Sending Recursive Pattern (RSRP)

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 312

Problem: How to send and receive more than one message?

Solution :

(1) Sender agent sends a RSL to more than one agent and then changes its role.

(2) Receiver agent receive RRL from more than one agent (senders) and then

change its role.

Context (Pre-conditions):

 Use this pattern when one agent wants to send a message to more than one

agent and more than one agent want to send a message to one agent.

Consequence (Post-conditions):

 All other agents (senders and receivers) change their roles to remain in the

dialogue.

Structure: This pattern is a combination of Pattern 6 and 7 (see pattern 6 and pattern

7).

a(R1Sender(AgentList,NAgent,Topic),IDSender)::=

RSender
RSL

≈> RReceiver

then

(

 a(R2sender (OtherAgents, NAgent,Topic),IDsender) FailureRecursiveC

 or

 a(R1sender (OtherAgents, NAgent,Topic),IDsender)

).

a(R1Receiver (AgentList, SendingList, NAgent,Topic),IDReceiver) ::=

R Receiver <≈
 RRL

 R Sender

then

(

 a(R1Receiver (AgentList, OtherSendingLists, NAgent,Topic),ID Receiver)

 RecursiveC

 or

 a(R2 Receiver (AgentList,OtherASendingLists, NAgent,Topic),ID Receiver)

).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 313

Rewriting methods:

First (Sending method): Rewriting of the "RSender
RSL

≈> RReceiver"

See rewriting method of Recursive Sending Pattern (Rewriting of the "RSender
RSL

≈>

RReceiver").

Second(Receiving method): Rewriting of the " RReceiver <≈
RRL

 RSender "

See rewriting method of Recursive Receiving Pattern (Rewriting of the " RReceiver <≈

RRL
 RSender ").

B.3.2 Automated Synthesis Steps for Generating Agent Protocol for

General N-agents Automatically

The N-agents' general protocol automated synthesis algorithm is illustrated in Figure

B.9:

(1) The tool begins with the locution icon at the top of the DID. Note that if more

than one locution icon appears in one level, then the tool begins with the

locution to the left (since it works from left to right).

(2) Following this, the tool selects one pattern from the LCC-Argument patterns for

general N-agents protocol library. This pattern depends on the locution type.

Note that each locution type is connected to only one LCC-Argument pattern.

See Table B.1.

(3) After that, if the selected pattern has rewriting methods, the tool selects one or

more of the rewriting methods. The number of rewriting methods selected is

dependent on the number of locution icons in this level. If this level has one

locution icon, the tool selects the rewriting method Rewrite 1 (rewriting method

with one locution). If this level has more than one locution icon, the tool selects

the rewriting method Rewrite 2 (rewriting method with multiple locutions).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 314

1. Input (DID, LCC-Argument patterns)

2. Select&Save Icon= one DID locution icon (Step1)

3. Select&Save Pattern= one pattern from the LCC-Argument patterns for general N-agents

protocol library (Step2)

4. If (Pattern has rewriting methods) then (Step3)

5. If (level has one locution icon) then

6. Select&Save RewriteMethod=Rewrite 1

7. If (level has more than one locution icon) then

8. Select&Save RewriteMethod=Rewrite 2

9. Match (Icon,Pattern,RewriteMethod) (Step4)

10. If (Pattern =Recursive Termination-Divided) then (Step5)

11. Use Recurs-To-N-Dialogue Pattern

12. recursNumber = number of Termination locution icon in the DID for two agents -1

13. If (reurseNumber = 0) then //one Termination Locution

14. Select&Save RewriteMethod2=Rewrite 1

15. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod2)

16. Else //more than one Termination Locution

17. Loop begin (if i=1)

18. Select&Save RewriteMethod2=Rewrite 2

19. Match (Termination Icon, Recurs-To-N-Dialogue Pattern, RewriteMethod2)

20. i= i+1

21. Loop end (if i = reurseNumber)

22. Go To two agents algorithm

23. Add lines to connect N-agents' protocol with two agents' protocol

24. Go To line 2 (Step6)

25. Output LCC protocol

Figure B.9: N- Agents Protocol Automated Synthesis Algorithm

Locution Type Pattern Name

Recursive Starting (or Sending) Locution Recursive Starting (Sending) Pattern

Recursive Receiving Locution Recursive Receiving Pattern

Recursive Termination Locution and Divided

Locution

Recursive Termination-Divided

Recursive Termination Locution and

Recursive Starting (or Sending) Locution

Recursive Termination-Sending Pattern

Table B.1 Relationship Between Locution Type and Patterns

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 315

(4) Then, the tool applies the selected pattern by matching formal parameters

(variables) with its corresponding values in the locution icon to generate pairs of

LCC clauses or roles (sender and receiver roles). If the selected pattern has

rewriting methods, the tool matches the formal parameters in the selected

rewriting methods with its corresponding values in the locution icon to generate

pairs of LCC clauses or roles. The matching process matches one parameter at a

time. It begins with the locution icon and occurs from the top-down and left to

right. It then moves to the left side conditions and then to the right side

conditions. Finally, if the selected pattern has recursive (changing) roles, the tool

moves to the next level and matches the recursive roles in the pattern with the

recursive roles in the locution icon on the next level.

(5) After that, the selected pattern is the Recursive Termination-Divided pattern.

The tool uses the Recurs-To-N-Dialogue Pattern to generate the LCC role which

is used to inform the proposal agent about the ending of the dialogue between

two agents:

a) The tool selects one or more rewriting methods. The number of selected

rewriting methods is the number of the Termination Locution icons in the

DID for two agents, minus one. For example, if the number of Termination

Locution icons is equal to five, then the number of end messages is equal to 5

x 2 = 10 and the number of rewriting methods is equal 5-1= 4 (each rewriting

methods has two end messages and by default Recurs-To-N-Dialogue pattern

receives two end messages, one from the first Termination Locution sender

role and one from the first Termination Locution receiver role).

b) The tool applies this pattern by matching the formal parameters with their

corresponding values in the Termination locution icons in the DID for two

agents, to generate one of the LCC clauses or roles for the proposal agent.

c) Finally, the tool follows the steps of the automated synthesis process of two

agents' protocol to generate the LCC protocol for DID for two agents. Note

that the tool adds two lines after each Termination Locution (message) in the

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 316

LCC protocol for two agents to connect N-agents' protocol with two agents'

protocol:

o Line one: Sending end message to proposal.

o Line two: Changing agents' role to the receiver role of the locution

icon at the top of the DID of the dialogue between N-agents.

 (

 TL (Topic) => a(R, ID)

 then

 end(Topic)=>

 a(recursProposal(AgentList,NAgent,NSupporters,NReply,Topic),IDProposal)

 then

 a(FirstReceiverRoleID (KBID,CSID, IDproposal), ID)

)

(6) Moves to the next level in the DID for N-agents and repeats steps 2, 3,4 and 5.

Note that the automated synthesis process finishes when the tool matches the last

level in the DID with one of the LCC-Argument patterns. If the selected pattern

has recursive (changing) roles, the tool moves to the locution icon reply level,

which represents the reply rules of the selected locution icon, and matches the

recursive roles in the pattern with the recursive roles in the locution icon on this

level.

B.3.3 An Example of an LCC Protocol begin generated for General N-

agents Dialogue

This section represents the generated LCC protocol from the automated agent

protocol synthesis tool "GenerateLCCProtocol". In this example, the tool receives

as input the DID of a persuasion dialogue between N-agents, which is shown in

Figure B.3. Then the tool generates the LCC protocol by using LCC-Argument

patterns (N-agents general patterns). The final LCC protocol is illustrated in Figures

B.10(a), B.10(b), B.10(c), and B.10(d). Please see appendix C for a detailed

description of how to transfer a DID to an LCC protocol by using LCC-Argument

patterns:

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 317

Prposal Other Agents

a(proposalSenderproposal(AgentList,NAgent,NSup

porters,Topic),IDproposal)::=

proposal(Topic) =>

a(proposalReceiverID(KBID,CSID,IDproposal), ID)

getAgentIDFromList(AgentList,otherAgents,ID)

and addTopicToCS(Topic,CSproposal)

then

(

a(replyToProposalReceiverproposal (AgentList,

NAgent,NSupporters,Topic,[],[],0,0, []), IDproposal)

 agentListEmpty(AgentList)

or

a(proposalSenderproposal (OtherAgents,

NAgent,NSupporters,Topic), IDproposal)

).

a(propsalReceiverID(KBID,CSID,IDproposal),

ID)::=

proposal(Topic)<=

a(proposalSenderproposal(AgentList,NAgent,NS

upporters,Topic), IDproposal)

then

a(replyToProposalSender(KBID,CSID,

Topic,IDproposal), ID).

Figure B.10(a): Generated LCC Protocol for N-agents Dialogue

(1) The tool begins with the locution icon at the top of the DID (See Figure B.2) of

the persuasion dialogue between N-agents, which is proposal(Topic).

(2) The tool then selects the Recursive Starting (Sending) Pattern (since the locution

type is the Recursive Starting Locution).

(3) The tool applies the Recursive Starting (Sending) Pattern by matching formal

parameters in the Recursive Starting (Sending) Pattern with its corresponding

values in the proposal(Topic) icon, starting from the top-down and moving left

to right.

(4) The tool moves to the next level (level two of the DID of the persuasion

dialogue).

(5) Following this, the tool selects the Recursive Receiving Pattern (since the

locution type is the Recursive Receiving Locution).

(6) The tool applies the Recursive Receiving Pattern.

(7) Moves to the next level (level three of the DID of the persuasion dialogue).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 318

Prposal Other agents

a(replyToPrposalReceiverproposal(AgentList,

NAgent,NSupporters,Topic,AcceptingList,

RejectionList,NAccepting,NRejection,

SendingList), IDproposal) ::=

(

addIDToList(SendingList,OtherSedingList,ID)

and

addToAcceptingList(AcceptingList,AccList,ID)

and increaseAccepting(NAccepting,NAcc)

and RejList= RejectionList and NRej is

NRejection accept(Topic)

<=a(replyToProposalSenderID(KBID,CSID,Topic,ID

proposal), ID)

or

addToRejectingList(RejectingList,RejList,ID) and

increaseRejecting(NRejecting,NRej) and

addIDToList(SendingList,OtherSedingList,ID)

and

AccList=AcceptingList and NAcc is NAccepting

 reject(Topic)

<=a(replyToProposalSenderID(KBID,CSID,Topic,ID

proposal), ID)

)

 then

(

a(replyToPrposalReceiverproposal(AgentList,NAgent,

NSupporters,Topic,AccList,RejList,NAcc,NRej,

OtherSendingList), IDproposal)

 notEqual(AgentList,SendingList)

or

a(resultSenderproposal (AgentList,NAgent,

NSupporters,Topic,NReply,AcceptingList,

RejectionList,NAccepting,NRejection), IDproposal)

).

a(replyToPropsalSenderID(KBID,CSID,

Topic,IDproposal), ID) ::=

(

 accept(Topic) =>

a(replyToPropsalReceiverproposal (_ , _ , _ , _ ,

_ , _ , _ , _, _),IDproposal)

 findTopicInKB(Topic, KBID) and

notFindTopicInCS (Topic,CSID) and

notFindOppTopicInCS (not(Topic),CSID)

and addTopicToCS(Topic,CSID)

or

reject(Topic) =>

a(replyToPropsalReceiverproposal (_ , _ , _ , _ ,

_ , _ , _ , _ , _),IDproposal)

 notFindTopicInKB(Topic,KBProposal)

and notFindTopicInCS(Topic,CSProposal)

then

 a(resultReceiverID(KBID,CSID,Topic,IDproposal),

ID) .

Figure B.10(b): Generated LCC Protocol for N-agents Dialogue

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 319

Prposal Other agents

a(resultSenderproposal(AgentList,NAgent,

NSupporters,Topic,AcceptingList,RejectionList,

AgentGroup), IDproposal) ::=

a(sendReachAgreementproposal

(AgentList,Topic),IDproposal)

 greaterThanOrEequal(NAccepting,NSupporters)

or

a(divideGroupproposal (AgentList ,

NAgent,NSupporters

,Topic,AcceptingList,RejectionList, []) ,IDproposal)

 lessThan(NAccepting,NSupporters) and

isNotEmpty(RejectionList) and

isNotEmpty(AcceptingList)

a(sendReachAgreementProposal (AgentList,

Topic),IDProposal) ::=

reachAgreement(Topic) =>

a(resultReceiverID(KBID,CSID,IDproposal), ID)

getAgentIDFromList(AgentList,otherAgents,ID)

then

(

null isAgentListEmpty(AgentList)

or

a(sendReachAgreementproposal (OtherAgents,

Topic), IDproposal)
).

a(divideGroupProposal(AgentList,NAgent,

NSupporters,Topic,AcceptingList,RejectionList,

AgentGroup), IDproposal)::=

 (

argueWith (Topic,P,O) =>

a(resultReceiverP(KBp,CSp,Topic,IDproposal), P)

creatOneAgentGroup(Rejecting,Re,Accepting,Ac,

AgentGroup, AGroup,P,O)

then

argueWith (Topic,O,P) =>

a(resultReceiverO(KBo,CSo,Topic,IDproposal), O)

)

then

(

a(recursproposal (AgentList, NAgent,NSupporters ,0

,Topic),IDproposal)

 isListEmpty(Re) or isListEmpty(Ac)

or

a(divideGroupproposal(AgentList ,NAgent,

NSupporters,Topic,Ac,Re,AGroup),IDProposal)).

a(resultReceiverP(KBP,CSP,Topic,IDSender),P

) ::=

reachAgreement(Topic) <=

a(sendReachAgreementProposal (AgentList,

Topic),IDProposal)

or

(

 argueWith(Topic,P,O) <=

a(divideGroupSender(AgentList,

NAgent,NSupporters,Topic,AcceptingList,

RejectionList,AgentGroup),IDSender)

then

 a(startDID(KBP,CSP,Topic,IDSender, O),P)

).

a(resultReceiverO(KBO,CSO,Topic,IDSender),

O) ::=

reachAgreement(Topic) <=

a(sendReachAgreementProposal (AgentList,

Topic),IDProposal)

or

(

 argueWith(Topic,O,P) <=

a(divideGroupSender(AgentList,

NAgent,NSupporters,Topic,AcceptingList,

RejectionList,AgentGroup),IDSender)

then

 a(startDID(KBO,CSO,Topic, IDSender, P),O)

).

Figure D.10(c): Generated LCC Protocol for N-agents Dialogue

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 320

Figure B.10(d): Generated LCC Protocol for N-agents Dialogue

(8) Following this, the tool selects the Recursive Termination-Divided Pattern

(since this level has two locution types : one locution type is the Recursive

Termination and one locution type is Divided Locution).

(9) Applies the Recursive Termination-Divided Pattern.

Prposal Other agents

a(recursProposal (AgentList,

NAgent,NSupporters ,replyN,Topic),IDProposal)

::=

(

N = replyN +1 end(Topic) <=

a(replyToClaimSenderO

(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

or

N = replyN +1 end(Topic)<=

a(replyToClaimReceiverP

(KBP,CSP,CSO,T,IDProposal,IDO),IDP)

or

N = replyN +1 end(Topic)

<=a(replyToWhySenderP(KBP,CSP,CSO,T,IDPropo

sal,IDO),IDP) or

N = replyN +1 <-- end(Topic)

 <= a(replyToWhyReceiverO

(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

or

N = replyN +1 end(Topic) <=

a(replyToArgueSenderO

(KBP,CSP,CSO,T,Pre,IDProposal,IDO),IDO)

or

N = replyN +1 <-- end(Topic) <=

a(replyToArgueReceiverP

(KBO,CSO,CSP,T,Pre,IDProposal,IDP),IDP)

)

then

(

a(proposalSenderproposal

(AgentList,NAgent,NSupporters,Topic),

IDproposal)

 isEqual(N, NAgent)

or

a(recursProposal (AgentList, NAgent,NSupporters,

N,Topic),IDProposal)).

a(startDIDP(KBP,CSP,CSO,T,IDProposal,IDO),IDP)::=

a(claimSender

(KBP,CSP,CSO,T,IDProposal,IDO), IDP)

 addTopicToCS(T,CSP)

or

 a(claimReceiver

(KBP,CSP,CSO,T,IDProposal,IDO), IDP).

a(startDIDO(KBO,CSO,CSP,T,IDProposal,IDP),IDO)::

=

a(claimSender

(KBO,CSO,CSP,T,IDProposal,IDP), IDO)

 addTopicToCS(T,CSP)

or

 a(claimReceiver

(KBO,CSO,CSP,T,IDProposal,IDP), IDO).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 321

(10) Selects and Applies the Recurs-To-N-Dialogue Pattern to connect N-agents'

dialogue with two agents' protocol.

(11) Finally, the tool follows the steps of the automated synthesis process of two

agents' protocol to generate the LCC protocol for DID for two agents. Note that

the tool adds two lines after each Termination Locution (message) in the LCC

protocol for two agents to connect N-agents' protocol with two agents' protocol

(See Figure C.8(d), Figure C.8(e) and Figure C.8(f) in appendix C).

Bridging the Specification Protocol Gap in Argumentation

Appendix B: N-Agent Dialogue 322

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 323

 Appendix C

Persuasion Dialogue

This appendix presents a detailed description of how to transform a DID of a

persuasion dialogue [Prakken, 2000] to an LCC protocol by using LCC-Argument

patterns. It also presents a detailed example of the CPN model, the State Space and

the Verification Model Properties of a CPN persuasion dialogue model. We open

this appendix with a detail example which illustrates how the agent protocol

automated synthesis tool "GenerateLCCProtocol" works to build a persuasion

dialogue protocol between two agents in Section C.1. Section C.2 represents a detail

example which illustrates how the agent protocol automated synthesis tool

"GenerateLCCProtocol" works to build a persuasion dialogue protocol between N

agents. Finally, Section C.3 represents the CPN model and the verification model

properties of the persuasion dialogue.

C.1 An Example of an LCC Protocol begin generated for Two

Agents

This section represents a detailed description of how to transform a DID of a

persuasion dialogue, which is shown in Figure 4.3, to an LCC protocol by using

LCC-Argument patterns. The final LCC protocol is illustrated in Figures C.1(a) and

C.1(b). Below we explain the algorithm followed by the tool:

(1) Begins with the locution icon at the top of the DID of the persuasion dialogue,

which is claim(T).

(2) Selects the Starting Pattern (since the locution type is the Starting Locution).

(3) Applies the Starting Pattern by matching formal parameters in the Starting

Pattern with its corresponding values in the claim(T) icon, starting from the top-

down and moving left to right (See Figure C.2(a)):

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 324

a) Starting from the top of the locution icon, the tool matches SL with claim(T).

b) Moving to the left side of the locution icon, the tool matches RP1 with

claimSenderP1, role parameters with (KBP,CSP,CSO,T,IDO), and role id with

IDP.

c) Moving to the right side of the locution icon, the tool matches RO1 with

claimReceiverO1, role parameters with (KBO,CSO,CSP,IDP), and role id with

IDO.

d) Moving to the left side conditions, the tool matches C1 with

addTopicToCS(T,CSP).

e) Moving to the next level (See Figure C.2(b)), because the Starting Pattern

has recursive roles, the sender agent will become the receiver and vice versa

in the next level. The tool matches agent P recursive role with the right side

of the locution icon. It matches RP2 with replyToClaimReceiverP, role

parameters with (KBP,CSP,CSO,T,IDO), and role id with IDP. Then, the tool

matches agent O recursive role with the left side of the locution icon. It

matches RO2 with replyToClaimSenderO, role parameters with (KBO,CSO,

CSP,T,IDP), and role id with IDO.

(4) Note that the next level in this example (level two of the DID of the

persuasion dialogue) contains two locution icons: why(T), which is located in

the left of the DID, and concede(T), which is located in the right. The tool

starts from the locution in the left of the persuasion dialogue, which is

why(T).

(5) Following this, the tool selects the Termination-Intermediate Pattern (since

locution type is Intermediate Locution).

(6) Since the selected Termination-Intermediate Pattern has rewriting methods,

the tool selects two rewriting methods(one for why(T) and one for

concede(T)). It is important to note in this example that level two has: (1) one

Intermediate Locution (why(T)) and the tool selects the rewrite method 1 of

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 325

one intermediate locution; (2) one Termination Locution (concede(T)) and the

tool selects the rewrite method 1 of one termination locution. See Figure

C.3(a).

(7) Applies the Termination-Intermediate Pattern by matching formal parameters

in the selected rewriting methods of the Termination-Intermediate Pattern

with its corresponding values in the why(T) icon (on the left side of the DID),

starting from the top-down and moving left to right (See Figure C.3(b)):

a) Starting from the top of the locution icon, the tool matches IL with why(T).

b) Moving to the left side of the locution icon, the tool matches RSender1 with

replyToClaimSenderO, role parameters with (KBO, CSO, CSP,T,IDP), and role

id with IDO.

c) Moving to the right side of the locution icon, the tool matches RReceiver1 with

replyToClaimReceiverP, role parameters with (KBP,CSP,CSO,T,IDO), and role

id with IDP.

d) Moving to the left side conditions, the tool matches C2 with

(notFindTopicInKB(T,KBO) and notFindTopicInCS(T,CSO)). Note that in this

example C4 equals null because no condition is connected to the right side of

the locution.

e) Moving to the next level, because the Termination-Intermediate Pattern has

recursive roles, the sender agent will become the receiver and vice versa in

the next level. The tool matches agent P recursive role with the left side of

the locution icon. It matches RSender2 with replyToWhySenderP, role

parameters with (KBP,CSP,CSO,T,IDO), and role id with IDP. The tool then

matches agent O recursive role with the right side of the locution icon. It

matches RReceiver2 with replyToWhyReceiverO, role parameters with (KBO,

CSO, CSP,T,IDP), and role id with IDO. (See Figure C.3(c))

(8) Moves right to the concede(T) locution. It applies the Termination-Intermediate

Pattern by matching formal parameters in the selected rewriting methods of the

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 326

Termination-Intermediate Pattern with its corresponding values in the

concede(T) icon (on the right side of the DID), starting from the top-down and

moving left to right (See Figure C.3(d)):

a) Starting from the top of the locution icon, the tool matches TL with

concede(T).

b) Moving to the left side of the locution icon, the tool matches RSender1 with

replyToClaimSenderO, role parameters with (KBO,CSO,CSP,T,IDP), and role id

with IDO.

c) Moving to the right side of the locution icon, the tool matches RReceiver1 with

replyToClaimReceiverP, role parameters with (KBP,CSP,CSO,T,KIDO), and

role id with IDP.

d) Moving to the left side conditions, the tool matches C1 with

(findTopicInKB(T,KBO) and notFindTopicInCS(T,CSO) and

notFindOppTopicInCS(not(T),CSO) and addTopicToCS (T,CSO)). Note that in

this example C3 equals null because no condition is connected to the right

side of the locution.

(9) Moves to the next level in the DID and repeats steps 4 and 8. Note that the

automated synthesis process finishes when the tool matches level four in the

DID (in Figure 4.3) with one of the LCC-Argument patterns.

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 327

Agent P Agent O

a(claimSenderP(KBP,CSP,CSO,T,IDO),IDP) ::=

claim(T) =>

a(claimReceiverO(KBO,CSO, CSP,IDP),IDO)

 addTopicToCS(T,CSP)

 then

a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDO),

IDP).

a(claimReceiverO(KBO,CSO,CSP,IDP),IDO) ::=

claim(T) <=

 a(claimSenderP(KBP,CSP,CSO,T,IDO),IDP)

then

a(replyToClaimSenderO(KBO,CSO,CSP,T,IDP),IDO).

a(replyToClaimReceiverP(KBP,CSP,CSO,

T,IDO), IDP) ::=

concede(T) <=

a(replyToClaimSenderO(KBO,CSO,

CSP,T,IDP),IDO)

or

why(T) <=

a(replyToClaimSenderO (KBO,CSO,

CSP,T,IDP),IDO)

then

a(replyToWhySenderP (KBP,CSP,CSO,

T,IDO),IDP).

a(replyToClaimSenderO(KBO,CSO, ,CSP

T,IDP),IDO) ::=

concede(T) =>
a(replyToClaimReceiverP (KBP,CSP,CSO,
T,IDO),IDP)

(findTopicInKB(T,KBO) and
notFindTopicInCS(T,CSO) and

notFindOppTopicInCS(not(T),CSO) and
addTopicToCS (T,CSO))

or

why(T) =>

a(replyToClaimReceiverP (KBP,CSP, CSO,

T,IDO),IDP)

 (notFindTopicInKB(T,KBO) and

notFindTopicInCS(T,CSO))

then

a(replyToWhyReceiverO(KBO,CSO,CSP,T,IDP),IDO) .

a(replyToWhySenderP

(KBP,CSP, CSO,T,IDO), IDP) ::=

 retract(T) => a(replyToWhyReceiverO

(KBO,CSO, CSP, T,IDP),IDO)

 (notFindPreInKB(T, KBP) and findTopicInCS

(T, CSP) and subtractFromCS(T, CSP))

or

(

argue(Pre,T) => a(replyToWhyReceiverO

(KBO,CSO, CSP, T,IDP),IDO)

(Pre= findPremise (T,KBP, CSP) and

 addPreToCS(T,Pre,CSP))

then

a(replyToArgueReceiverP

(KBP,CSP, CSO, T,Pre,IDO), IDP)

).

a(replyToWhyReceiverO

(KBO,CSO, CSP,T,IDP),IDO) ::=

retract(T) <=

a(replyToWhySenderP (KBP,CSP, CSO, T,IDO),IDP)

or

(

argue(Pre,T) <=

a(replyToWhySenderP(KBP,CSP, CSO, T,IDO),IDP)

then

a(replyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP),IDO)

).

Figure C.1(a): Generated LCC Protocol for Persuasion Dialogue (Part 1)

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 328

Agent P Agent O

a(replyToArgueReceiverP(KBP,CSP,

CSO,T,Pre,IDO),IDP) ::=

concede(T) <=

a(ReplyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP), IDO)

or

(

argue(Def,T') <=

a(replyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP), IDO)

then

a(replyToArgueSenderP

(KBP,CSP, CSO, T,Pre,Def,IDO), IDP)

)

or

(

why(Pre) <=

a(replyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP), IDO)

then

a(replyToWhySenderP

(KBP,CSP, CSO, T,Pre,IDO),IDP)

).

a(replyToArgueSenderO(KBO,CSO, CSP,

T,Pre,IDP), IDO) ::=

concede(T) =>

a(replyToArgueReceiverP

(KBP,CSP, CSO, T,Pre,IDO),IDP)

(findPreInKB(Pre, KBO) and notFindPreInCS(Pre,

CSO)

and notFindOppPreInCS(not(Pre), CSO) and

addPreToCS(T,Pre, CSO))

or

(

argue(Def,T') =>

a(replyToArgueReceiverP

(KBP,CSP, CSO,T,Pre,IDO),IDP)

 (Def =findDefeats(T,Pre,KBO, CSO) and

 addDefeatToCS(Def, CSO))

then

a(replyToArgueReceiverO

(KBO,CSO, CSP, T,Pre,Def,IDP), IDO)

)

or

(

why(Pre) =>

a(replyToArgueReceiverP

(KBP,CSP, CSO,T,Pre,IDO),IDP)
(notFindPreInKB(Pre,KBO) and
 notFindPreInCS(Pre,CSO))

then

a(replyToWhyReceiverO

(KBO,CSO, CSP, T,Pre,IDP),IDO)

).

Figure C.1(b): Generated LCC Protocol for Persuasion Dialogue (Part 2)

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 329

Figure C.2 (a): Step 3 of Protocol Generation (Matching the Starting Pattern)

claim(T)

claimReceiverO claimSenderP

KBO,CSO,

CSP,IDP

KBP,

CSP,CSO,T,IDO

IDO IDP

addTopicToCS

(T,CSP)

Starting Locution

a(RP1(KBP,CSP, CSO ,T, IDO),IDP)::=

SL(T) => a(RO1(KBO,CSO, CSP, IDP),IDO) C1

then

a(RP2 (KBP,CSP , CSO, T, IDO),IDP).

a(RO1(KBO,CSO, CSO IDP),IDO)::=

 C2 SL(T) <= a(RP1(KBP,CSP,CSO,T, IDA),IDP)

then

a(RO2(KBO,CSO, CSP, T, IDP),IDO)

Locution

icon at the

top of the

DID

Starting

Pattern

2

1

a(claimSenderP (KBP,CSP, CSO, T, IDO),IDP)::=

claim(T) => a(claimReceiverO(KBO,CSO, CSP, IDP),IDO)

addTopicToCS(T, CSP)

a(claimReceiverO(KBO,CSO, CSP, IDP),IDO)::=

claim(T) <= a(claimSenderP (KBP,CSP, CSO, T, IDO),IDP)

a

b

c

b

3

3

3

+

LCC Agent

Protocol

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 330

Figure C.2 (b): Step 3 of Protocol Generation (Completing the Recursive

Roles)

why(T)
replyToClaimReceiverP replyToClaimSenderO

KBP,CSP, CSO, T,IDP KBO,CSO, CSP
,T,IDP

 IDP IDO

concede(T)

replyToClaimReceiverP replyToClaimSenderO

KBP,CSP,CSO, T,IDP KBO,CSO,CSP T,IDP

 IDP IDO

a(RP1(KBP,CSP, CSO ,Topic, IDO),IDP)::=

SL(T) => a(RO1(KBO,CSO, CSP ,IDP),IDO)

 C1

then

a(RP2 (KBP,CSP , CSO ,T, IDO),IDP).

a(RO1(KBO,CSO, CSP ,IDP),IDO)::=

 C2 SL(T) <= a(RP1(KBP,CSP, CSO ,T, IDO),IDP)

then

 a(RO2(KBO,CSO, CSP ,T, IDP),IDO)

Locution icon at the next

level of the DID

a(claimSenderP (KBP,CSP, CSO, T, IDO),IDP):: =

claim(T) => a(claimReceiverO(KBO,CSO, CSP,IDP),IDO)

addTopicToCS(T, CSP)

then

a(replyToClaimReceiverP(KBP,CSP, CSO, T,IDO),IDP).

a(claimReceiverO(KBO,CSO, CSP,IDP),IDO)::=

claim(T) <= a(claimSenderP (KBP,CSP, CSO, T, IDO),IDP)

then

a(replyToClaimSender O(KBO,CSO, CSP, T, IDP),IDO).

LCC Agent

Protocol

e

3 Starting

Pattern

+

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 331

Figure C.3 (a): Step 5 and 6 of Protocol Generation

 1

2

notFindTopicInCS

(T,CSO)

3

notFindOppTopicInCS

(not(T),CSO)

concede(T)

findTopicInKB

(T,KBO)

addTopicToCS
(T,CSO)

Termination Locution

KBO,CSO, CSP,T,IDP

replyToClaimReceiverP

replyToClaimSenderO

KBP,CSP,CSO,T,IDO

IDO IDP

4

Intermediate Locution

KBO,CSO, CSP,T,IDP

notFindTopicInKB

(T,KBO)

why(T)

replyToClaimReceiverP replyToClaimSenderO

KBP,CSP, CSO,T,IDO

IDO IDP

notFindTopicInCS

(T,CSO)

1

2

a(RSender1(KBSender,CSSender , CSReceiver,Topic,IDReceiver),IDSender)::=

RSender1
TL

≈> RReceiver1

or

RSender1
 IL

≈> RReceiver1

a(RReceiver1(KBReceiver,CSReceiver,CSSender Topic,IDSender),IDReceiver)::=

R Receiver1 <≈
 TL

 R Sender1

or

R Receiver1 <≈
 IL

 R Sender1

+

a(RSender1(KBSender,CSSender, CSReceiver,Topic,IDReceiver),IDSender)::=

TL (Topic) => a(RReceiver1(KBReceiver,CSReceiver ,CSSender, Topic,IDSender),IDReceiver)

 C1

or

IL(Topic) => a(RReceiver1(KBReceiver,CSReceiver, CSSender, Topic,IDSender),IDReceiver) C2

then

a(RSender2 (KBSender,CSSender,CSReceiver,Topic,IDReceiver),IDSender))

a(RReceiver1(KBReceiver,CSReceiver, CSSender, Topic,IDSender),IDReceiver)::=

C3TL (Topic) <= a(RSender1(KBSender,CSSender CSReceiver,Topic,IDReceiver),IDSender)

or

C4IL(Topic) <= a(RSender1(KBSender,CSSender, CSReceiver,Topic,IDReceiver), IDSender)

then

a(RReceiver2(KBReceiver,CSReceiver CSSender, Topic,IDSender),IDReceiver)

Locution

icon on level

two

TI

Pattern

6

5

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 332

Figure C.3 (b): Step 7 of Protocol Generation (Matching the Termination-

Intermediate Pattern)

Intermediate Locution

KBO,CSO, CSP,T,IDP

why(T)

replyToClaimReceiverP replyToClaimSenderO

KBP,CSP,CSO,T,IDO

IDO IDP

+
a(RSender1(KBSender,CSSender, CSReceiver,Topic,IDReceiver),IDSender)::=

TL (Topic) => a(RReceiver1(KBReceiver,CSReceiver ,CSSender, Topic,IDSender),IDReceiver)

 C1

or

IL(Topic) => a(RReceiver1(KBReceiver,CSReceiver, CSSender, Topic,IDSender),IDReceiver)

 C2

then

a(RSender2 (KBSender,CSSender,CSReceiver,Topic,IDReceiver),IDSender))

a(RReceiver1(KBReceiver,CSReceiver, CSSender, Topic,IDSender),IDReceiver)::=

C3TL (Topic)

<= a(RSender1(KBSender,CSSender CSReceiver,Topic,IDReceiver),IDSender)

or

C4IL(Topic)

 <= a(RSender1(KBSender,CSSender, CSReceiver,Topic,IDReceiver), IDSender)

then a(RReceiver2(KBReceiver,CSReceiver CSSender, Topic,IDSender),IDReceiver)

Locution icon on

level two

(on the left side of

DID)

a(replyToClaimSenderO(KBO,CSO,CSP ,T,IDP),IDO) ::=

why(T) => a(replyToClaimReceiverP (KBP,CSP, CSO,T,IDO),IDP)

 (notFindTopicInKB(T,KBO) and notTopicFindInCS(T,CSO))

a(replyToClaimReceiverP(KBP,CSP, CSPO, T,IDO), IDP) ::=

why(T) <= a(replyToClaimSenderO (KBO,CSO, CSO,T,IDP),IDO)

c

7

b

7

a

7

d

7

notFindTopicInKB

(T,KBO)

notFindTopicInCS

(T,CSO)

1

2

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 333

Figure C.3 (c): Step 7 of Protocol Generation (Complete the Recursive Roles)

retract(T)

Termination Locution Intermediate Locution

KBO,CSO,CSP,T,IDP

argue(pre)

replyToWhyReceiverO

replyToWhySenderP

KBP,CSP,CSO,T,IDO

IDO IDP

a(RSender1(KBSender,CSSender, CSReceiver,Topic,IDReceiver),IDSender)::=

TL (Topic) => a(RReceiver1(KBReceiver,CSReceiver,CSSender, Topic,IDSender),IDReceiver)

 C1

or

IL(Topic) => a(KBReceiver,CSReceiver,CSSender, Topic,IDSender),IDReceiver) C2

then

 a(RSender2 (KBSender,CSSender, CSReceiver,Topic,IDReceiver),IDSender).

a(RReceiver1(KBReceiver,CSReceiver, CSSender, Topic,IDSender),IDReceiver)::=

C3TL (Topic)<= a(RSender1(KBSender,CSSender,CSReceiver,Topic,IDReceiver),IDSender)

or

C4 IL(Topic) <= a(RSender1(KBSender,CSSender,CSReceiver,Topic,IDReceiver),IDSender)

then

a(RReceiver2(KBReceiver,CSReceiver,CSSender, Topic,IDSender),IDReceiver).

Locution

icon on level

three

KBP,CSP,CSO,T,IDO

IDP

replyToWhySenderP

KBO,CSO,CSP,T,IDP

replyToWhyReceiverO

 IDO

a(replyToClaimSenderO(KBO,CSO,CSP,T,IDP),IDO) ::=

why(T) => a(replyToClaimReceiverP (KBP,CSP,CSO,T,IDO),IDP)

 (notFindTopicInKB(T,KBO) and notFindTopicInCS(T,CSO))

then

a(replyToWhyReceiverO(KBO,CSO, CSP,T,IDP),IDO) .

a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDO), IDP) ::=

why(T) <= a(replyToClaimSenderO (KBO,CSO, CSP,T,IDP),IDO)

then

a(replyToWhySenderP (KBP,CSP, CSO, T,IDO),IDP).

+

e

7

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 334

Figure C.3 (d): Step 8 of Protocol Generation (Matching the Rewriting

Methods of the Termination-Intermediate Pattern)

KBO,CSO,CSP,T,IDP

KBP,CSP,CSO,T,IDO

a(RSender1(KBSender,CSSender, CSReceiver,Topic,IDReceiver),IDSender)::=

TL (Topic) => a(RReceiver1(KBReceiver,CSReceiver,CSSender, Topic,IDSender),IDReceiver)

 C1

or

IL(Topic) => a(KBReceiver,CSReceiver,CSSender, Topic,IDSender),IDReceiver) C2

then a(RSender2 (KBSender,CSSender, CSReceiver,Topic,IDReceiver),IDSender).

a(RReceiver1(KBReceiver,CSReceiver, CSSender, Topic,IDSender),IDReceiver)::=

C3TL (Topic)

<= a(RSender1(KBSender,CSSender,CSReceiver,Topic,IDReceiver),IDSender)

or

C4 IL(Topic) <= a(RSender1(KBSender,CSSender,CSReceiver,Topic,IDReceiver),IDSender)

then a(RReceiver2(KBReceiver,CSReceiver,CSSender, Topic,IDSender),IDReceiver).

Locution icon

on level two

(on the right

side of DID)

a(replyToClaimSenderO(KBO,CSO,T,IDP),IDO) ::=

concede(T) => a(replyToClaimReceiverP(KBP,CSP, CSO,T,IDO),IDP)

(findTopicInKB(T,KBO) and notFindTopicInCS(T,CSO) and
notFindOppTopicInCS(not(T),CSO) and addTopicToCS (T,CSO))

or

why(T) => a(replyToClaimReceiverP (KBP,CSP,CSO,T,IDO),IDP)

 (notFindTopicInKB(T,KBO) and notFindTopicInCS(T,CSO))

then a(replyToWhyReceiverO(KBO,CSO, CSP,T,IDP),IDO) .

a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDO), IDP) ::=

concede(T) <= a(replyToClaimSenderO(KBO,CSO,CSP,T,IDP),IDO)

a
8

b
8

c
8

d
8

or

why(T) <= a(replyToClaimSenderO (KBO,CSO, CSP,T,IDP),IDO)

then a(replyToWhySenderP (KBP,CSP, CSO, T,IDO),IDP).

concede(T)

Termination Locution

replyToClaimReceiverP

replyToClaimSenderO

IDO IDP

notFindOppTopicInCS

(not(T),CSO)

1

2

notFindTopicInCS

(T,CSO)

3

findTopicInKB

(T,KBO)

addTopicToCS
(T,CSO)

4

+

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 335

C.2 An Example of LCC Protocol begin Generated for N-

agents

In this section, we will give a detailed description of how to generate the LCC

protocol of the persuasion dialogue between N-agents by using the black box of DID

for N-agents (see chapter 4, section 4.4.5), LCC-Argument patterns and DID for two

agents (the DID for two agents is shown in Figure 4.3). The final LCC protocol is

illustrated in Figures C.8(a), C.8(b), C.8(c), C.8(d), C.8(e) and C.8(f):

(1) Begins with the Broadcasting Pattern. The tool uses the default functions of the

TerminationC1, DivivdeC2, AgentGroupC3, and RecursC4 conditions (See

chapter 5 for more detail).

 TerminationC1= greaterThanOrEequal(NAccepting,NSupporters)

 DivideC2 = lessThan(NAccepting,NSupporters) and

isNotEmpty(RejectionList) and isNotEmpty(AcceptingList)

 AgentGroupC3 = creatOneAgentGroup

(RejectingList,Re,AcceptinList,Ac, AgentGroup, AGroup,P,O)

 RecursC4 = isListEmpty(Re) or isListEmpty(Ac)

(2) The tool then selects the Move-To-Dialogue Pattern and applies this pattern

twice (to generate one role for P agent and one role for O agent) by matching

formal parameters in the Move-To-Dialogue Pattern with their corresponding

values in the claim(T) icon (the Starting locution icon in the DID of the

persuasion dialogue for two agents):

 Agent P role:

a) Starting from the left side of the locution icon, the tool matches RSender1

with claimSenderP1.

b) Moving to the right side of the locution icon, the tool matches RReceiver1

with claimReceiverP1.

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 336

c) The tool matches C1 with its default functions (addTopicToCS(T,CSP)).

Note that in this example C2 equal null because no condition is connected

to the right side of the locution.

d) The tool matches roles parameters with (KBP,CSP,CSO,T,IDProposal,IDO),

and role id with IDP. Note that the tool add IDProposal and T to the role

parameters (See Figure C.9(a) and Figure C.8(c)).

 Agent O role:

a) Starting from the left side of the locution icon, the tool matches RSender1

with claimSenderO1.

b) Moving to the right side of the locution icon, the tool matches RReceiver1

with claimReceiverO1.

c) The tool matches C1 with its default functions (addTopicToCS(T,CSO)).

Note that in this example C2 equals null because no condition is

connected to the right side of the locution.

d) The tool matches roles parameters with (KBO,CSO,CSP,T,IDProposal,IDP),

IDO), and role id with IDO. Note that the tool adds IDProposal and T to the

role parameters (See Figure C.9(b) and Figure C.8(c)).

(3) After that, the tool selects the Recurs-To-N-Dialogue Pattern:

a) Since the selected Recurs-To-N-Dialogue Pattern has rewriting methods, the

tool selects the Rewrite 2 (multiple end locution) rewriting methods and

repeats this method twice because the Termination locution icons occurs

three times in the DID of persuasion dialogue for two agents.

b) The tool applies this pattern by matching formal parameters (variables) with

their corresponding values in the Termination locution icons in the DID for

two agents. As a result it generates one LCC role for the proposal agent (See

in Figure C.8(c) the LCC role in the left side):

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 337

i. Starting from the first Termination locution icon in the DID (See

chapter 4, Figure 4.3) concede(T) on level two (See Figure C.9(c)):

 Starting from the left side of the locution icon, the tool matches

RSender1 with claimSenderP1, role parameters with

(KBP,CSP,CSO,T,IDProposal,IDO), and role id with IDP. Note that the

tool adds IDProposal to the role parameters.

 Moving to the right side of the locution icon, the tool matches

RReceiver1 with claimReceiverO1, role parameters with

(KBO,CSO,CSP,T,IDProposal,IDP), and role id with IDO. Note that the

tool adds IDProposal to the role parameters.

ii. Starting from the second Termination locution icon in the DID(See

chapter 4, Figure 4.3) retract(T) on level three (See Figure C.9(d)):

 Moving to the left side of the locution icon, the tool matches

RSender2 with replyToWhySenderP, role parameters with

(KBP,CSP,CSO,T,IDProposal,IDO), and role id with IDP. Note that the

tool adds IDProposal to the role parameters.

 Moving to the right side of the locution icon, the tool matches

RReceiver2 with replyToWhyReceiverO, role parameters with

(KBO,CSO,CSP,T,IDProposal,IDP), and role id with IDO. Note that the

tool adds IDProposal to the role parameters.

iii. Starting from the third Termination locution icon in the DID(See

chapter 4, Figure 4.3) concede(T) on level four (See Figure C.9(e)):

 Moving to the left side of the locution icon, the tool matches

RSender3 with replyToArgueSendeO, role parameters with (KBO

KBO,CSO,CSP,T,Pre,IDProposal,IDP), and role id with IDO. Note that

the tool adds IDProposal to the role parameters.

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 338

 Moving to the right side of the locution icon, the tool matches

RReceiver3 with replyToArgueReceiverP, role parameters with

(KBP,CSP,CSO,T,Pre,IDProposal,IDO), and role id with IDP. Note that

the tool adds IDProposal to the role parameters.

(4) The tool applies the automated synthesis process of the two agents' protocol

to the generate persuasion dialogue LCC protocol for two agents (see section

C.1).

(5) The tool adds the "sending end message line" and "changing agents' role line"

after each Termination message (locution) in the LCC protocol for two agents

to connect the N-agents' protocol with the two agents' protocol. The final

LCC protocol between two agents is illustrated in Figures C.8(d), C.8(e) and

C.8(f).

C.3 Verification Model of the Persuasion Dialogue

In this section, we will give a detailed description of how to verify the semantics of

the DID of a persuasion dialogue (shown in Figure 4.3) against the semantics of the

synthesised LCC protocol (shown in Figures C.1(a) and C.1(b)). In this example, the

initial marking is defined in the following way:

(4) OpenDialogue place = "The car is safe". This place represents the dialogue

topic.

(5) P place = ("P",[],[("The car is safe", "it has an airbag")], "cliamSender", "", "",

[],"O")). This place represents the arguments of agent P.

(6) O place = ("O",[], [("it has an airbag", "The car is safe")], "claimReceiver" ,""

,"", [],"P")). This place represents arguments of agent O.

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 339

Proposal Other Agents

a(proposalSenderproposal(AgentList,NAgent,

NSupporters,Topic),IDproposal)::=

proposal(Topic) => a(proposalReceiverID

(KBID,CSID,IDproposal), ID)

getAgentIDFromList

(AgentList,otherAgents,ID) and

addTopicToCS(Topic,CSproposal)

then

(

a(replyToProposalReceiverproposal (AgentList,

NAgent,NSupporters,Topic,0,[],[],0,0),

IDproposal) agentListEmpty(AgentList)

or

a(proposalSenderproposal

(OtherAgents,NAgent,NSupporters,Topic),

IDproposal)

).

a(proposalReceiverID(KBID,CSID,IDproposal),

ID)::=

proposal(Topic)<=

a(proposalSenderproposal(AgentList,NAgent,NS

upporters,Topic), IDproposal)

then

a(replyToProposalSender(KBID,CSID,

Topic,IDproposal), ID).

a(replyToProposalReceiverproposal(AgentList,

NAgent,NSupporters,Topic,SendingList,

AcceptingList,RejectingList,NAccepting,N

Rejecting), IDproposal) ::=

(
addIDToList(SendingList,OtherSedingList,ID) and

addToAcceptingList(AcceptingList,AccList,ID)

and increaseAccepting(NAccepting,NAcc) and

RejList= RejectionList and NRej is NRejection
 accept(Topic)

<= a(replyToProposalSenderID

(KBID,CSID,Topic,IDproposal), ID)

or

addToRejectingList(RejectingList,RejList,ID) and

increaseRejecting(NRejecting,NRej) and

addIDToList(SendingList,OtherSedingList,ID) and

AccList=AcceptingList and NAcc is NAccepting

 reject(Topic) <=

a(replyToProposalSenderID

(KBID,CSID,Topic,IDproposal), ID)

)

 then

a(resultSenderproposal (AgentList,NAgent,

NSupporters,Topic,OtherSendingList,Accepti

ngList, RejectionList,NAccepting,NRejection

), IDproposal)

 isEqual(AgentLis, OtherSendingList).

a(replyToProposalSenderID(KBID,CSID,

Topic,IDproposal), ID) ::=

(

accept(Topic) =>

a(replyToProposalReceiverproposal (_ , _ , _ , _

, _ , _ , _ , _, _),IDproposal)

 findTopicInKB(Topic, KBID) and

 notFindTopicInCS (Topic,CSID) and

 notFindOppTopicInCS (not(Topic),CSID)

 and addTopicToCS(Topic,CSID)

or

reject(Topic) =>

a(replyToProposalReceiverproposal (_ , _ , _ , _

, _ , _ , _ , _ , _),IDproposal)

 notFindTopicInKB(Topic,KBProposal) and

 notFindTopicInCS(Topic,CSProposal)

)

then

 a(resultReceiverID

(KBID,CSID,Topic,IDproposal), ID) .

Figure C.8(a): Generated LCC Protocol for Persuasion Dialogue (Part 1)

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 340

Proposal Other agents

a(resultSenderproposal(AgentList,NAgent,

NSupporters,Topic,AcceptingList,RejectionL

ist, AgentGroup), IDproposal) ::=

a(sendReachAgreementproposal

(AgentList,NAgent,Topic),IDproposal)
 greaterThanOrEequal(NAccepting, NSupporters)

or

a(divideGroupproposal

(AgentList , NAgent,NSupporters

,Topic,AcceptingList,RejectionList, [])

,IDproposal)

 (lessThan(NAccepting ,NSupporters)

 and isNotEmpty(RejectionList)

 and isNotEmpty(AcceptingList)).

a(sendReachAgreementProposal (AgentList,

Topic),IDProposal) ::=

reachAgreement(Topic) =>

a(resultReceiverID(KBID,CSID,IDproposal), ID)
 getAgentIDFromList (AgentList,otherAgents,ID)

then

(null isAgentListEmpty(AgentList)

 or

 a(sendReachAgreementproposal

 (OtherAgents, Topic), IDproposal)).

a(divideGroupProposal (AgentList,

NAgent,NSupporters ,Topic,

AcceptingList,RejectionList,AgentGroup),

IDproposal)::=

 (

argueWith (Topic,P,O) => a(resultReceiverP

(KBp,CSp, CSo,Topic,IDproposal), P)

 creatOneAgentGroup(Rejecting,Re,Accepting,Ac,

AgentGroup, AGroup,P,O)

then

argueWith (Topic,O,P) => a(resultReceiverO

(KBo,CSo, CSp, Topic,IDproposal), O)

)

then

(

a(recursproposal (AgentList, NAgent,NSupporters

,0 ,Topic),IDproposal)

 isListEmpty(Re) or isListEmpty(Ac)

or

a(divideGroupproposal(AgentList

,NAgent,NSupporters,Topic,Ac,Re,AGroup),

IDProposal))

).

a(resultReceiverP(KBP,CSP,CSO,Topic,

IDproposal),P) ::=

reachAgreement(Topic) <=

a(sendReachAgreementProposal

 (AgentList, Topic),IDProposal)

or

(

 argueWith(Topic,P,O) <=

a(divideGroupProposal

(AgentList,NAgent,NSupporters,Topic,Acce

ptingList,RejectionList,

AgentGroup),IDproposal)

then

a(startDID

(KBP,CSP, CSO,Topic, IDproposal, O),P)

).

Figure C.8(b): Generated LCC Protocol for Persuasion Dialogue (Part 2)

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 341

Proposal Other agents

a(recursProposal (AgentList,

NAgent,NSupporters

,replyN,Topic),IDProposal) ::=

(

N = replyN +1 end(Topic) <=

a(replyToClaimSenderO

(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

or

N = replyN +1 end(Topic)<=

a(replyToClaimReceiverP

(KBP,CSP,CSO,T,IDProposal,IDO),IDP)

or

N = replyN +1 end(Topic)

<=a(replyToWhySenderP(KBP,CSP,CSO,T,IDPr

oposal,IDO),IDP) or

N = replyN +1 <-- end(Topic)

 <= a(replyToWhyReceiverO

(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

or

N = replyN +1 end(Topic) <=

a(replyToArgueSenderO

(KBP,CSP,CSO,T,Pre,IDProposal,IDO),IDO)

or

N = replyN +1 <-- end(Topic) <=

a(replyToArgueReceiverP

(KBO,CSO,CSP,T,Pre,IDProposal,IDP),IDP)

)

then

(

a(proposalSenderproposal

(AgentList,NAgent,NSupporters,Topic),

IDproposal)

 isEqual(N, NAgent)

or

a(recursProposal (AgentList,

NAgent,NSupporters, N,Topic),IDProposal)).

a(startDIDP(KBP,CSP,CSO,T,IDProposal,IDO),

IDP)::=

a(claimSender

(KBP,CSP,CSO,T,IDProposal,IDO), IDP)

 addTopicToCS(T,CSP)

or

 a(claimReceiver

(KBP,CSP,CSO,T,IDProposal,IDO), IDP).

a(startDIDO(KBO,CSO,CSP,T,IDProposal,IDP),

IDO)::=

a(claimSender

(KBO,CSO,CSP,T,IDProposal,IDP), IDO)

 addTopicToCS(T,CSP)

or

 a(claimReceiver

(KBO,CSO,CSP,T,IDProposal,IDP), IDO).

Figure C.8(c): Generated LCC Protocol for Persuasion Dialogue (Part 3)

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 342

Agent P Agent O

a(claimSenderP(KBP,CSP,CSO,T,IDO),IDP) ::=

claim(T) =>

a(claimReceiverO(KBO,CSO, CSP,IDP),IDO)

 addTopicToCS(T,CSP)

 then

a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDO),

IDP).

a(claimReceiverO(KBO,CSO,CSP,IDP),IDO) ::=

claim(T) <=

 a(claimSenderP(KBP,CSP,CSO,T,IDO),IDP)

then

a(replyToClaimSenderO(KBO,CSO,CSP,T,IDP),IDO).

a(replyToClaimReceiverP

(KBP,CSP,CSO, T,IDO), IDP) ::=

(

concede(T) <= a(replyToClaimSenderO

(KBO,CSO, CSP,T,IDP),IDO)

then

 end(Topic)=> a(recursProposal

(AgentList,NAgent,NSupporters,NReply,Topic),

IDProposal)

then

a(proposalReceiverID

(KBID,CSID,IDproposal), ID)
)

or

(

why(T) <=

a(replyToClaimSenderO (KBO,CSO,

CSP,T,IDP),IDO)

then

a(replyToWhySenderP (KBP,CSP,CSO,

T,IDO),IDP)

).

a(replyToClaimSenderO

(KBO,CSO, ,CSP T,IDP),IDO) ::=

(

concede(T) =>
a(replyToClaimReceiverP (KBP,CSP,CSO,
T,IDO),IDP)
(findTopicInKB(T,KBO) and
notFindTopicInCS(T,CSO) and
notFindOppTopicInCS(not(T),CSO) and
addTopicToCS (T,CSO))

then

 end(Topic)=> a(recursProposal

(AgentList,NAgent,NSupporters,NReply,Topic),

IDProposal)

then

a(proposalReceiverID

(KBID,CSID,IDproposal), ID)
)

or

(

why(T) =>

a(replyToClaimReceiverP (KBP,CSP, CSO,

T,IDO),IDP)

 (notFindTopicInKB(T,KBO) and

notFindTopicInCS(T,CSO))

then

a(replyToWhyReceiverO(KBO,CSO,CSP,T,IDP),IDO)

).

Figure C.8(d): Generated LCC Protocol for Persuasion Dialogue (Part 4)

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 343

Agent P Agent O

a(replyToWhySenderP

(KBP,CSP, CSO,T,IDO), IDP) ::=

 (

retract(T) => a(replyToWhyReceiverO

(KBO,CSO, CSP, T,IDP),IDO)

 (notFindPreInKB(T, KBP) and findTopicInCS

(T, CSP) and subtractFromCS(T, CSP)

 then

 end(Topic)=> a(recursProposal

(AgentList,NAgent,NSupporters,NReply,Topic),

IDProposal)

then

a(proposalReceiverID

(KBID,CSID,IDproposal), ID)
)

or

(

argue(Pre,T) => a(replyToWhyReceiverO

(KBO,CSO, CSP, T,IDP),IDO)

(Pre= findPremise (T,KBP, CSP) and

 addPreToCS(T,Pre,CSP))

then

a(replyToArgueReceiverP

(KBP,CSP, CSO, T,Pre,IDO), IDP)

).

a(replyToWhyReceiverO

(KBO,CSO, CSP,T,IDP),IDO) ::=

(

retract(T) <=

a(replyToWhySenderP (KBP,CSP, CSO, T,IDO),IDP)

then

 end(Topic)=> a(recursProposal

(AgentList,NAgent,NSupporters,NReply,Topic),

IDProposal)

then

a(proposalReceiverID

(KBID,CSID,IDproposal), ID)
)

or

(

argue(Pre,T) <=

a(replyToWhySenderP(KBP,CSP, CSO, T,IDO),IDP)

then

a(replyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP),IDO)

).

Figure C.8(e): Generated LCC Protocol for Persuasion Dialogue (Part 5)

Step One: Automated Transformation from LCC to CPN/XML

The generated LCC protocol of the persuasion dialogue in Figures C.1(a) and C.1(b)

was used as input to the verification tool. The verification tool generated a

persuasion dialogue CPNXML file which has:

(1) The declaration of three colour sets (Topic, Message, Role) and thirteen

functions. (see chapter 6 section 6.1.1)

(2) Eight CPN subpages generated by the GenerateLCCProtocol tool (one subpage

for each LCC role in the Figures C.1(a) and C.1(b)).

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 344

Agent P Agent O

a(replyToArgueReceiverP(KBP,CSP,

CSO,T,Pre,IDO),IDP) ::=

(

concede(T) <=

a(ReplyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP), IDO)

then

 end(Topic)=> a(recursProposal

(AgentList,NAgent,NSupporters,NReply,Topic),

IDProposal)

then

a(proposalReceiverID

(KBID,CSID,IDproposal), ID)
)

or

(

argue(Def,T') <=

a(replyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP), IDO)

then

a(replyToArgueSenderP

(KBP,CSP, CSO, T,Pre,Def,IDO), IDP)

)

or

(

why(Pre) <=

a(replyToArgueSenderO

(KBO,CSO, CSP, T,Pre,IDP), IDO)

then

a(replyToWhySenderP

(KBP,CSP, CSO, T,Pre,IDO),IDP)

).

a(replyToArgueSenderO(KBO,CSO, CSP,

T,Pre,IDP), IDO) ::=

 (

concede(T) =>

a(replyToArgueReceiverP

(KBP,CSP, CSO, T,Pre,IDO),IDP)

(findPreInKB(Pre, KBO) and notFindPreInCS(Pre,

CSO)

and notFindOppPreInCS(not(Pre), CSO) and

addPreToCS(T,Pre, CSO))

then

 end(Topic)=> a(recursProposal

(AgentList,NAgent,NSupporters,NReply,Topic),

IDProposal)

then

a(proposalReceiverID

(KBID,CSID,IDproposal), ID)
)

or

(

argue(Def,T') =>

a(replyToArgueReceiverP

(KBP,CSP, CSO,T,Pre,IDO),IDP)

 (Def =findDefeats(T,Pre,KBO, CSO) and

 addDefeatToCS(Def, CSO))

then

a(replyToArgueReceiverO

(KBO,CSO, CSP, T,Pre,Def,IDP), IDO)

)

or

(

why(Pre) =>

a(replyToArgueReceiverP

(KBP,CSP, CSO,T,Pre,IDO),IDP)
(notFindPreInKB(Pre,KBO) and
 notFindPreInCS(Pre,CSO))

then

a(replyToWhyReceiverO

(KBO,CSO, CSP, T,Pre,IDP),IDO)

).

Figure C.8(f): Generated LCC Protocol for Persusaion Dialogue (Part 6)

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 345

Figure C.9 (a): Step 2 of Protocol Generation (Matching the Move-To-

Dialogue Pattern)

claim(T)

claimReceiverO claimSenderP

KBO,CSO ,

CSP, IDP

KBP,CSP,CSO,

T,IDO

IDO IDP

a(startDIDP(KBP,CSP,CSO,T,IDProposal,IDO),IDP)::=

a(claimSenderP1(KBP,CSP,CSO,T,IDProposal,IDO), IDP)

 addTopicToCS(T,CSP)

 or

 a(claimReceiverP1(KBP,CSP,CSO,T,IDProposal,IDO), IDP).

addTopicToCS

(T,CSP)

Starting Locution

a(startDIDID(KBID,CSID,CSPartnerID,Topic,IDProposal,PartnerID),ID)::=

a(RSender1 (KBID,CSID, CSPartnerID,Topic, IDProposal, PartnerID),ID)

 C1

or

a(RReceiver1 (KBID,CSID, CSPartnerID,Topic, IDProposal, PartnerID),ID) C2

 C2.

Locution

icon at the

top of the

DID

Move-

To-

Dialogue

Pattern

2

2

LCC Agent

Protocol

c
2

d

2 b
2

a

2

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 346

Figure C.9 (b): Step 2 of Protocol Generation (Matching the Move-To-

Dialogue Pattern)

claim(T)

claimReceiverO claimSenderP

KBO,CSO ,

CSP, IDP

KBP,CSP,CSO,

T,IDO

IDO IDP

a(startDIDP(KBO,CSO,CSP,T,IDProposal,IDP),IDO)::=

a(claimSenderO1(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

 addTopicToCS(T,CSP)

 or

 a(claimReceiverO1(KBO,CSO,CSP,T,IDProposal,IDP),IDO).

addTopicToCS

(T,CSP)

Starting Locution

a(startDIDID(KBID,CSID,CSPartnerID,Topic,IDProposal,PartnerID),ID)::=

a(RSender1 (KBID,CSID, CSPartnerID,Topic, IDProposal, PartnerID),ID)

 C1

or

a(RReceiver1 (KBID,CSID, CSPartnerID,Topic, IDProposal, PartnerID),ID)

 C2.

Locution

icon at the

top of the

DID

Move-

To-

Dialogue

Pattern

2

2

LCC Agent

Protocol

c
2

d

2

a

2

b

2

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 347

Figure C.9 (c): Step 3 (Part 1) of Protocol Generation (Matching the Rewriting

Methods of the Recurs-To-N-Dialogue Pattern)

KBO,CSO, CSP,T,IDP

KBP,CSP,CSO,T,IDO

a(recursProposal (AgentList, NAgent,NSupporters ,NReply,Topic),IDProposal)

::=

N = NReply +1 end(Topic) <=

a(Rsender (_ ,_ ,_,Topic,_,IDProposal,_), IDsender)

or

N = NReply +1 end(Topic) <=

a(RReceiver (_ ,_ , _,Topic,IDProposal ,_), IDReceiver)

or

recursProposal

« RSender2

then

(a(proposalSenderproposal (AgentList,NAgent,NSupporters,Topic), IDproposal)

 isEqual(N, NAgent)

or

a(recursProposal (AgentList, NAgent,NSupporters, N,Topic),IDProposal)).

Termination Locution

icon on level two

(on the right side of

DID for two agents)

a(recursProposal (AgentList,NAgent,NSupporters ,replyN,Topic),IDProposal) ::=

N = replyN +1 end(Topic)

 <= a(replyToClaimSenderO(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

or

N = replyN +1 end(Topic)

 <= a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDProposal,IDO),IDP)

then

(

a(proposalSenderproposal (AgentList,NAgent,NSupporters,Topic), IDproposal)

 isEqual(N, replyN)

or

a(recurs (AgentList, NAgent,NSupporters , N,Topic),IDProposal)).

+

concede(T)

Termination Locution

replyToClaimReceiverP

replyToClaimSenderO

IDO IDP

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 348

Figure C.9 (d): Step 3 (Part 2) of Protocol Generation (Matching the

Rewriting Methods of the Recurs-To-N-Dialogue Pattern)

KBP,CSP , CSO,T,IDO

KBO,CSO,CSP,T,IDP

a(recursProposal (AgentList, NAgent,NSupporters ,NReply,Topic),IDProposal) ::=

N = NReply +1 end(Topic) <= a(Rsender1 (_ ,_ , _,Topic,IDProposal ,_), IDsender1)

or

N = NReply +1 end(Topic) <= a(RReceiver1 (_ ,_ , _,Topic,IDProposal ,_), IDReceiver1)

or

N = NReply +1 end(Topic) <= a(Rsender2 (_ ,_ , _,Topic,IDProposal ,_), IDsender2)

or

N = NReply +1 end(Topic) <= a(RReceiver2 (_ ,_ , _,Topic,IDProposal ,_), IDReceiver2)

or

recursProposal

« RSender2

then

(a(proposalSenderproposal (AgentList,NAgent,NSupporters,Topic), IDproposal)

 isEqual(N, NAgent)

or

a(recursProposal (AgentList, NAgent,NSupporters, N,Topic),IDProposal)).

Termination Locution

icon on level three

(on the right side of

DID for two agents)

a(recursProposal (AgentList, NAgent,NSupporters ,replyN,Topic),IDProposal) ::=

 N = replyN +1 end(Topic) <=

a(replyToClaimSenderO(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

or

N = replyN +1 end(Topic)<=

a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDProposal,IDO),IDP)

or

N = replyN +1 end(Topic)

<=a(replyToWhySenderP(KBP,CSP,CSO,T,IDProposal,IDO),IDP)

or

N = replyN +1 <-- end(Topic)

 <= a(replyToWhyReceiverO(KBO,CSO,CSP,T,IDProposal,IDP),IDO)

recursProposal
 « RSender2

then

(a(proposalSenderproposal (AgentList,NAgent,NSupporters,Topic), IDproposal)

 isEqual(N, NAgent)

or

a(recursProposal (AgentList, NAgent,NSupporters, N,Topic),IDProposal)).

).

+

retract(T)

Termination Locution

replyToWhyReceiverO

replyToWhySenderP

 IDP IDO

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 349

Figure C.9 (e): Step 3 (Part 3) of Protocol Generation (Matching the

Rewriting Methods of the Recurs-To-N-Dialogue Pattern)

a(recursProposal (AgentList, NAgent,NSupporters ,NReply,Topic),IDProposal) ::=

N = NReply +1 end(Topic) <= a(Rsender1 (_ ,_ , _,Topic,IDProposal ,_), IDsender1)

or

N = NReply +1 end(Topic) <= a(RReceiver1 (_ ,_ , _,Topic,IDProposal ,_), IDReceiver1)

or

N = NReply +1 end(Topic) <= a(Rsender2 (_ ,_ , _,Topic,IDProposal ,_), IDsender2)

or

N = NReply +1 end(Topic) <= a(RReceiver2 (_ ,_ , _,Topic,IDProposal ,_), IDReceiver2)

or

N = NReply +1 end(Topic) <= a(Rsender3 (_ ,_ , _,Topic,IDProposal ,_), IDsender3)

or
N = NReply +1 end(Topic) <= a(RReceiver3 (_ ,_ , _,Topic,IDProposal ,_), IDReceiver3)

then

(a(proposalSenderproposal (AgentList,NAgent,NSupporters,Topic), IDproposal)

 isEqual(N, NRreply)

or a(recurs (AgentList, NAgent,NSupporters , N,Topic),IDProposal)).

Locution icon

on level four

(on the right

side of DID)

a(recursProposal (AgentList, NAgent,NSupporters ,replyN,Topic),IDProposal) ::=

N = replyN +1 end(Topic) <=

a(replyToClaimSenderO(KBO,CSO,CSP,T,IDProposal,IDP),IDO) or

N = replyN +1 end(Topic)<=

a(replyToClaimReceiverP(KBP,CSP,CSO,T,IDProposal,IDO),IDP) or

N = replyN +1 end(Topic)

<=a(replyToWhySenderP(KBP,CSP,CSO,T,IDProposal,IDO),IDP) or

N = replyN +1 <-- end(Topic)

 <= a(replyToWhyReceiverO(KBO,CSO,CSP,T,IDProposal,IDP),IDO) or

N = replyN +1 end(Topic) <=

a(replyToArgueSenderO(KBP,CSP,CSO,T,Pre,IDProposal,IDO),IDO)

or

N = replyN +1 <-- end(Topic) <=

a(replyToArgueReceiverP(KBO,CSO,CSP,T,Pre,IDProposal,IDP),IDP)

then

(a(proposalSenderproposal (AgentList,NAgent,NSupporters,Topic), IDproposal)

 isEqual(N, replyN)

or

a(recurs (AgentList, NAgent,NSupporters , N,Topic),IDProposal)).

+
concede(T)

Termination Locution

replyToArgueReceiverP replyToArgueSenderO

KBO,CSO,CSP,T,Pre,IDP

IDO IDP

KBP,CSP, CSO, T,Pre, IDO

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 350

Figure C.10: The claimSenderP CPN Subpage

 Figure C.10 shows the claimSenderP role CPN subpage. This subpage has

one input place OpenDialogue which represents the dialogue topic (In this

example, the initial marking of this place = "The car is safe") . The place P

represents the role arguments (In this example, the initial marking of this

place is equal to ("P",[],[("The car is safe", "it has an airbag")],

"cliamSender", "", "", [],"O")). When the SendClaim transition occurs

(when places OpenDialogue and P are active), claimSenderP role CPN

subpage sends claim message using claim1 output place and change its role

to ReplyToClaimSender using ChangeRoleToReplyToClaimSender output

place.

 Figure C.11 shows the claimReceiverO role CPN subpage. In this page, the

place O represents the role arguments (In this example, the initial marking of

this place is equal to ("O",[], [("it has an airbag", "The car is safe")],

"claimReceiver" ,"" ,"", [],"P")). This subpage receives the claim message

using claim1 input place. Then, when the ReceiveClaim transition occurs

(when places claim1 and O are active), it changes its role to

ReplyToClaimSender using ChangeRoleToReplyToClaimSender output place.

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 351

Figure C.11: The claimReceiverO CPN Subpage

Figure C.12: The replyToClaimSenderO CPN Subpage

 Figure C.12 shows the replyToclaimSenderO role CPN subpage. This subpage

sends two messages: (1) sends why message using why3 output place and

changes its role to ReplyToWhyReceiver using ChangeRoleToWhyReceiver

output place; (2) sends concede message using concede2 output place and

then ends the dialogue using end output place.

 Figure C.13 shows the replyToclaimReceiverP role CPN subpage. This

subpage receives two messages (why or concede) and generates responses

depending on some conditions. If it receives the concede message using

concede2 input place, it responses by ending the dialogue using end output

place. Otherwise, if it receives the why message using why3 input place, it

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 352

 Figure C.13: The replyToClaimReceiverP CPN Subpage

Figure C.14: The replyToWhySenderP CPN Subpage

responses by changing its role to ReplyToWhySender using

ChangeRoleToWhySender.

 Figure C.14 shows the replyToWhySenderP role CPN subpage. This subpage

sends two messages: (1) sends argue message using argue5 output place and

changes its role to ReplyToArgueReceiver using ChangeRoleToArgueReceiver

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 353

Figure C.15: The replyToWhyReceiverO CPN Subpage

 Figure C.16: The replyToArgueSenderO CPN Subpage

output place; (2) sends retract message using retract4 output place and then

ends the dialogue using end output place.

 Figure C.15 shows the replyToWhyReceiverO role CPN subpage. This

subpage receives two messages (argue or retract) and generates responses

depending on some conditions. If it receives the retract message using

retract4 input place, it responses by ending the dialogue using end output

place. Otherwise, if it receives the argue message using argue5 input place, it

responses by changing its role to ReplyToArgueSender using

ChangeRoleToArgueSender.

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 354

 Figure C.17: The replyToArgueReceiverP CPN Subpage

 Figure C.16 shows the replyToArgueSenderO role CPN subpage. This

subpage sends three messages: (1) sends concede message using concede6

output place and then ends the dialogue using end output place; (2) sends why

message using why7 output place and changes its role to ReplyToWhyReceiver

using ChangeRoleToWhyReceiver output place; (3) sends argue message using

argue8 output place and changes its role to ReplyToArgueReceiver using

ChangeRoleToArgueReceiver output place;

 Figure C.17 shows the replyToArgueReceiverP role CPN subpage. This

subpage receives three messages (argue, why or concede) and generates

responses depending on some conditions. If it receives the concede message

using concede6 input place, it responses by ending the dialogue using end

output place. If it receives the why message using why7 input place, it

responses by changing its role to ReplyToWhySender using

ChangeRoleToWhySender. If it receives argue message using argue8 input

place, it responses by changing its role to ReplyToArgueSender using

ChangeRoleToArgueSender.

(3) One CPN superpage generated by the GenerateLCCProtocol tool. This page

connects the eight CPN subpages (claimSenderP, claimReceiverO,

replyToclaimSenderO, replyToclaimReceiverP, replyToWhySenderP,

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 355

claimSender

claimSender

ReplyToArgueReceiver

ReplyToArgueReceiver

ReplyToArgueSender

ReplyToArgueSender

replyToWhyReceiver

replyToWhyReceiver

replyToWhySender

replyToWhySender

replyToClaimReceiver

replyToClaimReceiver

replyToClaimSender

replyToClaimSender

claimReceiver

claimReceiver

OpenDialogue

1`"The car is safe"

TOPIC

ChangeRoleToReplyToArgueReceiver

Role

end

Role

ChangeRoleToreplyToWhyReceiver

Role

changeRoleToReplyToClaimReceiver

Role

argue8

Message

why7

Message

concede6

Message

ChangeRoleToReplyToArgueSender

Role

argue5

Message

retract4

Message

ChangeRoleToreplyToWhySender

Role

Why2

Message

Concede1

Message

changeRoleToReplyToClaimSender

Role

claim

Message
claimReceiver

replyToClaimSender

replyToClaimReceiver

replyToWhySender replyToWhyReceiver

ReplyToArgueSenderReplyToArgueReceiver

claimSender

1

1`"The car is safe"

Figure C.18: The protocol CPN Superpage

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 356

Figure C.19: The State Space Graph

replyToWhyReceiverO, replyToArgueSenderO and replyToArgueReceiverP)

together and describes the interaction between these eight subpages. See Figure

C.18.

Step Two: Construction of State Space

The state space (shown in Figure C.19) for the CPN model of an LCC protocol for a

persuasion dialogue is generated using the SS tool palette in CPN Tools (see chapter 6,

section 6.2). Figure C.19 has ten nodes and nine arcs.

Step Three: Automated creation of DID properties files

In this step, the verification tool creates ten property files automatically:

(1) Possible Locutions file:

In this example, Possible Locutions file contains the following set of permitted

messages: claim, concede, why, retract and argue. Please note that, this file is

connected with Reply Locutions file (see Reply Locutions file).

(2) Reply Locutions file:

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 357

In this example, Reply Locutions file contains three sets of legal reply

locutions: 1) concede and why (legal reply to claim); 2) argue and retract

(legal reply to why); 3) why, argue and concede (legal reply to argue). Please

note that, this file is connected with Possible Locutions file where each line in

the Reply Locutions file represents the legal reply of the locution in the same

line in the Possible Locutions file (e.g. concede in the first line of the Reply

Locutions file represents the legal reply of the claim locution in the first line in

the Possible Locutions file) .

(3) Starting Locutions file:

In this example, Starting Locutions file contains one message name claim which

is used to begin the persuasion dialogue.

(4) Intermediate Locutions file:

 In this example, Intermediate Locutions file contains two message names why

and argue which are used to remain in the dialogue.

(5) Termination Locutions file:

In this example, Termination Locutions file contains two message names

concede and retract which are used to terminate the persuasion dialogue;

(6) Termination Locutions Effect CS and Effective CS files:

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 358

In this example, the tool creates two connected files Termination Locutions

Effect CS which contains the termination messages (concede after claim,

concede after argue and retract after why) and Effective CS Locutions file which

contains the effect of the termination message to the sender commitment store

CS (concede after claim =Add Topic to CS, concede after argue= Add Topic and

Promises to CS and retract after why= subtract Topic from CS).

(7) Player Types file:

In this example, Player Types file contains opponent (the audience) and

proponent (the speaker who is responsible for opening the persuasion dialogue)

as player types.

(8) Player IDs file:

In this example, Player IDs file contains O and P as player IDs. Please note that,

this file is connected with Player Types file (O represents the ID of the opponent

and P represent the ID of the proponent).

(9) Termination Role Names file:

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 359

Figure C.20: Dialogue Opening Property Page

In this example, Termination Role Names file contains three role names

replyToClaimReceiver, replyToArgueReceiver and replyToWhyReceiver. Please

note that, this file is connected with Termination Locutions Effect CS file

(replyToClaimReceiver role receives concede after claim, replyToArgueReceiver

role receives concede after argue and replyToWhyReceiver role receives retract

after why).

Step Four: Applying Verification Model

The generated CPN model from step two has five properties CPN pages (Dialogue

opening property, Termination of a dialogue property, Turn taking between agents

property, Message sequencing property and Recursive message property). To verify

these five basic properties the following actions were perfomred:

(1) Open the CPN model by using the CPN Tool;

(2) Select the Evaluates a Text as ML Code(ML!) icon in the simulation tool palette

and apply it to these five basic properties pages (Figures C.20, C.21, C.22, C.23

and C.24 show the properties pages after applying the ML! to them);

(3) Select the Show Verification Result from the verification menu bar in the

GenerateLCCProtocol tool to show the verification result (Figure C.25 shows

the verification result of the five basic properties).

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 360

Figure C.21: Termination of a Dialogue Property Page

Figure C.22: Turn Taking between Agents Property Page

Figure C.23:Message Sequencing Property Page

Bridging the Specification Protocol Gap in Argumentation

Appendix C: Persuasion Dialogue 361

Figure C.24: Recursive Message Property Page

Figure C.25: The Verification Result of the Five Basic Properties

Bridging the Specification Protocol Gap in Argumentation

Appendix D: CPN Functions 362

Appendix D

CPN Functions

This appendix presents basic CPN functions code, where
23

:

ins_new = Inserts an item into the list

mem = return true if it is able to find an item in the list

union = Inserts more than one item into the list

rmall = removes an item from the list

CPN Functions

(1) Add an argument 't' to a commitment store list 'sCSL':

fun addTopicToCS(sCSL,t) = ins_new sCSL t;

(2) Add a premise of an argument 't' to a commitment store list 'sCSL':

fun addPremiseToCS(sCSL,t,p) =

 if (mem sCSL t) then ins_new sCSL p

 else union sCSL [t,p] ;

(3) Add a defeat of a premise or an argument to a commitment store list 'sCSL':

 fun addDefeatToCS(sCSL,def) = ins_new sCSL def;

23
 http://cpntools.org/documentation/concepts/colors/declarations/colorsets/implementation_of_list_fu

Bridging the Specification Protocol Gap in Argumentation

Appendix D: CPN Functions 363

(4) Subtract an argument 't' from a commitment store list 'sCSL':

fun subtractFromCS(sCSL,t) = rmall t sCSL;

(5) Find an argument 't' in a commitment store list 'sCSL':

fun findTopicInCS(sCSL,t) = mem sCSL t;

(6) Find a premise 'P' of an argument 't' in a commitment store list 'sCSL':

fun findPreInCS(sCSL,P) = mem sCSL P;

(7) Find an argument in a knowledge base list 'KBlist' where 'f' represents a fact and

'pre' represents a premise:

fun findTopicInKB((f,pre)::KBlist,t)=

 if ((f = t)) then true

 else if (length KBlist >=1) then findTopicInKB(KBlist,t)

 else false;

(8) Find a premise of an argument in a knowledge base list 'KBlist' where 'f'

represents a fact and 'pre' represents a premise:

fun findPreInKB((f,pre)::KBlist,t)=

 if (f=t) then true

 else if (length KBlist >=1) then findPremiseInKB(KBlist,t)

 else false;

(9) Find a defeat of a premise or an argument in a knowledge base list 'KBlist'

where 'f' represents a fact and 'def' represents a defeat of a premise 'pre':

Bridging the Specification Protocol Gap in Argumentation

Appendix D: CPN Functions 364

fun findDefeatInKB((f,def)::KBlist,t)=

if (substring(f,0,3)="not") andalso (substring(f,4,(String.size t))= t)

 then true

else if (length KBlist >=1) then findDefeatInKB(KBlist,t)

else false;

(10) Find the opposite of an argument 't' in commitment store list 'sCSL':

 fun findOppTopicInCS(sCSL,t)=mem sCSL ("not "^t);

(11) Find the opposite of the premise 'p' of an argument 't' in commitment store list

'sCSL':

 fun findOppPreInCS(sCSL,p)=mem sCSL ("not "^p);

(12) Return (get) the premise of an argument 't' from a knowledge base list 'KBlist'

where 'f' represents a fact and 'pre' represents a premise:

fun getPremiseFromKB((f,pre)::KBlist,t)=

 if (f=t) then 1`pre

 else getPremiseFromKB(KBlist,t);

(13) Return (get) the defeat of an argument 't' from a knowledge base list 'KBlist'

where 'f' represents a fact and 'def' represents a defeat of a premise 'pre':

fun getDefeatFromKB((f,def)::KBlist,t)=

if (substring(f,0,3)="not") andalso (substring(f,4,(String.size t))= t)

then 1`def

else getDefeatFromKB(KBlist,t);

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 365

Appendix E

GenerateLCCProtocol Tool Graphical User Interface

This appendix explains how the user can interact with the GenerateLCCProtocol

tool. It begins with a description of the graphical user interface for synthesis of

concrete protocols screens in Section E.1. A description of the graphical user

interface for verification model screens is represented in Section E.2. This appendix

does not provide details of the underlying tool implementation.

E.1 Graphical User Interface for Synthesis of Concrete

Protocols (Part One)

E.1.1 Dialogue Interaction Diagram

Generate LCC Protocol Tool Main Screen

A screenshot of the GenerateLCCProtocol tool main screen is shown in Figure E.1:

(1) The first button is used to open the DID library screen (as shown in Figure E.2).

The DID library screen displays a set of current DID diagrams.

(2) The second button is used to create a new DID diagram screen (as shown in

Figure E.3).

Dialogue Interaction Diagram Library Screen

Chapter 4 describes the DID language in detail. DID is used to specify the dialogue

game protocol in an abstract way. It provides mechanisms to represent interaction

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 366

Figure E.1: Generate LCC Protocol Tool Main Screen

Figure E.2: Dialogue Interaction Diagram Library Screen

Figure E.3: Create New Dialogue Interaction Diagram Screen

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 367

protocol rules between two agents, by allowing the designer to specify the permitted

messages (moves or locutions) and their relationship to each other.

A screenshot of the DID library screen is shown in Figure E.2. It contains all current

DID diagram information:

(1) Name: the name of the DID file has no formal meaning. However, expressive

DID names have a positive impact on the human reader; consequently, providing

a name that the human reader can understand is important.

(2) File location: specifies the DID file directory name. It specifies a unique location

in the user file system.

(3) Diagram: specifies whether or not the DID has a graphical representation.

(4) Properties: specifies the DID properties which could indicate the number of

players and the dialogue game rules. These properties of the DID file have no

formal meaning. These properties enable a better understanding of the DID file.

The four pieces of information presented above are provided by the designer during

the creation process of DID diagram (see next section for more information).

Open DID

To open an existing DID diagram, the user needs to double click on the DID file

name:

(1) If the DID file has a graphical representation, a simple graphical representation

version of the DID will be displayed. For example, if the user double clicks the

DID persuasion dialogue (in Figure E.2), the DID of a persuasion dialogue

screen will open with a simple graphical representation version of the DID

diagram reply structure rules (as shown in Figure E.4). Figure 4.3 in chapter 4

illustrates the full DID graphical representation of this persuasion dialogue.

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 368

Figure E.4: Simple DID Graphical Representation of a Persuasion Dialogue

 Figure E.5: DID Formal Representation of an Inquiry Dialogue

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 369

(2) If the DID file has no graphical representation, a formal representation version

of the DID will be displayed. For example, if the user double clicks the DID

inquiry dialogue (in Figure D.2), the DID of an inquiry dialogue screen will

open with a formal representation version of the DID diagram reply structure

rules (as shown in Figure E.5). Figure 4.9 in chapter 4 illustrates the DID

graphical representation of this inquiry dialogue.

Simple Version of DID Graphical Representation Screen

This screen displays a simple version of the DID graphical representation of a

dialogue game (as shown in Figure E.4). This graph represents the permitted

messages (moves or locutions) and their relationship to each other and the turn-

taking between agents. However, to make it simple for a human reader, both pre-

conditions and post-conditions for messages are not shown in this screen.

The lower part of this screen shows the messages (locutions) types (see section 4.2.1

in chapter 4 for more detail).

The upper part of this screen shows four menu bars:

(1) File menu bar: this menu has an exit button which is used to exit the

GenerateLCCProtocol tool;

(2) Dialogue Interaction Diagram menu bar: this menu shows the DID button which

is used to display the full DID diagram (as shown in Figure E.6).

(3) LCC menu bar: this menu has tow buttons:

Dialogue Interaction Diagram

Show DID

File

Exist

LCC

Generate LCC Protocol

Show LCC Protocol

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 370

Figure E.6: Full DID Graphical Representation of a Persuasion Dialogue

a) Generate LCC Protocol: used to generate an LCC protocol from a DID

diagram;

b) Show LCC Protocol: used to display the generated LCC protocol.

 Section E.1.2 explains these three buttons in more detail.

(4) Verification Model menu bar: this menu has four buttons:

Verification Model

Agents KB

Open CPN File

Create CPN File

Verification Model Result

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 371

a) Agents KB: used to get the agents Knolwldge Base (KB) from the user;

b) Create CPN File: used to create a CPN file from the generated LCC

protocol;

c) Open CPN File: used to display the created CPN file;

d) Verification Model Result: used to display the verificaiton model result

of the five basic properties (Dialogue opening property, Termination of

a dialogue property, Turn taking between agents property, Message

sequencing property and Recursive message property).

Section E.2 explains these four buttons in more detail.

Full Version of DID Ghraphical Representation Screen

This screen desplays a full version of the DID graphical representation of a dialogue

game (as shown in Figure E.6). This graph represents the permitted messages (moves

or locutions) and their relationship to each other, the turn-taking between agents, pre-

conditions and post-conditions for the messages as well as sending and receiving

roles. Figure 4.3 in chapter 4 illustrates the same DID graphical representation of the

persuasion dialogue.

The upper part of this screen shows five menu bars:

(1) File menu bar (see above explanations of file menu);

(2) How to read this diagram: this menu has the DID button which is used to display

how to read DID screen (as shown in Figure E.7 (a) and (b)).

How to read the DID screen (Figure E.7 (a) and (b)) has five tabs. If the user

selects a tab by clicking it, the tabbed panel displays the information

corresponding to the tab:

How to read this diagram

DID

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 372

Locution icon tab

Users are allowed to change Tab

Meaning of Variable Tab

Figure E.7 (a): How to Read DID

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 373

Meaning of color tab

Locution Types tab

Figure E.7 (b): How to Read DID

a) Locution icon tab: explains a locution icon (see section 4.2 in chapter 4 for

more details about the locution icon);

b) The users are allowed to change tab: it explains that the current user is allowed

to change the locution icon information and to add new arguments and

conditons;

c) Meaning of variables tab: displays a brief description of each variable

(argument) in the DID;

d) Meaning of color tab: the sender (or receiver) role name, arguments and agent

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 374

Figure E.8: Add New Argument Subscreen

Figure E.9: Add New Condition Subscreen

ID with the same colours have the same values and therefore the role

information must be the same for all locutions (with the same colours) at the

same level since each level has one role. In other words, text fields with the

same color contain the same information all the time. When the user changes

one text field, text fields with the same color will change;

e) Locution types tab: displays the three locution icon types (see section 4.2 in

chapter 4 for more detials about locution types).

(3) Add new item to diagram menu: this menu has two buttons:

a) Argument: used to add a new argument to either a specific role or all roles.

When the user clicks on the argument button, a new subscreen appears (as

shown in Figure E.8). For example, if the user want to add an argument 'L' to

'claimSenderP' role, he/she needs to write the argument name 'L' in the

argument text field, then select 'Add to specific roles', and then select the

'claimSenderP' role from roles list and finally click on the apply button which

adds the argument 'L' to the 'claimSenderP' role.

Add new item to diagram

Argument

Condition

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 375

b) Condition: used to add new conditions to a specific role. When the user clicks

on the condition button, a new subscreen appears (as shown in Figure E.9).

For example, if the user wants to add the conditon 'add(T,CSO)' to the

'claimReceiverO' role, he/she needs to select the locution name 'claim(T)'

from the locution list, then select the role name 'claimReceiverO' from the

roles list, and then write the new condition 'add(T,CSO)' in the condition text

field and finally click on the apply button which adds the condition

'add(T,CSO)' to the 'claimReceiverP' role.

(4) LCC menu bar (see above explanations of LCC menu);

(5) Verification Model menu bar (see above explanations of Verification Model

menu);

Textual Version of DID Screen

Unfortunately, some DID files have no graphical representation (see section 8.3 in

chapter 8 and chapter 9 for more details). However, all the DID specifications have a

textual representation. Figure E.5 illustrates an example of the DID formal

representation of an inquiry dialogue (Figure 4.9 in chapter 4 illustrates the DID

graphical representation of this inquiry dialogue). The user does not have to learn the

formal representaion of the DID, unless he needs to edit it (e.g. user needs to add

new condition to a specific locution icon).

1. Level number:

2. Locution[Locution Type,Locution, Structural rules],

3. Sender-Information[Role Name,Role arguments,Agent ID,Conditions],

4. Receiver-Information[Role Name,Role arguments,Agent ID,Conditions].

Figure E.10: DID Textual Representation

DID Textual Representaion

The DID textual representation describes each locution icon by using 4 lines (as

shown in Figure E.10):

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 376

(1) Line 1: represents the DID level. The DID levels are ordered by number,

begining with level number 1.

(2) Line 2: represents the locution icon information where:

a) Locution Types: there are only three types of locutions: Starting,

Intermediate and Termination;

b) Locution name: represents the locution (message or move) name (e.g.

claim(T));

c) Structural rules: represents the previous locution (message or move) name.

Note that if the locution type is Starting, the Structural rules = null.

(3) Line 3: represents sender role information (sender role name, sender role

arguments, sender agent ID and sender role pre-conditions).

(4) Line 4: represents receiver role information (receiver role name, receiver role

arguments, receiver agent ID and receiver post-conditions).

Figure E.11 illustrates this with an example of a textual definition of claim locution

of a persuasion dialogue which is shown in Figure E.6:

(1) Line 1: represents DID level 1 (since claim is the first locution in the DID).

(2) Line 2: represents locution icon information where:

a) Locution Type = Starting;

b) Locution name = claim(T);

c) Structural rules = null (since Locution type= Starting).

(3) Line 3: represents the sender role information where:

a) Role name = claimSender;

b) Role arguments = KBP, CSP, CSO, T,IDO;

c) Agent ID = IDP;

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 377

1. 1:

2. Locution[Starting,claim(T),null],

3. Sender-Information[claimSenderP,(KBP, CSP, CSO, T,IDO),IDP,addTopicToCS(T,CSP)],

4. Receiver-Information[claimReceiverO,(KBO, CSO, CSP, IDP),IDO,null].

Figure E.11: DID Textual Representation of Claim Locution

d) Sender conditions= addTopicToCS(T,CSP).

(4) Line 4: represents the receiver role information where

a) Role name = claimReceiverO;

b) Role arguments = KBO, CSO, CSP, IDP;

c) Agent ID = IDO;

d) Receiver conditions = null.

Create Dialogue Interaction Diagram Screen

This screen allows the user to create new DID diagrams (as shown in Figure E.12) by

writing one locution icon information (locution type, locution structural rules

locution name, sender information, receiver information and locution level number)

at a time beginning from the locution in the top of the DID (see chapter 4). This

screen also allows the user to describe the DID diagram by writing some of its

properties in the properties text field as well as loads the DID image by clicking on

the 'Load DID image' (if there is an image or graphical representation for this

dialogue). Please note the following:

(1) Clicking on the 'Add locution to level' button adds the locution icon's to the DID

textual representation (see DID Textual Representaion section).

(2) Clicking on the 'Save DID' button saves the DID file and shows a dialog box

which asks the user if he/she would like to open the DID file (see Figure E.13).

The DID file textual representation screen will appear when the user click on

'Yes' button (see Figure E.5).

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 378

Figure E.12: Create New Dialogue Interaction Diagram Screen

Figure E.13: Open DID File Dialog Box

E.1.2 Synthesising Concrete LCC Protocols from DID Specifications

Reply to locution

(structural rules)

LCC

Generate LCC Protocol

Show LCC Protocol

Locution Type= Starting Locution Name

Sender

information

Receiver

information

 Level

Number

DID

description

(properties)

Load DID's

grapich

representiaon

image

Locution Formal definition

(DID textual representation)

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 379

From the LCC menu bar (the LCC menu bar appears on the simple DID graphical

representation screen, on the full DID graphical representation screen and also on the

DID formal representation screen) the user can:

(1) Generate concrete LCC protocols from the DID specifications automatically, by

clicking on the 'Generate LCC Protocol' button. Synthesise LCC protocols from

the DID specifications process by recursively applying the LCC-Argument

patterns. This process will be fully automatic (requiring no human assistance).

The LCC-Argument patterns and the automated synthesis process are exhibited

in chapter 5. When the user clicks on the 'Generate LCC Protocol' button (for

instance, in the simple DID graphical representation screen of a persuasion

dialogue in Figure E.4), the tool will generate the LCC protocol and the LCC file

dialog box will appear. The user has to click on the 'Yes' button to display the

generated LCC protocol (as shown in Figure E.14). Appendix C gives a detailed

description of how to synthesise a DID of a persuasion dialogue to an LCC

protocol by using LCC-Argument patterns. In the case of N-agents, the user

needs to select the DID for two agents, then select the divided group condition

and finally click on the 'Generate LCC Protocol' button (as shown in Figure

E.15).

(2) Display the generated LCC protocols by clicking on the 'Show LCC Protocol'

button. For example, if the user wants to see the generated LCC protocol of a

persuasion dialogue, he/she needs to click on the 'Show LCC Protocol' button

and then load the LCC persuasion dialogue file by clicking on the 'Load file'

button (as shown in Figure E.16);

E.2 A Graphical User Interface for Verification Model (Part

Two)

From the Verification Model menu bar (the Verification Model menu bar appears on:

the simple DID graphical representation screen, on the full DID graphical

representation screen and also on the DID formal representation screen) the user can

(see Figure E.17):

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 380

Simple DID Graphical Representation of a Persuasion Dialogue after

Clicking on Generate LCC Protocol Button

Generated LCC Protocol

Figure E.14: Generate a Concrete LCC Protocol for the Persuasion
Dialogue

LCC file dialog

box

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 381

Figure E.15: Generate a Concrete LCC Protocol for the Persuasion Dialogue
among N-agents

1- Select DID among two agents

2- Select the divide group condition

3- Click on Generate LCC Protocol

Bridging the Specification Protocol Gap in Argumentation

Appendix E: GenerateLCCProtocol Tool Graphical User Interface 382

Figure E.16: Show Generated LCC Protocols Screen

(1) Specify agents knowledge Base (KB) by clicking on the 'Agents KB' button (see

chapter 7).

(2) Create a CPN model (CPNXML) file from the generated LCC protocol and

create the DID properties files by click on the 'Create CPN File' button (see

chapter 7).

(3) Display the created CPN model file by click on the 'Open CPN File' button (see

chapter 7).

(4) Display the verification model result of the five basic properties (Dialogue

opening property, Termination of a dialogue property, Turn taking between

agents property, Message sequencing property and Recursive message property)

by click on the 'Verification Model Result' button (see chapter 7).

Bridging the Specification Protocol Gap in Argumentation

Appendix F: Published Papers 383

Appendix F

Published Papers

The published papers of this research are:

(1) MAGHRABY ASHWAG and ROBERTSON DAVE. Argumentation

understood as program synthesis. The 25th International Conference on

Software Engineering and Knowledge Engineering (SKSE 2013), Hyatt

Harborside at Logan Int'l Airport, Boston, USA, 2013.

 http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperSKSE.pdf

(2) MAGHRABY ASHWAG, ROBERTSON DAVE, GRANDO ADELA and

ROVATSOS, MICHAEL. Automated Deployment of Argumentation Protocols.

In VERHEIJ BART, SZEIDER STEFAN and WOLTRAN STEFAN,

Computational Models of Argument. Vienna, Austria IOS Press, 2012.

http://homepages.inf.ed.ac.uk/mrovatso/papers/maghrabyetal-comma2012.pdf

 http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperCOMMA.pdf

(3) MAGHRABY ASHWAG, ROBERTSON DAVE, GRANDO ADELA and

ROVATSOS, MICHAEL. Bridging the specification protocol gap in

argumentation. Argumentation in Multiagent Systems (ArgMAS), Valencia,

Spain, June 2012.

http://www.mit.edu/~irahwan/argmas/argmas12/

http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperArgMAS.pdf

(4) MAGHRABY ASHWAG. Automatic Agent Protocol Generation from

Argumentation. 13th European Agent Systems Summer School (EASSS 2011),

Girona, Catalonia (Spain), July 2011.

http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperSKSE.pdf
http://homepages.inf.ed.ac.uk/mrovatso/papers/maghrabyetal-comma2012.pdf
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperCOMMA.pdf
http://www.mit.edu/~irahwan/argmas/argmas12/
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperArgMAS.pdf

Bridging the Specification Protocol Gap in Argumentation

Appendix F: Published Papers 384

 http://eia.udg.edu/easss2011/resources/docs/paper1.pdf

 http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperEASSS.pdf

(5) MAGHRABY ASHWAG, ROBERTSON DAVE, GRANDO ADELA and

ROVATSOS, MICHAEL. Bridging the Specification-Protocol Gap in

Argumentation. 5th Saudi International Conference (SIC2011), The University

of Warwick, Coventry, June 2011.

http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-Paper2011.pdf

For more information about the published papers and the synthesis tool, Please

contact author at ashwaqm@gmail.com

http://eia.udg.edu/easss2011/resources/docs/paper1.pdf
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-PaperEASSS.pdf
http://homepages.inf.ed.ac.uk/s0961321/AshwagMagharby-Paper2011.pdf

Bridging the Specification Protocol Gap in Argumentation

Bibliography 385

Bibliography

[Aalst, 2005] AALST, WIL VAN DER. Pi Calculus Versus Petri Nets: Let Us Eat

Humble Pie Rather Than Further Inflate the Pi Hype. BPTrends, 3(5): May 2005:1-

11.

[Aalst and Stahl, 2011] AALST, Wil Van Van Der and STAHL, Christian. Modeling

Business Processes: A Petri Net-Oriented Approach. Cambridge, Mass./US,MIT

Press, 2011.

[Alexander et.al,1977] ALEXANDER, Christopher, ISHIKAWA Sara and

SILVERSTEIN Murray. A pattern language: towns, buildings, construction. New

York, Oxford University Press,1977.

[Amogud et.al.2000] AMOGUD, LEILA, PARSONS, SIMON and MAUDET,

NICOLAS. Arguments, dialogue, and negotiation. Journal of Artificial Intelligence

Research, (23):August 2000:338-342.

[Appleton,1998] APPLETON, BRAD. Patterns and Software: Essential Concepts

and Terminology. Object Magazine Online, 3(5):May 1998:20-25.

[Aridor and Lange, 1998] ARIDOR, YARIV and LANGE, DANNY. Agent Design

Patterns: Elements of Agent Application Design. AGENTS '98, In Proceedings of

the second international conference on Autonomous agents. New York, ACM Press,

1998.

[Atkinson et al., 2005] ATKINSON, KATIE, BENCH-CAPON, TREVOR and

MCBURNEY, PETER. A Dialogue Game Protocol for Multi-Agent Argument over

Proposals for Action. Autonomous Agents and Multi-Agent Systems, 11(2):2005:153–

171.

[Baeten,2005] BAETEN, J.C.M.. A Brief History of Process Algebra. Theoretical

Computer Science, 2-3(335):23 May 2005:131-146.

Bridging the Specification Protocol Gap in Argumentation

Bibliography 386

[Bauer et.al., 2001] BAUER, BERNHARD, MÜLLER, JÖRG and ODELL, JAMES.

Agent UML: A Formalism for Specifying Multiagent Interaction. Software

Engineering and Knowledge Engineering, (11): 2001: 91-103.

[Besana, 2009] BESANA, PAOLO. Comparison between choreography languages.

Edinburgh, The university of Edinburgh, 2009.

[Besana and Barker, 2009] BESANA, PAOLO and BARKER, ADAM. An

Executable Calculus for Service Choreography. In MEERSMAN ROBERT,

DILLON THARAM and HERRERO PILAR, On the Move to Meaningful Internet

Systems: OTM 2009. Confederated International Conferences, CoopIS, DOA, IS, and

ODBASE 2009, Vilamoura, Portugal, Springer Berlin Heidelberg, 2009.

[Besnard and Hunter, 2008] BESNARD, Philippe and HUNTER, Anthony. Elements

of Argumentation. Cambridge, Massachusetts London, England, MIT Press, 2008.

[Billington et al., 2003] BILLINGTON, JONATHAN, CHRISTENSEN, SØREN,

HEE, KEES, KINDLER, EKKART, KUMMER, OLAF, PETRUCCI, LAURE,

POST, REINIER, STEHNO, CHRISTIAN and WEBER, MICHAEL. The Petri Net

Markup Language: Concepts, Technology, and Tools. In AALST WIL and BEST

EIKE, Applications and Theory of Petri Nets 2003. The Netherlands, 24th

International Conference, ICATPN 2003 Eindhoven, 2003.

[Black and Hunter, 2009] BLACK, ELIZABETH and HUNTER, ANTHONY. An

inquiry dialogue system. Autonomous Agents and Multi-Agent Systems,

2(19): 2009:10-1007.

[Black and Hunter, 2007] BLACK, ELIZABETH and HUNTER, ANTHONY. A

generative inquiry dialogue system. In Proceedings of the Sixth International

Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2007). New

York, ACM, 2007.

[Bowles et al., 1994] BOWLES, ANDREW, ROBERTSON, DAVE,

VASCONCELOS, WAMBERTO, VARGAS-VERA, MARIA, and BENTAL,

Bridging the Specification Protocol Gap in Argumentation

Bibliography 387

DIANA. Applying prolog programming techniques. International Journal of

Human-Computer Studies, 41(3):1994:329-350.

[Bowles, 1994] BOWLES, ANDREW. A techniques editor for Prolog novices.

Internal software report, available by the author, 1994.

[Bradfield and Stirling, 2006] BRADFIELD, JULIAN and STIRLING, COLIN.

Modal mu-calculi. In BLACKBURN, PATRICK, BENTHEM, JOHAN and

WOLTER, FRANK , The Handbook of Modal Logic. Oxford, Elsevier Science,

2006.

 [Budinsky et.al., 1996] BUDINSKY, FRANK, FINNIE, MARILYN, YU, PATSY

and VLISSIDES, JOHN. Automatic Code Generation from Design Patterns. IBM

Systems Journal, 2(35):1996:151-171.

[Chesnevar et al.,2007] CHESÑEVAR, CARLOS, MCGINNIS, JARRED,

SANJAY, MODGIL, IYAD, RAHWAN, CHRIS, REED, GUILLERMO, SIMARI,

MATTHEW, SOUTH, GERARD, VREESWIJK and WILLMOTT, STEVEN.

Towards an argument interchange format. The Knowledge Engineering Review,

4(21):2007:293–316.

[Deugo and Weiss, 1999] DEUGO, DWIGHT and WEISS, MICHAEL. A Case for

Mobile Agent Patterns. In PAPAIOANNOU TODD and MINAR NELSON, Mobile

Agents in the Context of Competition and Cooperation (MAC3) Workshop Notes.

Seattle, at Autonomous Agents'99, 1999.

[Dignum and Vreeswijk, 2003] DIGNUM, FRANK and VREESWIJK, GERARD.

Towards a test bed for multi-party dialogues. In DIGNUM FRANK, Advances in

Agent Communication. Melbourne, Australia, International Workshop on Agent

Communication Languages, 2003.

[Dijkman and Dumas, 2004] DIJKMAN, REMCO and DUMAS, MARLON.

Service-oriented Design: A Multi-viewpoint Approach. International Journal of

Cooperative Information Systems, 4(13): 2004:337-378.

Bridging the Specification Protocol Gap in Argumentation

Bibliography 388

[Dimopoulos et. al., 2005] DIMOPOULOS, YANNIS, KAKAS, ANTONIS and

MORAITIS, PAVLOS. Argumentation based Modelling of Embedded Agent

Dialogues. In PARSONS, SIMON, MAUDET, NICOLAS, MORAITIS, PAVLOS

and RAHWAN, IYAD, Argumentation in Multi-Agent Systems. Second International

Workshop, ArgMAS 2005 Utrecht, The Netherlands, Springer Berlin Heidelberg,

2005.

[Ding and Su, 2008] DING, YANLAN and SU, GUIPING. A Reduction method for

Verification of Security Protocol through CPN. In process of IEEE International

Conference on Networking, Sensing and Control. Sanya, China, IEEE, 2008.

[Doutre et. al.,2005] DOUTRE, SYLVIE, MCBURNEY, PETER, WOOLDRIDGE,

MICHAEL, and BARDEN, WILLIAM. Informationseeking agent dialogs with

permissions and arguments. Technical Report ULCS-05-010, Department of

computer science, Uinversity of Liverpool, Liverpool, UK. 2005,

www.csc.liv.ac.uk/research/techreports/tr2005/tr05010abs.html.

[Eemeren et al., 1987] EEMEREN, Frans, GROOTENDORST, Rob and KRUIGER,

Tjark. Handbook Argumentation Theory: A critical survey of classical backgrounds

and modern studies. Dordrecht, Foris Publications, 1987.

[Eunice, 2005] EUNICE, Marta. Model transformation support for the analysis of

large-scale systems. Texas Tech University Electronic Theses and Dissertations,

Master Thesis in Software Engineering, 2005.

[Floreani et al.,1996] FLOREANI, DANIEL, BILLINGTON, JONATHAN, and

DADEJ, AREK. Designing and Verifying a Communications Gateway Using

Coloured Petri Nets and Design/CPN. In BILLINGTON JONATHAN and REISIG

WOLFGANG, Application and Theory of Petri Nets 1996. Osaka, Japan, 17th

International Conference on Application and Theory of Petri Nets, 1996.

[Fox et.al, 2006] FOX, JOHN, GLASSPOOL, DAVID, MODGIL, SANJAY,

TOLCHINKSY, PANCHO and BLACK, LIZ. Towards a canonical framework for

designing agents to support healthcare organizations. In Proceedings of ECAI-06

Bridging the Specification Protocol Gap in Argumentation

Bibliography 389

Workshop on Agents Applied in HealthCare, 17th European Conference on Artificial

Intelligence. Italy, 2006.

[Gamma et.al, 1995] GAMMA, Erich, HELM, Richard, JOHNSON, Ralph, and

VLISSIDES, John. Design patterns: elements of reusable object-oriented software.

 Canada, Addison Wesley, 1995.

[Goldfarb and Prescod, 2003] GOLDFARB, Charles and PRESCOD, Paul. XML

Handbook (5th Edition). Prentice Hall PTR, the University of Virginia, 2003.

[Gordon, 2008] GORDON, THOMAS. Constructing Legal Arguments with Rules in

the Legal Knowledge Interchange Format (LKIF). In CASANOVAS, POMPEU,

SARTOR GIOVANNI, CASELLAS, NURIA and RUBINO, ROSSELLA,

Computable Models of the Law. Berlin, Heidelberg, Springer-Verlag, 2008.

[Grivas, 2005] GRIVAS, Argyrios. A Structural Synthesis System for LCC Protocols.

PhD thesis, University of Edinburgh, 2005.

[Hamblin, 1970] HAMBLIN, Charles. Fallacies. London, Methuen young books,

1970.

[Hassan et.al., 2005] HASSAN, FADZIL, ROBERTSON, DAVE and WALTON,

CHRIS. Addressing Constraint Failures in Agent Interaction Protocol. In

Proceedings of the 8th Pacific Rim International Workshop on Multi-Agent Systems.

Kuala Lumpur, Malasia, 2005.

[Ito and Shintani, 1997] ITO, TAKAYUKI and SHINTANI, TORAMATSU. An

Agenda-scheduling System Based on Persuasion Among Agents. In Proceedings of

the International Symposium on Information Systems and Technologies for Network

Society. World Scientific, 1997.

[Ito and Shintani, 1996] ITO, TAKAYUKI and SHINTANI, TORAMATSU.

Persuasion among Agents: An Approach to Implementing a Group Decision Support

System Based on Multi-agent Negotiation. In Proceedings of the 5th International

Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1996.

Bridging the Specification Protocol Gap in Argumentation

Bibliography 390

[Jensen and Kristensen, 2009] JENSEN, Kurt and KRISTENSEN, Lars. Coloured

Petri Nets Modelling and Validation of Concurrent Systems. Berlin, Springer Verlag,

2009.

[Jensen et al., 2007] JENSEN, KURT, KRISTENSEN, LARS, and WELLS, LISA.

Coloured Petri Nets and CPN Tools for modelling and validation of concurrent

systems. International Journal on Software Tools for Technology Transfer (STTT),

3(9): 2007:213–254.

[Jenson et al., 2006] Jensen, Kurt, Christensen, Soren and Kristensen, Lars, CPN

Tools State Space Manual, University of Aarhus, Department of computer science,

2006, retrieved 2013, http://cpntools.org/_media/documentation/manual.pdf.

[Jensen et al., 2002] Jensen, Kurt, Christensen, Soren and Kristensen, Lars, CPN

Tools State Space Manual, University of Aarhus, Department of computer science,

2002, retrieved 2013.

[Jensen, 1992] JENSEN, Kurt. Coloured Petri Nets. Basic Concepts, Analysis

Methods and Practical Use. Berlin, Springer Verlag, 1992.

[Jennings et al.,1998] JENNINGS, NICHOLAS, SYCARA, KATIA and

WOOLDRIDGE, MICHAEL. Roadmap of agent research and development. Journal

of Autonomous Agents and Multi- Agent Systems, 1(1):1998:7-38.

[Krauss,2008] KRAUSS, Alexander. Defining Recursive Functions in Isabelle/HOL,

2008, URL: http://isabelle.in.tum.de/doc/functions.pdf.

[Kristensen et. al., 1998] KRISTENSEN, LARS, SØREN, CHRISTENSEN, and

KURT, JENSEN. The Practioner’s Guide to Coloured Petri Nets. International

Journal on Software Tools for Technology Transfer, 2(2): 1998:98-132.

[Kirschenbaum at.al, 1989] KIRSCHENBAUM, MARC, LAKHOTIA, ARUN, and

STERLING, LEON. Skeletons and Techniques for Prolog Programming. Centre for

automation and Intelligent System Researches, Case Western Reserve University,

Technical Report, 1989.

Bridging the Specification Protocol Gap in Argumentation

Bibliography 391

[Lloyd, 1994] LLOYD, JOHN. Practical advantages of declarative programming. In

Joint Conference on Declarative Programming, GULP-PRODE'94, 1994.

[Luo et. al., 2001] LUO, XUDONG, MIAO CHUNYAN, JENNINGS NICHOLAS,

HE MINGHUA, SHEN ZHIQI, and ZHANG MINJIE. KEMNAD: A Knowledge

Engineering Methodology for Negotiating Agent Development. Computational

Intelligence, 1(28):2012:51-105.

[MANNA and WALDINGER, 1980] MANNA ZOHAR and WALDINGER

RICHARD. A Deductive Approach to Program Synthesis. ACM Transactions on

Programming Languages and Systems (TOPLAS), 1(2):1980:90-121.

[Maudet et al., 2007] MAUDET, NICOLAS, PARSONS, SIMON, and RAHWAN,

IYAD. Argumentation in multiagent system: context and recent developments. In

Proceedings of Argumentation in MultiAgent Systems (ARGMAS06). Japan,

Springer-Verlag, 2007.

[McBurney et.al., 2007] MCBURNEY, PETER, HITCHCOCK, DAVID, and

PARSONS, SIMON. The eightfold way of deliberation dialogues. International

Journal of Intelligent Systems, 1(22):2007: 95-132.

[McBurney and Parsons, 2003] MCBURNEY, PETER and PARSONS, SIMON.

Dialogue Game Protocols. In HUGET MARC-PHILIPPE, Communication in

Multiagent Systems. Germany, Springer Verlag,Berlin, 2003.

[Mcburney et. al., 2003] MCBURNEY, PETER, EIJK, ROGIER, PARSONS,

SIMON and AMGOUD, LEILA. A Dialogue-Game Protocol for Agent Purchase

Negotiations. Journal of Autonomous Agents and Multi-Agent Systems,

3(7):2003:235- 273.

[McBurney and Parsons, 2002] PETER, MCBURNEY and PARSONS, SIMON.

Games that agents play: A formal framework for dialogues between autonomous

agents. Journal of Logic, Language and Information, 3(11):2002:315-334.

[McBurney et.al., 2002] MCBURNEY, PETER, PARSONS, SIMON and

WOOLDRIDGE, MICHAEL. Desiderata for agent argumentation protocols. In

Bridging the Specification Protocol Gap in Argumentation

Bibliography 392

Proceedings of the first international joint conference on Autonomous agents and

multiagent systems part 1 AAMAS 02. New York, ACM, 2002.

[Milner e et al., 1997] MILNER, Robin, TOFTE, Mads, HARPER, Robert, and

MACQUEEN, David. The Definition of Standard ML. Cambridge, MA, USA, The

MIT Press, revised edition, 1997.

 [Modgil and McGinnis, 2007] MODGIL, SANJAY and MCGINNIS, JARRED.

Towards Characterising Argumentation Based Dialogue in the Argument

Interchange Format. In RAHWAN, IYAD, PARSONS, SIMON AND REED

CHRIS, Argumentation in Multi-Agent Systems. Honolulu, HI, USA, 2007.

[Murata, 1989] MURATA, TADAO. Petri nets: Properties, analysis and applications.

Proceedings of the IEEE, 4(77): 1989:541-580.

[Nielsen and Simpson, 2000] NIELSEN, MOGENS and SIMPSON, DAN.

Application and Theory of Petri Nets 2000. In Proceedings of 21st International

Conference on Application and Theory of Petri Nets, Aarhus, Denmark, Springer,

2000.

[Norman et al.,2004] NORMAN, TIMOTHY, CARBOGIM, DANIELA, KRABBE,

ERIK and WALTON, DOUGLAS. Argument and Multi-Agent Systems. In REED,

CHRIS and NORMAN, TIMOTHY, Argumentation Machines: New Frontiers in

Argument and Computation. Dordrecht, Kluwer Academic Publishers, 2004.

[Nwana et.al., 1996] NWANA H S, LEE L and JENNINGS N R. Co-ordination in

software agent systems. British Telecom Technical Journal, 4(14):1996: 79-88.

 [Odifreddi and Cooper, 2012] ODIFREDDI, PIERGIORGIO and COOPER,

S.BARRY, Recursive Functions, The Stanford Encyclopedia of Philosophy, ZALTA

EDWARD, 2012, retrieved 2013,

http://plato.stanford.edu/archives/fall2012/entries/recursive-functions.

[O'Keefe,1990] O'KEEFE, Richard. The Craft of Prolog (Logic Programming).

Cambridge, MA, USA, The MIT Press,1990.

Bridging the Specification Protocol Gap in Argumentation

Bibliography 393

[Osman, 2007] OSMAN, NARDINE. A Contextualised Trust Model for Distributed

Open Systems. In AKHGAR BABAK, ICCS 2007, Proceedings of the 15th

International Workshops on Conceptual Structures. London, Springer-Verlag, 2007.

[Osman et al., 2006] OSMAN, NARDINE, ROBERTSON, DAVID and

WALTON, CHRISTOPHER. Run-Time Model Checking of Interaction and Deontic

Models for MultiAgent Systems. In KLUSCH, MATTHIAS, ROVATSOS,

MICHAEL and PAYNE, TERRY, Cooperative Information Agents X: 10th

International Workshop. Edinburgh, UK, Springer, 2006.

[Parsons and McBurney, 2003] PARSONS, SIMON and MCBURNEY, PETER.

Argumentation-Based Communication between Agents. In HUGET, M.-P,

Communication in Multi-Agent Systems: Agent Communication Languages and

Conversation Policies, Lecture Notes in Artificial Intelligence 2650. Berlin,

Germany, Springer, 2003.

[Parsons et al., 2003] PARSONS, SIMON, WOOLDRIDGE, MICHAEL and

AMGOUD, LEILA. Properties and Complexity of Some Formal Inter-agent

Dialogues. Journal of Logic and Computation, (13):2003:347-376.

[Parsons et al., 1998] PARSONS, SIMON, SIERRA, CARLES and JENNINGS,

NICK. Agents that's reason and negotiate by arguing. Journal of logic and

computation 3(8):1998:261-292, 1998.

[Prakken, 2006] PRAKKEN, HENRY. Formal systems for persuasion dialogue. The

Knowledge Engineering Review, 2(21):2006,163-188.

[Paschke et.al, 2006] PASCHKE, ADRIAN, KISS, CHRISTINE and AL-HUNATY,

SAMER. NPL: Negotiation Pattern Language- A Design Pattern Language for

Decentralized (Agent) Coordination and Negotiation Protocols. In BANDA R, E-

Negotiation - An Introduction. ICFAI University Press, 2006.

[Prakken, 2005] PRAKKEN, HENRY. Coherence and flexibility in dialogue games

for argumentation. Journal of logic and computation, 6(15):2005:1009-1040.

Bridging the Specification Protocol Gap in Argumentation

Bibliography 394

[Prakken and Vreeswijk, 2002] PRAKKEN, HENRY and VREESWIJK GERARD.

Logics for defeasible argumentation. In GABBAY, DOV and GUNTHNER, F.,

Handbook of Philosophical Logic. Dordrecht, Kluwer Academic Publishers, 2002.

[Prakken, 2000] Prakken, Henry. On dialogue systems with speech acts, arguments,

and counterarguments. In OJEDA-ACIEGO, MANUEL, GUZMÁN, INMA,

BREWKA, GERHARD and PEREIRA, LUÍS, Logics in Artificial Intelligence.

Málaga, Spain, Springer Verlag, 2000.

[Rahwan and Moraitis, 2009] RAHWAN, Iyad and MORAITIS, Pavlos.

Argumentation in Multi-Agent Systems: Fifth International Workshop, ArgMAS

2008. Berlin, Germany, Springer-Verlag, 2009.

[Rahwan, 2006] RAHWAN IYAD. Guest Editorial: Argumentation in Multi-Agent

Systems. Autonomous Agents and Multiagent Systems, 2(11):2006:115-125.

[Reed et al., 2008] REED, CHRIS, DEVEREUX, JOSEPH, WELLS, SIMON and

ROWE ,GLENN. AIF+: Dialogue in the Argument Interchange Format. In

BESNARD, PHILIPPE, DOUTRE, SYLVIE and HUNTER, ANTHONY,

Computational Models of Argument. Toulouse, France, Proceedings of COMMA-

2008, IOS Press, 2008

[Reed et al., 2010] REED, CHRIS, WELLS, SIMON, BUDZYNSKA,

KATARZYNA and DEVEREU, JOSEPH. Building arguments with argumentation:

the role of illocutionary force in computational models of argument. In Proceedings

of the Third International Conference on Computational Models of Argument

(COMMA 2010). Amsterdam, The Netherlands, IOS Press, 2010.

[Reed, 1998] REED, CHRIS. Dialogue Frames in Agent Communication. In

DEMAZEAU, YVES, the Third International Conference on Multi-Agent Systems.

Washington, DC, USA, IEEE Computer Society Press, 1998.

[Robertson, 2004] ROBERTSON, DAVE. Multi-agent coordination as distributed

logic programming. In DEMOEN, BART and LIFSCHITZ, VLADIMIR, Logic

programming. Saint-Malo, France, 20
th

 International Conference, 2004.

Bridging the Specification Protocol Gap in Argumentation

Bibliography 395

[Robertson, 1991] ROBERTSON, DAVE. A simple prolog techniques editor for

novice users. In WIGGINS, GERAINT, MELLISH, CHRIS and DUNCAN, TIM,

3rd UK Annual Conference on Logic Programming. Berlin, Springer-Verlag, 1991.

[Sadri et. al., 2001] SADRI, FARIBA, TONI, FRANCESCA, and TORRONI

PAOLO. Logic Agents, Dialogues and Negotiation: An Abductive Approach. In

STATHIS, KOSTAS and SCHROEDER, MICHAEL, the Symposium on

Information Agents for E-Commerce AISB-01.York, United Kingdom, AISB, 2001.

[Sadri et. al., 2002] SADRI, FARIBA, TONI, FRANCESCA, and TORRONI,

PAOLO. Dialogues for negotiation: Agent varieties and dialogue sequences. In

MEYER, JOHN and TAMBE, MILIND, Intelligent Agents VIII, 8th International

Workshop on Agent Theories, Architectures, and Language (ATAL 2001). Seattle,

ATAL 2001 ,2002.

[Sagonas et al., 1994] SAGONAS, KONSTANTINOS, SWIFT, TERRANCE and

WARREN, DAVID. XSB as an efficient deductive database engine. In Proceedings

of the SIGMOD '94 Proceedings of the 1994 ACM SIGMOD international

conference on Management of data. New York, ACM Press, 1994.

 [Shin et. al., 2005] SHIN, MICHAEL, ALEXANDER, LEVIS and LEE,

WAGENHALS. Analyzing Dynamic Behavior of Large–Scale Systems through

Model Transformation. The International Journal of Software Engineering and

Knowledge Engineering (IJSEKE), 1(15):2005:35-60.

[Shin et. al., 2003] SHIN, MICHAEL, ALEXANDER, LEVIS, LEE, WAGENHALS

and DAESIK, KIM. Mapping of UML–based System Model to Design/CPN Model

for System Model Evaluation. In Proceedings of the Workshop on Compositional

Verification of UML’03. San Francisco, CA, 2003.

[Suriadi et al.,2009] SURIADI, SURIADI, YANG, CHUN, SMITH, JASON and

FOO, ERNEST. Modeling and Verification of Privacy Enhancing Security Protocols.

In BREITMAN KARIN and CAVALCANTI, ANA, Formal Methods and Software

Bridging the Specification Protocol Gap in Argumentation

Bibliography 396

Engineering, 11th International Conference on Formal Engineering Methods

ICFEM. Janeiro, Brazi, ICFEM, 2009.

[Sycara, 1989] SYCARA, KATIA. Argumentaion: planning other agents' paln. In

Proceeding of the 11th international joint conference on Artificial intelligence. San

Francisco, CA, USA, Morgan Kaufmann Publishers,1989.

[Tang and Parsons, 2006] TANG, YUQING and PARSONS, SIMON.

Argumentation-Based Multi-agent Dialogues for Deliberation. In PARSONS,

SIMON, MAUDET, NICOLAS, MORAITIS, PAVLOS and RAHWAN, IYAD, The

Second international conference on Argumentation in Multi-Agent Systems (ArgMAS

2005). Heidelberg, Springer, 2006.

[Taylor and Wray, 2004] TAYLOR, GLENN and WRAY, ROBERT. Behavior

Design Patterns: Engineering Human Behavior Models. In Proceedings of the 13th

Conference on Behavior Representation in Modeling and Simulation Conference

(BRIMS). Arlington, Virginia, Curran Associates, 2004.

[Tolksdorf ,1998] TOLKSDORF ROBERT. Coordination Patterns of Mobile

Information Agents. In KLUSCH, MATTHIAS and WEIß, GERHARD, Cooperative

Information Agents II. Heidelberg, Germany, Springer-Verlag, 1998.

[Walton, 1998] WALTON, Douglas. The New Dialectic: Conversational Contexts of

Argument. Canada, University of Toronto Press, Scholarly Publishing Division,

1998.

[Walton and Krabbe, 1995] WALTON, Douglas and KRABBE, Erik. Commitment

in Dialogue: Basic concept of interpersonal reasoning. Albany, NY, USA, State

University of New York Press, 1995.

[Walton, 1990] WALTON, DOUGLAS. What Is Reasoning? What Is An

Argument?. The Journal philosophy, (87):1990: 399-419.

[Westergaard and Kristense, 2009] WESTERGAARD, MICHAEL AND

KRISTENSEN, LARS.The access/CPN Framework: a Tool for Interacting with the

Bridging the Specification Protocol Gap in Argumentation

Bibliography 397

CPN Tools Simulator*. In FRANCESCHINIS, GIULIANA and WOLF, KARSTEN,

the 30th International Conference on Applications and Theory of Petri Nets (Petri

Nets 2009). Heidelberg, Springer-Verlag, 2009.

[Westergaard and Verbeek, 2002] WESTERGAARD, MICHAEL AND VERBEEK

H.M.W, CPN Tools, Eindhoven University of Technology, 2002, retrieved 2013,

http://cpntools.org/.

[Willmott et al., 2006] WILLMOTT, STEVEN, VREESWIJK, GERARD,

CHESNEVAR, CARLOS, SOUTH, MATTHEW, MCGINNIS, JARRED,

MODGIL, SANJAY, RAHWAN IYAD, REED CHRIS AND SIMARI,

GUILLERMO. Towards an Argument Interchange Format for Multi-Agent Systems.

In MAUDET, NICOLAS, PARSONS, SIMON and RAHWAN IYAD,

Argumentation in Multi-Agent Systems, the 3
th

 International Workshop on

Argumentation in Multi-Agent Systems (ArgMAS2006). Japan, Springer, 2006.

[Ullman, 1998] ULLMAN, Jeffrey. Elements of ML Programming. Englewood Cliffs

Prentice-Hall, 1998.

http://cpntools.org/

	PhD coversheet April 2012
	AshwagMaghraby-Bridging the Specification Protocol Gap in Argumentation-2013

