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Abstract—Deep-hashing methods have drawn significant atten-
tion during the past years in the field of remote sensing (RS)
owing to their prominent capabilities for capturing the semantics
from complex RS scenes and generating the associated hash codes
in an end-to-end manner. Most existing deep-hashing methods
exploit pairwise and triplet losses to learn the hash codes with
the preservation of semantic-similarities which require the con-
struction of image pairs and triplets based on supervised infor-
mation (e.g., class labels). However, the learned Hamming spaces
based on these losses may not be optimal due to an insufficient
sampling of image pairs and triplets for scalable RS archives. To
solve this limitation, we propose a new deep-hashing technique
based on the class-discriminated neighborhood embedding, which
can properly capture the locality structures among the RS scenes
and distinguish images class-wisely in the Hamming space. An
extensive experimentation has been conducted in order to validate
the effectiveness of the proposed method by comparing it with
several state-of-the-art conventional and deep-hashing methods.
The related codes of this article will be made publicly available for
reproducible research by the community.

Index Terms—Content-based image retrieval, deep hashing,
deep learning, fast similarity search, hashing, remote sensing.

I. INTRODUCTION

S PACEBORNE and airborne remotely sensed images offer
an important tool to deal with current societal needs as

well as future challenges [1]. From the study of the spectral
properties of the Earth surface [2]–[4], through the visual de-
tection of specific targets [5]–[7], to planning and monitor-
ing of land-cover [8]–[10], there are multiple domains where
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remote sensing (RS) images become particularly useful, and
the growing development of different Earth observation (EO)
missions exemplifies this fact [11]. As a result, recent years have
witnessed an explosive growth in RS image collections, aimed at
implementing big-scale operational services which demand new
efficient methodologies to manage and retrieve relevant infor-
mation from the massive resulting RS archives [10], [12]–[14].
Logically, content-based image retrieval (CBIR) technology
plays a fundamental role in this regard.

In general, CBIR is concerned about providing users with
those images which satisfy their queries according to their visual
content [15]. Therefore, three main components are typically
involved in the retrieval process: a query, characterized by
one or more visual examples of the concept of interest; an
image archive, which is used to extract images related to the
query concept; and a ranking function, which aims at sorting
the archive according to the relevance to the query. From a
computational perspective, the ranking function is one of the
most important parts of the retrieval system, since it needs to
process the whole image archive to discover the most relevant
samples. Whereas the traditional k-nearest neighbors approach
has been shown to be among the most popular and effective
methods in standard content-based retrieval [16], this solution
often may not apply in actual operational RS environments due to
the high computational burden of the exhaustive search process
over big-scale image archives [17], [18].

Recently, hashing techniques have proven their potential
in alleviating these limitations within the RS field [19]–[21].
Hashing-based retrieval methods [22] aim at projecting the
original data into a set of compact binary codes (hash codes)
in order to conduct the CBIR process in a very efficient way
by taking advantage of the fast computation of the Hamming
distance. That is, the input query (together with the image
archive) are mapped into a low-dimensional binary space and
then the ranking process can be efficiently computed using
simple bit-wise exclusive-OR operations. Note that this ap-
proach avoids exhaustively comparing the query image with
each sample in the archive by making use of an approximate
nearest neighbors ranking, which is generally able to obtain
good performance in practical RS applications [23]. Besides,
it also provides important memory savings, due to the inherent
compression of the binary representation. This represents a huge
advantage in large-scale RS scenarios [24].

In the literature, it is possible to find several types of
hashing methods which exploit different machine learning
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paradigms [22]. Whereas some conventional algorithms, such
as the locality-sensitive hashing (LSH) [25], the iterative quan-
tization (ITQ), or the density sensitive hashing (DSH) [26], are
able to produce positive results with standard imagery [27], the
special complexity of the RS image domain often makes that spe-
cialized hashing techniques are required to effectively retrieve
RS optical data [20], [21]. Specifically, deep-hashing methods
have recently shown prominent capabilities in RS due to the great
potential of convolutional neural networks (CNN) to extract
highly relevant features from aerial scenes [28]. Several research
works in the RS literature exemplify this trend [29]–[32].

Despite the success achieved by these and other relevant
methods, most of the existing deep-hashing approaches rely on
pairwise [32] or triplet loss functions [31], [33] to learn the
corresponding hash codes, while preserving the semantic rela-
tionships in the resulting Hamming space. However, the process
of effectively sampling image pairs and triplets when training
these methods may become a critical aspect in RS. Note that the
constant development of the acquisition technology (together
with the unprecedented availability of airborne and spaceborne
optical data) are substantially increasing the semantic complex-
ity and volume of RS archives. As a result, RS CBIR systems
are expected to deal with a growing land-cover within-class
diversity and between-class similarity, which may be particu-
larly important in large-scale datasets [17], [34]. Nonetheless,
current deep-hashing models are typically optimized by stochas-
tically sampling image pairs or triplets within each mini-batch,
which may eventually constrain the number of positive and
negative land-cover sample concepts that can be considered
in each training iteration. Consequently, this limited semantic
scope may lead to an insufficient (or unaffordable) learning
process, thus motivating the development of new deep-hashing
models to effectively learn binary codes from unconstrained RS
archives [12].

In order to relieve these limitations, this article proposes a
new deep-hashing method for RS scene retrieval, which offers
a novel formulation with important advantages over existing
deep-learning hashing schemes [31], [32]. Specifically, we de-
fine the class-discriminated neighborhood embedding (CDNE),
which pursues to enhance the land-cover semantic information
of the binary representations by sufficiently capturing the local-
ity structures among RS scenes and class wisely distinguishing
images in the Hamming space. To achieve this goal, three main
components take part in the presented design: first, the scalable
neighborhood component analysis (SNCA), focused on discov-
ering the neighborhood structure in the metric space; second, the
cross entropy (CE) loss, aimed at preserving the land-cover class
discrimination capability; and 3) the quantization loss, directed
to generate the final binary codes. Additionally, we also define
two optimization procedures (based on the memory bank and
momentum update) in order to train the proposed deep-hashing
approach. A comprehensive experimental comparison, includ-
ing two benchmark RS image archives and multiple state-of-the-
art hashing methods, is conducted to illustrate the advantages
of our contribution when generating hash codes for efficient
retrieval of RS scenes. The main contributions of this article can
be summarized as follows.

1) We propose a new deep-hashing metric learning model
specifically designed to deal with the high data volume and
semantic complexity of RS images in retrieval tasks. The
presented approach is able to learn a metric space based on
CNN models that preserve the discrimination capability of
land-cover concepts in the resulting Hamming space.

2) We define two optimization mechanisms (memory bank
and momentum update) for training the proposed approach
while preserving the consistency of the feature embed-
dings generated on the whole RS archive.

3) We demonstrate the superiority of our model (in the task of
retrieving RS scenes) with respect to multiple state-of-the-
art hashing methods, over different benchmark datasets.
The related codes will be released for reproducible re-
search inside the RS community.1

The rest of this article is organized as follows. Section III
presents the proposed deep-hashing metric learning model for
RS CBIR. Section II reviews some related works while high-
lighting their main limitations. Section IV contains the ex-
perimental part of the work, conducted on different publicly
available benchmark datasets. Section V concludes this article
and provides some hints at plausible future research lines.

II. RELATED WORK

A. Conventional Hashing

Among conventional hashing methods, one of the most pop-
ular techniques for CBIR is the LSH [25]. In particular, this ap-
proach is based on using several hashing functions (computed by
random projections) in order to guarantee a high probability of
collision in the Hamming space for similar input samples. Sim-
ilarly, the kernelized LSH [35] takes advantage of the so-called
kernel embeddings to compute such random projections over
the embedding space, using a reduced number of input samples.
Despite the effectiveness of LSH-based techniques, alternative
hashing methods have been also developed in the literature. For
instance, it is the case of the anchor graphs hashing (AGH) [36].
Specifically, AGH builds an approximate neighborhood graph
(anchor graph) where the underlying manifold structure of the
input data is preserved. Then, it hierarchically thresholds the
lower eigenfunctions of the anchor graph Laplacian to generate
the hashing functions. In [37], Kong et al. define the isotropic
hashing, which simultaneously combines different projection
schemes to produce the final binary characterizations. Another
relevant approach is the compressed hashing [38] that makes use
of the sparse coding formulation as hashing framework. Other
works also propose alternative hashing frameworks that provide
even superior results. For example, Gong et al. present [39] the
ITQ, which is one of the most successful conventional hashing
methods. In more detail, ITQ formulates the hashing problem
in terms of minimizing the quantization error after mapping the
input data to the vertices of a zero-centered binary hypercube.
Another successful method is the DSH [26], which follows the
rationale of LSH but using improved binary projections that
better encapsulate the original data distribution. Additionally,
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Xia et al. propose [40] another significant hashing method which
introduces a sparsity-inducing regularizer to reduce the num-
ber of parameters when learning the corresponding projection
operator.

B. Deep Hashing

Despite their effectiveness, conventional hashing methods
tend to require rather lengthy binary codes to achieve accurate
CBIR results when dealing with complex multi-dimensional
optical data, which generally makes other alternatives more
convenient to effectively retrieve RS data [20], [21], [41], [42].
Among all the conducted research, deep-hashing models have
recently exhibited great potential in RS due to the prominent
success of CNNs to uncover highly discriminating features from
aerial scenes [28], [43]. As a result, several deep-hashing meth-
ods have been developed in the most recent RS literature. For
instance, this is the case of the work by Li et al., who define [29]
the deep hashing neural network (DHNN). In details, DHNN
uses a deep feature learning network to first extract features
from RS scenes and then applies a hashing learning network to
compact such feature representations as binary codes. To achieve
this goal, the authors employ a binary quantization loss to encode
each output feature as a binary value, and a pairwise similarity
constraint to enforce similarities between image pairs according
to the corresponding semantic annotations. In [30], Song et al.
improve this framework by presenting the deep hashing CNN
(DHCNN) which is able to achieve even better results. Specif-
ically, the DHCNN makes use of a pretrained CNN to initially
extract deep features from RS images. Then, a hash layer (with
metric learning regularization) and a fully connected layer (with
a softmax classifier) are used to produce the hash codes together
with the class distribution for the retrieval process. Additionally,
Roy et al. develop [31] the metric-learning hashing network
(MiLaN), which takes advantage of pretrained CNN features to
build a metric space using a joint loss function based on the triplet
loss formulation [44]. Different from previous pairwise-based
deep-hashing methods, this approach considers both positive and
negative RS scenes along the optimization process for learning
the output binary codes. In the case of [32], Li et al. propose
an alternative deep-hashing framework for RS that uses quan-
tized convolutional layers. More specifically, the quantized deep
learning to hash is based on a deep feature extraction network
with binary filter weights and 2-bit activations, together with a
hash code learning network that generates the binary hash codes
using a weighted pairwise loss function.

C. Current Limitations in RS Applications

From low-level image features to high-level land-cover se-
mantic concepts, hashing techniques are required to face a
particularly important semantic gap in RS CBIR to satisfy user
queries. Whereas many of the existing deep-hashing methods
try to relieve this gap by using pairwise [32] or triplet loss
functions [31], the process of sampling image pairs and triplets
when training these models is still a critical point to effectively
preserve the semantic relationships among land-cover concepts
in the resulting Hamming space. Note that the increasing avail-
ability of RS data, together with the constant development of

the acquisition technology, are generating an unprecedented
complexity in the task of encapsulating the Earth surface visual
semantics into only a few bits of information [45]. That is,
ongoing RS CBIR systems need to cope with an increasing
within-class diversity and between-class similarity of land-cover
semantic concepts, that may compromise the efficacy of current
deep-hashing techniques under large-scale RS scenarios [17].
State-of-the-art deep-hashing models, such as [31] and [32], are
typically optimized by stochastically sampling image pairs (or
triplets) within each mini-batch, which may limit the number of
positive and negative land-cover concepts that can be considered
each training iteration. Precisely, this constraint may still leads
to insufficient discriminability in the resulting Hamming space,
due to the increasing the semantic complexity and volume of RS
archives [12].

D. Novelty of the Proposed Approach

In order to address these challenges, this article proposes a
new deep-hashing method for RS scene retrieval that jointly
exploits three different components: the SNCA, CA, and quanti-
zation terms. Unlike other works available in the literature [31],
[32], [46], the proposed approach integrates these three com-
ponents for simultaneously covering three key factors of the
RS-based hashing problem: data volume, semantic complexity,
and binarization loss. With the increasing expansion of remotely
sensed big data [47], hashing systems are expected to deal with
vast RS archives. In this situation, the SNCA component is
focused on efficiently uncovering the neighborhood structure in
the metric space from scalable RS data. Moreover, the ongoing
evolution of the acquisition technology, together with other
inherent factors (e.g., instrument positions, lighting conditions,
sensor types, image corrections, etc.) also make the RS data more
complex and difficult to understand [48]. Precisely, the proposed
approach employs the CA term to further alleviate the large-scale
variance problem in RS. Finally, the quantization term pursues
to adequately binarize the corresponding embedding into a
Hamming space to allow efficient retrieval of RS images by con-
tent. In addition to these improvements, the proposed approach
has been defined using two different optimization algorithms
(based on the memory bank and momentum contrast [49]) to
further improve the intraclass discrimination capability when
generating the hash codes from RS data. Compared with differ-
ent state-of-the-art methods, the proposed approach is able to
achieve a better performance than the methods in [29]–[31], and
[50], which also indicates the novelty and advantages provided
by this article within the RS community.

III. CDNE FOR DEEP HASHING

The proposed end-to-end deep-hashing method for RS image
retrieval (CDNE) is made up of three main parts. First, we con-
sider a backbone CNN architecture to generate the correspond-
ing feature embedding space for the input RS images. Second,
we define a new loss function which consists of three joint
components: a class discrimination, a neighborhood embedding,
and a quantization term. Third, we define an optimization mech-
anism based on the momentum update to train the CDNE model.
Fig. 1 summarizes the proposed framework in a graphical way.
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Fig. 1. Proposed end-to-end deep-hashing framework for RS image retrieval
(CDNE).

The details of our approach will be provided in the following
sections. Nonetheless, let us start by defining the notation used
in this article.

Let X = {x1, . . . ,xM} be an RS image dataset consisting
of M images, and Y = {y1, . . . ,yM} is the associated set of
label vectors, where each label vector yi is represented by the
one-hot vector, i.e.,yi ∈ {0, 1}C , whereC is the total number of
classes. If the image is annotated by class c, the cth element ofyi

is 1. We aim to learn a hashing function F(·; θ), represented by
a CNN model, which can map the image xi into a sequence
of binary values, denoted as bi, with the length of L (i.e.,
bi ∈ {0, 1}L). The set θ represents the learnable parameters of
the CNN model. Specifically, we note hi as the output feature
via F(·; θ) associated to xi, (i.e., hi = F(xi; θ)), and fi is the
normalized feature on the unit sphere (i.e., fi = hi/‖hi‖2). The
main aim of a deep hashing system is that the distances of
the generated hash codes measured in the Hamming space can
reveal the semantic-similarities among the associated images. To
preserve such characteristics, we utilize supervised information
(i.e., class labels) to guide the training of the system. The images
associated with the same semantic category are located closer
in the Hamming space than the others (belonging to a different
category). To reach this goal, we propose a new deep hashing
method based on CDNE. In the following sections, we will
describe the proposed joint loss function (see Section III-A) and
the associated optimization algorithm (see Section III-B).

A. Loss Function

In order to encode the RS images sharing the same class
label located nearby in the Hamming space, we utilize neighbor-
hood component analysis [51] for the neighborhood embedding.
Given a pair of images (xi,xj), their cosine similarity sij can
be measured by the inner product of the normalized features ob-
tained from a CNN model, i.e., sij = fTi fj . Then, the probability
(pij) of xi selecting xj as its neighbor in the feature space, is
defined as

pij =
exp(sij/λ)∑
k �=i exp(sik/λ)

(1)

where λ denotes the temperature parameter controlling the con-
centration level of the sample distribution [52]. The higher the
similarity between xi and xj , the higher the chance that xj can

be selected as a neighbor of xi in feature space. Such probability
is often termed as leave-one-out distribution onX . Thus, xi can
be correctly classified with the probability pi as

pi =
∑

j∈Ωi

pij (2)

whereΩi = {yi = yj}denotes the indices of the images sharing
the same class with respect to xi. For scalable datasets, such
neighborhood embedding strategy can be modeled by exploiting
the SNCA [53] with the following loss function:

LSNCA = − 1

|X |
∑

i

log(pi). (3)

As investigated in our previous work [46], the stochastic
optimization of 3 can lead to the discovery of the inherent
locality structure among images in the feature space, especially
when there exists high intraclass variations within the dataset.
However, the class discrimination capability may not be well
characterized by just utilizing SNCA. To overcome this limita-
tion, we introduce CE loss, where class-wise prototypes can be
learned and the associated image features are optimized to be
aligned with respect to them. The CE loss is described by

LCE = − 1

|X |
∑

i

∑

c

yci log(p
c
i ) (4)

where pci denotes the probability that xi is classified into the
class c, formulated as

pci =
exp(wT

c hi)∑
j exp(w

T
j hi)

(5)

where wc are the learned parameters from class c. In order to
make hi approximate the binary values, the quantization loss is
also involved to train the CNN model with the following form:

LQ =
∑

i

‖hi − bi‖22, bi = sign(hi) (6)

where sign(·) represents the signum function. Finally, the pro-
posed joint loss function for training the hashing system is
described by

LCDNE = LSNCA + LCE + LQ. (7)

Note that, unlike other deep metric learning applications, the
loss formulation considered in this article does not include any
penalty hyperparameter for the sake of simplicity and the binary
nature of final Hamming space. The general framework of the
proposed hashing system, including the defined loss composi-
tion, is illustrated in Fig. 1.

B. Optimization Strategy

As introduced in [46], [53], we can obtain the gradient of
LCDNE with respect to fi based on the chain rule

∂LCDNE

∂fi
= − yci (1− pci )‖hi‖2wc +

λ

σ

∑

k

pikfk

− λ

σ

∑

k∈Ωi

p̃ikfk. (8)
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Algorithm 1: CDNE(MB).
Require: xi, and yi

1: Initialize θ and B (randomly), along with σ, L and m.
2: for t = 0 to maxEpoch do
3: Sample a mini-batch.
4: Obtain f

(t)
i and h

(t)
i based on CNN with θ(t).

5: Calculate sij with reference to B.
6: Calculate the gradients based on (8).
7: Back-propagate the gradients.
8: Update B via (9).
9: endfor

Ensure: θ, B

It can be seen that the feature embeddings of the whole
dataset are required for calculating the gradients. Thus, a mem-
ory bank B is exploited to store the normalized features, i.e.,
B = {f1, . . . , fM}. After each iteration, θ can be updated by
using back-propagation, and B can be updated by

f
(t+1)
i ← mf

(t)
i + (1−m)fi (9)

where m is the parameter used for the proximal regularization
of fi based on its previous state. Since the normalized features
are progressively updated in a memory bank, we term this op-
timization strategy as CDNE(MB). The associated optimization
scheme is described in Algorithm 1.

Alternatively, another optimization mechanism based on mo-
mentum update [49], [54] is proposed in our previous work [46].
In order to consistently generate the features for optimizing the
CNN models, we progressively update the state of CNN models
instead of updating the normalized features in the memory bank.
To achieve this, an auxiliary CNN model with parameters θaux
is introduced, and θaux is updated through

θ(t+1)
aux ← mθ(t)aux + (1−m)θ(t) (10)

wherem ∈ [0, 1) is the momentum coefficient, and the state of θ
is updated using back-propagation. Based on the expected mean
average of θaux, the state of the auxiliary CNN model can be
more smoothly evolved than the CNN model with θ. Thus, the
features in B are encoded by F(·; θaux), and updated through

f̂
(t+1)
i ← f̂

(t)
i . (11)

We term this strategy as CDNE(MU). The associated opti-
mization scheme is described in Algorithm 2. After the training
based on these two optimization strategies, the hash code for a
new imagex∗ outside the archive (i.e.,x∗ /∈ X ) can be generated
by

b∗ = sign(F(x∗; θ)). (12)

IV. EXPERIMENTS

A. Datasets

In this article, two benchmark RS image archives are utilized
to evaluate the performance of the proposed method. A detailed
description of the considered datasets is provided below.

Fig. 2. Some examples of the NWPU-RESISC45 (a) and EuroSAT (b) image
collections used in our experiments.

Algorithm 2: CDNE(MU).
Require: xi, and yi

1: Initialize θ, θaux and B (randomly), along with σ, L
and m.

2: for t = 0 to maxEpoch do
3: Sample a mini-batch.
4: Obtain f

(t)
i and h

(t)
i based on CNN with θ(t).

5: Obtain f̂
(t)
i and ĥ

(t)
i based on the auxiliary CNN

with θ
(t)
aux.

6: Calculate sij based on f
(t)
i with reference to B.

7: Calculate the gradients based on (8).
8: Back-propagate the gradients.
9: Update the parameters θaux of the auxiliary CNN

via (10).
10: Update B via (11).
11: endfor
Ensure: θ, B

1) NWPU-RESISC45 [48]: This dataset is a large-scale RS
archive, which contains 31500 images uniformly dis-
tributed in 45 land-cover types: airplane, airport, base-
ball diamond, basketball court, beach, bridge, chaparral,
church, circular farmland, cloud, commercial area, dense
residential, desert, forest, freeway, golf course, ground
track field, harbor, industrial area, intersection, island,
lake, meadow, medium residential, mobile home park,
mountain, overpass, palace, parking lot, railway, railway
station, rectangular farmland, river, roundabout, runway,
sea ice, ship, snow-berg, sparse residential, stadium, stor-
age tank, tennis court, terrace, thermal power station, and
wetland. Fig. 2(a) shows some examples of this dataset. All
the scenes are RGB images with a total size of 256× 256
pixels and spatial resolution ranging from 30 to 0.2 m. The
NWPU-RESISC45 collection is publicly available.2

2) EuroSAT [55]: This dataset consists of 27000 labeled and
geo-referenced Sentinel-2 images with size of 64× 64

2[Online]. Available: http://www.escience.cn/people/JunweiHan/NWPU-
RESISC45.html

http://www.escience.cn/people/JunweiHan/NWPU-RESISC45.html
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pixels, spatial resolution of 10 m, and a total of 13 spec-
tral bands covering the wavelength region from 443 to
2190 nm of the electromagnetic spectrum. Each scene
belongs to one of the following 10 semantic land-cover
categories: Annual Crop, Forest, Herbaceous Vegetation,
Highway, Industrial, Pasture, Permanent Crop, Residen-
tial, River, and Sea Lake. Some examples of this dataset
are displayed in Fig. 2(b). The EuroSAT collection is also
publicly available.3

B. Experimental Setup

Our experiments have been designed to test performance of
the proposed deep-hashing method to retrieve RS images using a
Hamming distance-based ranking. Regarding the retrieval con-
figuration, the considered RS datasets have been randomly split
into training, validation, and testing partitions, containing 70%,
10%, and 20% of the total number of samples, respectively. In
more details, the training partition is used to learn the parameters
of the hashing model whereas the testing partition serves as an
external query set for retrieval. That is, each RS image in the
testing partition is raised as an external query sample to retrieve
images from the training partition. The retrieval performance is
then evaluated using three different figures of merit: 1) precision;
2) recall; and 3) mean average precision (MAP). 13 defines the
average precision (AP) expression

AP =
1

Q

R∑

r=1

P (r)δ(r) (13)

where Q is the number of ground-truth RS images in the dataset
that are relevant with respect to the query, P (r) denotes the
precision for the top r retrieved images, and δ(r) is the indicator
function to specify whether the rth relevant image is truly
relevant to the query.

The proposed method has been implemented in PyTorch4 and
the selected backbone CNN architecture is the ResNet18 [56]
model. Although other backbone networks could be used with
the proposed loss and optimization mechanisms, we employ the
ResNet18 in this article for the sake of simplicity. Regarding the
selected parameters, σ and m are set to 0.1 and 0.5, respectively.
The stochastic gradient descent optimizer is adopted for training.
Besides, the initial learning rate is set to 0.01, and it is decayed
by 0.5 every 30 epochs. Finally, the batch size is set to 256 and
we totally train the model for 100 epochs.

To validate the effectiveness of the proposed method, we test
four different code length values [16,32,64,128] to produce the
corresponding binary codes for the retrieval process. In addition,
we consider multiple state-of-the-art hashing methods for the
experimental comparison: 1) LSH [25]; 2) PCA-ITQ [39]; 3)
PCA-RR [39]; 4) DSH [26]; 5) SP [40]; 6) DHCNN [30];
7) the triplet loss utilized in MiLaN [31] (simply termed as
Triplet hereinafter); 8) DPSH [50]; and 9) DHNN [29]. In the
case of conventional methods, the ResNet18 [56] trained based
on the CE loss is served for extracting the input features. For

3[Online]. Available: http://madm.dfki.de/files/sentinel/EuroSATallBands.
zip

4[Online]. Available: https://pytorch.org/

training DHCNN, Triplet, DPSH, and DHNN, we fine-tune the
associated learning rates (using the validation set) while utilizing
the aforementioned parameter configuration to conduct a fair
experimental comparison. All the experiments are conducted on
an NVIDIA Tesla P100 graphics processing unit.

C. Experimental Results

1) Precision–Recall: Fig. 3 demonstrates the precision val-
ues with respect to the number of retrieved images whenL = 64.
When the number of retrieved images increases, the proposed
method achieves, with a wide margin, the highest precision on
NWPU-RESISC45 and also the best/second-best performance
on EuroSAT being always among the highest results. Analyzing
the other two deep hashing methods included in this experiment
(i.e., DHCNN and Triplet), both CDNE(MU) and CDNE(MB)
can better discover the locality structure of the images in the
Hamming space based on their semantic information. In addi-
tion, Fig. 4 displays the precision–recall curves of the retrieval
performances including two additional deep hashing methods
in the comparison (i.e., DPSH and DHNN). It can be seen that
the proposed method achieves the best performance compared
to the other tested methods. For the conventional methods, the
features are extracted from the CNN model trained via CE
loss. For the CE loss, it has a prominent capability for class-
wise discrimination. However, for the heterogeneous features
extracted from complex RS scenes, the CE loss cannot well
uncover the inherent locality structure for the images within
individual classes. For the contrastive and triplet losses utilized
in the considered deep hashing methods, the possible pairs
and triplets are with the order of O(|X |2) and O(|X |3). With
scalable RS datasets, they cannot be sampled sufficiently dur-
ing a limited number of epochs for training. Thus, the CNN
model cannot fully capture the relationships of the images in
the produced Hamming space. On the contrary, the proposed
approach exploits the memory bank and momentum update for
updating the feature results progressively and the state of the
CNN model can be optimized based on the calculated losses
of the similarities between the features within a broader range
of RS scenes. Therefore, the CNN model can be sufficiently
trained based on the proposed method and the feature variations
within individual intraclasses in the Hamming space can be
captured.

2) MAP: Based on the image retrieval results of the com-
pared methods, we calculate their MAP values when R = 100
and report them in Table I as quantitative assessment. From the
obtained results, we can see that the proposed CDNE losses
outperform the other methods by a large margin. For exam-
ple, when L = 16, CDNE(MU) improves the MAP by 23%
compared with the triplet loss used in MiLaN. As L increases
from 16 to 128, CDNE(MU) maintains a stable image retrieval
accuracy, which indicates that it is suitable for encoding scalable
RS archives with low-dimensional hash codes. As an illustrative
example, we present some image retrieval results (obtained with
L = 32) from both datasets: NWPU-RESISC45 in Fig. 5(a);
and EuroSAT in Fig. 5(b). Given two query images from the
datasets, we retrieve their top 40 nearest neighbors based on
the CDNE(MU), DHCNN, and Triplet losses, and demonstrate

http://madm.dfki.de/files/sentinel/EuroSATallBands.zip
https://pytorch.org/
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Fig. 3. Mean precision versus the number of images retrieved based on the considered methods when L = 64. (a) NWPU-RESISC45. (b) EuroSAT.

Fig. 4. Precision-recall curves of the compared methods when L = 64. (a) NWPU-RESISC45. (b) EuroSAT.

TABLE I
MAP (%) OBTAINED BY ALL THE METHODS ON THE BENCHMARK DATASETS WITH VARIOUS l WHEN r = 100

some selected images in the result. In Fig. 5(a), some images
belonging to commercial area are mistakenly considered as
relevant images with respect to the query image of church,
according to the result of DHCNN. In the Triplet result of
Fig. 5(b), some Industrial images are wrongly retrieved with
respect to the query image of Residential. This visual results
reveal, from a qualitative perspective, that our approach can
precisely retrieve the relevant images even in the presence of
pattern variations within these classes.

3) Ablation Study: In order to further analyze the retrieval
performances with respect to each loss item in CDNE, we
conduct the corresponding ablation study on CDNE(MU).

Specifically, we separately remove the SNCA and CE loss terms
in CDNE(MU), which are termed as CDNE(MU)-w/o-SNCA
and CDNE(MU)-w/o-CE, respectively, and calculate the MAP
scores on the two benchmark datasets. As shown in Table II,
when we remove the SNCA term, the image retrieval perfor-
mance is significantly reduced, since the SNCA term is mainly
utilized for preserving the semantic similarities among the im-
ages in the Hamming space. When we remove the CE term,
the retrieval performance is slightly reduced. This indicates that
the integration of the CE term can improve the quality of hash
code generation by further enforcing the class discrimination
capability.
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Fig. 5. Examples of retrieved images based on CDNE(MU), DHCNN, and Triplet on the two datasets. (a) NWPU-RESISC45. (b) EuroSAT.

TABLE II
MAP (%) OBTAINED BY CDNE(MU)-W/O-SNCA, CDNE(MU)-W/O-CE, AND CDNE(MU) ON THE BENCHMARK DATASETS WITH VARIOUS l WHEN r = 100

TABLE III
MAP (%) SCORES FOR SENSITIVITY ANALYSIS ON λ WHEN l = 64 AND

r = 100

4) Hyperparameter Analysis: Additionally, Table III shows
the MAP scores (with L = 64 and R = 100) achieved by the
proposed approach when varying the λ hyperparameter. As it
is possible to see, the obtained retrieval results are consistent
throughout the different values considered in both datasets,

which denote the stability of the CDNE(MU) hashing method
with respect to λ.

V. CONCLUSION AND FUTURE LINES

In this article, we propose a new deep-hashing method for
RS CBIR, termed CDNE. Our newly proposed method learns a
Hamming space where the locality structures of the RS scenes
can be preserved while the land-cover semantic categories can
be effectively discriminated. Specifically, we define a joint loss
composed of: first, SNCA, aimed at discovering the neighbor-
hood structures of the images with heterogeneous intraclass
variations; second, CE, aimed at separating images with different
semantic categories; and third, the quantization loss, aimed at
pushing the feature outputs of CNN models toward the associ-
ated binary codes.
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Our extensive experiments demonstrate that the proposed
method outperforms other state-of-the-art conventional and
deep-hashing methods. Compared with the widely used con-
trastive and triplet losses in deep-hashing methods, the pro-
posed loss function can be sufficiently optimized by utilizing
the memory bank, so that semantically similar images can be
better grouped and semantically dissimilar images can be better
separated in the resulting Hamming space.

As future work, we plan to develop further research to extend
the proposed hashing system with additional hyperparameters
to make it adaptive to images with multilabel information while
also analyzing its implications.
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