1,309 research outputs found

    Locality-Adaptive Parallel Hash Joins Using Hardware Transactional Memory

    Get PDF
    Previous work [1] has claimed that the best performing implementation of in-memory hash joins is based on (radix-)partitioning of the build-side input. Indeed, despite the overhead of partitioning, the benefits from increased cache-locality and synchronization free parallelism in the build-phase outweigh the costs when the input data is randomly ordered. However, many datasets already exhibit significant spatial locality (i.e., non-randomness) due to the way data items enter the database: through periodic ETL or trickle loaded in the form of transactions. In such cases, the first benefit of partitioning — increased locality — is largely irrelevant. In this paper, we demonstrate how hardware transactional memory (HTM) can render the other benefit, freedom from synchronization, irrelevant as well. Specifically, using careful analysis and engineering, we develop an adaptive hash join implementation that outperforms parallel radix-partitioned hash joins as well as sort-merge joins on data with high spatial locality. In addition, we show how, through lightweight (less than 1% overhead) runtime monitoring of the transaction abort rate, our implementation can detect inputs with low spatial locality and dynamically fall back to radix-partitioning of the build-side input. The result is a hash join implementation that is more than 3 times faster than the state-of-the-art on high-locality data and never more than 1% slower

    GPU LSM: A Dynamic Dictionary Data Structure for the GPU

    Full text link
    We develop a dynamic dictionary data structure for the GPU, supporting fast insertions and deletions, based on the Log Structured Merge tree (LSM). Our implementation on an NVIDIA K40c GPU has an average update (insertion or deletion) rate of 225 M elements/s, 13.5x faster than merging items into a sorted array. The GPU LSM supports the retrieval operations of lookup, count, and range query operations with an average rate of 75 M, 32 M and 23 M queries/s respectively. The trade-off for the dynamic updates is that the sorted array is almost twice as fast on retrievals. We believe that our GPU LSM is the first dynamic general-purpose dictionary data structure for the GPU.Comment: 11 pages, accepted to appear on the Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS'18

    Deep Hashing Based on Class-Discriminated Neighborhood Embedding

    Get PDF
    Deep-hashing methods have drawn significant attention during the past years in the field of remote sensing (RS) owing to their prominent capabilities for capturing the semantics from complex RS scenes and generating the associated hash codes in an end-to-end manner. Most existing deep-hashing methods exploit pairwise and triplet losses to learn the hash codes with the preservation of semantic-similarities which require the construction of image pairs and triplets based on supervised information (e.g., class labels). However, the learned Hamming spaces based on these losses may not be optimal due to an insufficient sampling of image pairs and triplets for scalable RS archives. To solve this limitation, we propose a new deep-hashing technique based on the class-discriminated neighborhood embedding, which can properly capture the locality structures among the RS scenes and distinguish images class-wisely in the Hamming space. An extensive experimentation has been conducted in order to validate the effectiveness of the proposed method by comparing it with several state-of-the-art conventional and deep-hashing methods. The related codes of this article will be made publicly available for reproducible research by the community

    Query Workload-Aware Index Structures for Range Searches in 1D, 2D, and High-Dimensional Spaces

    Get PDF
    abstract: Most current database management systems are optimized for single query execution. Yet, often, queries come as part of a query workload. Therefore, there is a need for index structures that can take into consideration existence of multiple queries in a query workload and efficiently produce accurate results for the entire query workload. These index structures should be scalable to handle large amounts of data as well as large query workloads. The main objective of this dissertation is to create and design scalable index structures that are optimized for range query workloads. Range queries are an important type of queries with wide-ranging applications. There are no existing index structures that are optimized for efficient execution of range query workloads. There are also unique challenges that need to be addressed for range queries in 1D, 2D, and high-dimensional spaces. In this work, I introduce novel cost models, index selection algorithms, and storage mechanisms that can tackle these challenges and efficiently process a given range query workload in 1D, 2D, and high-dimensional spaces. In particular, I introduce the index structures, HCS (for 1D spaces), cSHB (for 2D spaces), and PSLSH (for high-dimensional spaces) that are designed specifically to efficiently handle range query workload and the unique challenges arising from their respective spaces. I experimentally show the effectiveness of the above proposed index structures by comparing with state-of-the-art techniques.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore