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ABSTRACT

Most current database management systems are optimized for single query execu-

tion. Yet, often, queries come as part of a query workload. Therefore, there is a need

for index structures that can take into consideration existence of multiple queries in a

query workload and efficiently produce accurate results for the entire query workload.

These index structures should be scalable to handle large amounts of data as well as

large query workloads.

The main objective of this dissertation is to create and design scalable index struc-

tures that are optimized for range query workloads. Range queries are an important

type of queries with wide-ranging applications. There are no existing index struc-

tures that are optimized for efficient execution of range query workloads. There are

also unique challenges that need to be addressed for range queries in 1D, 2D, and

high-dimensional spaces. In this work, I introduce novel cost models, index selection

algorithms, and storage mechanisms that can tackle these challenges and efficiently

process a given range query workload in 1D, 2D, and high-dimensional spaces. In par-

ticular, I introduce the index structures, HCS (for 1D spaces), cSHB (for 2D spaces),

and PSLSH (for high-dimensional spaces) that are designed specifically to efficiently

handle range query workload and the unique challenges arising from their respective

spaces. I experimentally show the effectiveness of the above proposed index structures

by comparing with state-of-the-art techniques.
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Chapter 1

INTRODUCTION

Due to the ever increasing amount of data, there is a need for current database

systems to be able to process large amounts of data in an efficient and scalable

manner. This need gave rise to newer database systems, as well as newer paradigms

[30, 89, 27, 21]. Each of these data processing systems try to tackle different problems

in the big field of big data. As everything becomes digital in today’s world, the amount

of incoming queries have also increased along with the data load. Index structures

are often used in database systems to speed up query processing. As the amount of

data increases, there is a need for new efficient index structures that can tackle this

ever increasing amount of data and queries. Index structures need to be designed in

a scalable approach such that it can work on very large amount of data and queries.

Index structures in existing database systems are created and optimized for single

query execution [81]. Often times, multiple queries need to be executed as part of a

query workload. This could be because of several reasons: (a) the amount of data

in data warehouses can be large, and tables in these data warehouse environment

can consist of several columns. Often, many queries have to be executed on separate

columns for data analysis in data warehouses [22], (b) large number of users exist

in a multi-client environment [10] with one or more queries associated to each user,

or (c) continuous queries from a stream are batched as a query workload [81], etc.

Queries in a query workload often have overlaps that can be leveraged for faster query

processing. One of the main reasons this happens is due to overlapping regions of

interests between users in a single environment [10].

Figure 1.1 shows a sample range query workload for a 2D space. As seen in the
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Figure 1.1: Sample Range Query Workload in a 2D Space

figure, often times the queries in a query workload have common overlaps between

them. There is a need for an index structure that can take into consideration these

overlaps and be able to process queries in an effective and scalable approach. There

has been considerable research done to process query workloads consisting of specific

types of queries, namely: top-k queries [81], range queries [25], group-by queries [22],

and so on.

1.1 Shortcomings of Existing Techniques

The main goal of query workload optimization is to leverage the common data

overlaps between different queries. There are several ways to tackle the problem of

query workload optimization: (a) One way is to rewrite multiple queries into a single

query [25] or using views [76, 52, 53]. In these type of approaches, the goal is to find

ways to combine overlapping queries into a single query. Due to this, it is difficult to

find the results of individual queries. (b) Another approach is to leverage the cache to

effectively use intermediate results [71, 46]. Research in this field includes improving

the performance of storage and retrieval of past query results for future queries that

are stored in the cache. Approaches like these are not scalable since query results can

easily exceed the cache size, especially when the query workloads are large. (c) One
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more way is to identify common sub-expressions among different queries and then

create an optimal global query plan based on these commonalities [77]. This problem

has been shown to be NP-Hard [45], and heuristics-based approaches need to be used

for query workloads larger than 10.

Another way of executing query workloads efficiently is to identify the most im-

portant parts of the index that will be used by multiple queries and bring those parts

of the index into the memory for faster query execution. Given a query workload,

the challenge is to develop effective query plans and efficient algorithms in order to

identify the important parts of the index to be brought into the memory for fast

query processing. These algorithms have to be fast and scalable in order to be ef-

fective. In my works [69] and [70], I have introduced novel query plans and index

selection algorithms that can efficiently execute range query workloads for 1D spaces

and 2D spaces respectively. I analyze the given query workloads using novel cost mod-

els and query plans, and then identify the most important parts of the index that

need to be brought into the main memory and cached for efficient query processing.

I experimentally show that existing database systems are not optimized for query

workload execution, and my proposed cost models and algorithms are very effective

and scalable.

Range queries are one of the most important general queries. Queries such as point

or partial match queries are special types of range queries [78]. Due to their impor-

tance in different domains, considerable research has been done for improving range

query performance. In the data warehouse environment, range queries are used as

part of the select and aggregate query workload. Range queries in multi-dimensional

spaces have also become very important as spatial and mobile applications gain popu-

larity, thanks to the wide-spread use of mobile devices, coupled with increasing avail-

ability of very detailed spatial data (such as Google Maps and OpenStreetMap [73]),

3



and location-aware services (such as FourSquare and Yelp). For implementing spatial

range queries (range queries in 2D spaces), many of these applications and services

rely on spatial database management systems, which represent objects in the database

in terms of their coordinates in 2D space. Queries in this 2D space are then processed

using multidimensional/spatial index structures that help quick access to the data.

Query processing workloads in data warehousing environments often includes data

selection and aggregation operations. When this is the case, column-oriented data

systems are often the preferred choice of data organization. In a column-oriented

system, each attribute is stored in a separate column. All the values of the attribute

are stored successively on the disk. This is different from the traditional row-oriented

systems where data belonging to the same tuple (from different attributes) are stored

consecutively. This leads to the ability of compressing the data in a column that

leads to reduction in I/O, which further leads to faster query processing [8]. Due to

this benefit of compression, column-oriented systems have gathered a lot of attention

in the research community as well as in the commercial world [86, 63, 101]. Bitmap

indexes [93, 96] have been shown to be highly effective in answering queries in data

warehouses [97] and column-oriented data stores [8]. There are two chief reasons

for this: (a) first of all, bitmap indexes provide an efficient way to evaluate logical

conditions on large data sets thanks to efficient implementations of the bitwise logical

“AND”, “OR”, and “NOT” operations; (b) secondly, especially when data satisfying a

particular predicate are clustered, bitmap indexes provide significant opportunities for

compression, enabling either reduced I/O or, even, complete in-memory maintenance

of large index structures. In addition, (c) existence of compression algorithms [31, 94]

that support compressed domain implementations of the bitwise logical operations

enables query processors to operate directly on compressed bitmaps without having

to decompress them until the query processing is over and the results are to be
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fetched from the disk to be presented to the user. Often times, the column domains

in data warehousing environments are hierarchical in nature (e.g., geographical data,

biological taxonomies, etc.). In such cases, using a hierarchy of bitmaps often leads to

faster query processing due to the ability to choose higher bitmaps in the hierarchy for

executing larger range queries [23]. Since bringing the entire hierarchy of bitmaps into

the main memory would incur in a large I/O cost, there is a need to choose the right set

of bitmaps from the hierarchy. The challenge then is, if given a query workload and a

hierarchy of bitmaps, to come up with novel query plans and algorithms to choose the

most optimal subset from the given hierarchy of bitmaps that can efficiently execute

the given query workload. In this dissertation, I introduce the problem of range query

workload execution in 1D and 2D spaces, and then introduce novel query plans and

index selections algorithms that effectively execute a given range query workload in

these spaces.

Range queries in high-dimensional spaces are a very important set of queries with

applications in content-based systems of multimedia such as photos, videos, audio

recordings, and sensor data [62]. Due to the well-known curse of dimensionality,

most exact range query algorithms become slower than a linear scan as the number

of dimensions increases. Hence, often times, an approximate range search is good

enough to get results for a query, within an error bound, and is much faster than

finding the exact results [29]. Due to these reasons, the problem of approximate

range search has garnered significant amount of attention in the research community

[90, 87, 44, 29, 62, 88]. A popular approach to solving approximate range queries

is to represent the high dimensional data in a lower dimensional space, and do the

query processing in this lower dimensional space. The data is then hashed to hash

buckets in this space, with the idea that data points closer in the original space will

be mapped to same bucket in the lower dimensional space. Locality Sensitive Hashing
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(LSH)[44] is one of the most commonly used hashing techniques to solve approximate

range queries. While Locality Sensitive Hashing has been studied and improved upon

extensively [62, 98, 48, 59, 11, 29, 36], all the existing approaches are optimized for

single query execution. In multimedia, it is more beneficial to represent data by a

select group of points that can help identify the data easily. It is not necessary to

store the entire data. These group of points are often generated by localized feature

extraction algorithms such as SIFT [60] or SURF [12]. When a user is interested

in finding a similar data object, a similarity query needs to executed on each of the

features that represent this data object. These individual similarity query points can

be collectively viewed as a set query. In traditional and state-of-the-art LSH-based

techniques, users input a success guarantee for each individual query point, instead

of a guarantee for the entire set query. A lower guarantee on each of these individual

query points can lead to overall misses, and a stricter guarantee on these query points

can lead to redundant and wasteful work for the entire set query (which can lead to

slower query processing times). In Chapter 5, I present an index structure, Point

Set LSH (PSLSH), that is specifically designed to give guarantees for an entire set

query while minimizing wasted and redundant work (thus improving the overall query

execution time).

1.2 Research Contributions

The goal of this dissertation is to design and present novel index structures that

are optimized for execution of range query workloads. I describe the unique challenges

that occur in different types of spaces: namely, 1D, 2D, and high-dimensional spaces.

I present innovative algorithms and storage mechanisms that are unique to solving the

challenges occurring in the above mentioned 1D, 2D, and high-dimensional spaces.

These index structures that are presented in this dissertation are shown to be scalable
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for large data and large query workloads. In this dissertation, I will explain in detail

these algorithms and storage mechanisms for each of the 1D, 2D, and high-dimensional

spaces. I outline the research contributions of each of these works in the next sections.

1.2.1 Range Query Workloads in 1D Spaces

Data in data warehousing environments are often hierarchical in nature. Bitmaps

are known to be very effective due to their ability to store data in a compressed

manner which can reduce the IO cost. In earlier works [23, 24], the performance

benefit of storing data as hierarchically organized bitmaps has been shown. Existing

literature focuses on creating query plans by combining relevant nodes in a hierarchy

for faster query execution (which I refer to as inclusive query plans). These plans are

only suitable for smaller query ranges. In my work [69], I presented additional novel

query plans (namely, exclusive and hybrid) that can answer query ranges of different

sizes efficiently. These algorithms are explained in detail in Chapter 3. I further

present algorithms that can choose a subset of the hierarchy that can most effectively

execute a given range query workload. In this work, I also look at cases where there

are no memory constraints and also real-life cases where there memory constraints.

Experimental results show the effectiveness and efficiency of our proposed algorithms

to execute a range query workload.

1.2.2 Range Query Workloads in 2D Spaces

Due to the popularity of geospatial applications such as Google Maps, Foursquare,

etc., spatial range queries are very important. While there has been a lot of research

in creating index structures to speed up spatial range queries, most of these index

structures are not optimized for executing spatial range query workloads. In order to

process spatial range query workloads, I leverage space-filling curves to convert the
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2D data into a 1D space. Further, I create a hierarchy of bitmaps in this 1D space.

Since these bitmaps can be large in number, I present a novel block-based storage

mechanism for efficient storage. I further present novel block-based algorithms that

choose the most effective subset of bitmaps that can help efficiently execute a given

spatial range query workload. Experimental results of this novel index structure,

called compressed Spatial Hierarchical Bitmaps (cSHB), show the efficiency of my

approach when compared with spatial extensions of popular DBMSes.

1.2.3 Range Query Workloads in High-Dimensional Spaces

One of the most important techniques for dealing with the similarity search prob-

lem in high-dimensional spaces is Locality Sensitive Hashing (LSH). Locality Sensitive

Hashing solves the approximate query problem in order to effectively answer range

queries or similarity search queries in high-dimensional spaces. In most LSH-based

works, the user has to input a success guarantee for individual query points, instead

of a set of query points. An underestimation of this success guarantee on individual

query points can lead to misses (and low accuracy) and an overestimation can lead

to wasted work. In this dissertation, I present a novel index structure, Point Set LSH

(PSLSH), that uses a multi-level design to give a guarantee on an entire set of query

points (instead of individual query points). I also present efficient cost models and

design strategies that can effectively allocate resources such that the overall execution

time is minimized, while guaranteeing a user-input success guarantee for the entire

set of query points. Experimental evaluation shows the effectiveness and efficiency of

PSLSH when compared to its alternatives.

1.3 Dissertation Outline

This dissertation is organized in the following way:
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• In Chapter 2, I give an overview of the existing works in query workload opti-

mization and range query processing in 1D, 2D, and high-dimensional spaces.

• In Chapter 3, I introduce and provide detailed novel query plans and algorithms

(HCS) for efficient execution of range query workloads in 1D spaces.

• In Chapter 4, I identify the challenges for processing range query workloads

in 2D spaces and present an innovative index structure (cSHB) to tackle the

challenges.

• In Chapter 5, I describe the challenges for processing range query workloads

in high-dimensional spaces and present a novel index structure (PSLSH) that

effectively solves these challenges for efficient execution of range query workloads

in high-dimensional spaces.

• In Chapter 6, I conclude this dissertation.
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Chapter 2

RELATED WORK

In this chapter, I give an overview of the existing work in the fields of query

workload optimization and range query processing in 1D, 2D, and high-dimensional

spaces. Range queries are an important type of queries. In this dissertation, I look

at the problem of executing range query workloads in 1D, 2D, and high-dimensional

spaces. Each of these types of spaces have their own challenges. I give an overview

of the works and different methodologies that are published to tackle the problem

of query workload optimization. There has also been a lot of research in the area

of developing index structures to efficiently execute range queries in these different

types of spaces. I present an overview of these index structures in this chapter.

2.1 Query Workload Optimization

Often times, queries come as part of a query workload, and it is advantageous to

execute them as part of the query workload instead of executing them individually.

Considerable research has been done in the area of multi-query optimization in order

to process query workloads faster. There are different proposed methods to achieve

this optimization. It can be broadly divided into the following categories: (a) Given

a set of queries in a query workload, one way to process the set of queries is to rewrite

multiple queries into a single query [25, 34]. In [25], the idea is to find the common

ranges between multiple range queries, and rewrite them into a single query. The

drawback of approaches like this is that it is not easy to get the results of individual

queries, which in many cases is necessary. In our works, our goal is to also get the
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results of individual queries. Similar to this approach, another way of multiple query

optimization is to rewrite the queries using views [76], [52] or a set of views [53]. (b)

Another approach is to use an active cache that stores past query results that can be

reused for future queries [46, 71]. The main goal of these approaches is to improve

the storing and retrieval of intermediate results from the cache. While our works also

use the cache for improved query processing, our goal behind using the cache is to

save the most important parts of the index that will be used by multiple queries. My

proposed index structures do not need to save intermediate results, which can require

the size of the cache to be large. Like I show in this work, even for large amounts of

data, our work only requires about the size of an L3 cache, which is available in most

modern systems. (c) Another method is to identify common sub-expressions for a

given set of queries, and create an optimal global execution plan based on the found

commonalities [79, 77]. Any two sub-expressions of different queries can potentially

have nothing in common, can be exactly same, can have some parts in common. In

[45], this problem of finding common sub-expression has been shown to be NP-Hard.

As the number of queries goes beyond 10, this problem can only be solved using

heuristic methods. While their goal is also to reduce the cost of processing a query

workload, their methodology is very different. In this work, I identify the important

portions of the index that are going to be used by the query workload using novel cost

models and query plans. I bring these portions of the index into the main memory

and store in the cache in order to efficiently processing a query workload.

2.2 Range Query Workload Execution over Data Columns in 1D Spaces

Range queries are often used in data warehouse environments to perform opera-

tions that include aggregating a certain subset of data. In data warehouse environ-

ments, due to the ability of effective data compression, column-store architectures
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are the preferred choice of data organization [8]. Compression of the data leads to

reduction in the I/O cost, thereby speeding up the querying process. Building index

structures over these data columns can further speed up the querying process. In [55],

the authors propose a hierarchical index for execution of range-sum queries. The key

idea of this work is to improve the update performance by reducing the number of

cell accesses per query. This work focuses on improving the performance for a data

cube. In [42], the authors describe a hierarchical data structure wherein they store

the aggregate values of the leaf nodes in appropriate internal nodes. By doing this,

they are able to stop searching at an internal node if all the values under the internal

node are included in the range query. The main problem of this approach is that the

aggregate values are stored in the internal nodes even for queries that do not need to

do any aggregation. This results in wasted storage and computation thus reducing

the performance of the queries. The work presented in [33] is an extension of [42]. In

[33], the authors present a generalized index structure where they are able to use the

information stored in the upper levels of the hierarchy. For queries that do not require

aggregation, the aggregate values are not explicitly stored. The main focus of [66] is

to cache aggregate results efficiently such as to be able to process both analytical and

transaction query workloads in one system. In [41], the authors have presented novel

techniques to execute range queries for different types of aggregation operations such

as sum and max. In order to do this effectively, they use precomputed max over bal-

anced hierarchical tree structures. In [23] and [24], the authors propose hierarchically

organized bitmaps for efficient execution of OLAP queries for data with hierarchical

domains. They identify internal nodes of the hierarchy that can speed up the query

execution of OLAP queries. Their proposed query plan is what I term as an inclusive

query plan. In [69], I present novel cost models and algorithms to choose a subset of

bitmaps (and cache them in the memory) from a given hierarchy, to efficiently exe-
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cute a given query workload. In addition to the inclusive query plan, I also propose

exclusive and hybrid query plans to speed up the execution of range queries. Their

work is also not optimized for range query workloads, whereas in this work, I identify

nodes of the hierarchy that can efficiently execute a range query workload.

2.3 Range Query Workload Execution in 2D Spaces

2.3.1 Multi-level Index Structures using Bitmap Indexes

Bitmap indexes have been used in column store architectures for their benefit of

compression, which further leads to improved I/O. There has been a lot of work on

improving the performance and compression ratios of bitmap indexes [93], [95], [94],

[75], [31], [26], [56], [50], [82]. Majority of the newer bitmap indexes use a compression

scheme known as run-length encoding [93]. There are two benefits of using run-

length encoding: 1) it has a good compression ratio, and 2) bitwise operations can

be done on compressed bitmaps without having to decompress them [94]. Due to

these benefits, bitmap indexes have been used in data warehousing environments and

column-oriented architectures [95]. With these enhancements, bitmap indexes have

also been shown to be effective for high cardinality data [96].

There has been some work done in the field of multi-level index structures that

use bitmaps [82], [68], [83]. As mentioned earlier, in data warehouse environments,

column-store architectures are a preferred choice of data organization. Bitmap indexes

are used in column-store architectures for their benefit of compression and ability to

do bitwise operations even on compressed bitmaps. It has been shown that bitmap

indexes outperform the traditional index structures like B-tree in these environments

[93], [97]. In [69] and [70], our goal is to efficiently choose a subset of bitmaps from

a given hierarchy to execute a given query workload. I introduce different query
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plans (namely, inclusive, exclusive, and hybrid). To the best of my knowledge, all the

existing works focus on using the inclusive query plan. The main idea of the inclusive

query plan is to choose higher level bitmaps that entirely satisfy the given query range

and then choose the leaf level bitmaps for the boundary nodes in the query range to

return the exact answer [75]. In [15], the authors also deal with the challenge of

choosing the appropriate subset of bitmaps for multiple attributes, but their focus is

on using data mining techniques in order to find them. In our work, our goal is the

find the appropriate subset of bitmaps for a given domain hierarchy. There has been

some work done on the creation of the hierarchies in a data warehouse environment

for efficient execution of range queries [23], [24]. I assume that the hierarchies are

given in the work presented in this chapter.

Bitmaps have also been used in spatial query processing. In [84], the authors

propose an MBR-based spatial index structure named HSB-index. In this index, the

leaves of the tree are encoded in the form of bitmaps. Just like in an R-tree [38], given a

query, the HSB-index traverses down the hierarchical structure in a top-down manner

to choose the appropriate bitmaps that are needed to be combined. In our work [70], I

recognize that even internal nodes of the hierarchy can be encoded as bitmaps, which

leads to improved performance for spatial range query workloads. Our work focuses

on choosing the appropriate subset of bitmaps from the hierarchy (internal and leaf

nodes) that can efficiently solve the given spatial range query workload. In [37], the

authors describe algorithms for storing and retrieving large multidimensional HDF5

files. They use bitmap indexes in order to do the operations efficiently. They do

support range queries on their architecture, but unlike our work, they don’t leverage

space-filling curves or hierarchical bitmaps. Also, none of the above mentioned works

in spatial query processing are optimized for processing spatial range query workloads.
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2.3.2 Multi-Dimensional Space Partitioning

Based on the partitioning strategy, multi-dimensional space partitioning can be

broadly split into two categories: In the first category, a bounded region of the space is

divided into multiple ”open” partitions. Each of these partitions borders a boundary

of the input region. Index structures such as Quadtree [35], G-tree [54], and k-d tree

[17] fall into this category. In the second category, some of the boundary partitions

are ”closed”, i.e. these regions do not necessarily border any boundary of the input

region. These partitions are often called minimum bounding regions (MBRs). These

MBRs can tightly cover the input data objects. Index structures such as R-tree [38]

and its variants (R+-tree [80], R*-tree [14], Hilbert R-tree [49], etc.) are included

in this category. There are two main drawbacks of these multi-dimensional index

structures: 1) Overlaps between partitions (which causes redundant I/O), and 2)

empty spaces within partitions (which causes wasted I/O). These two issues still

exist in these data structures even after significant amount of research has been done

[72]. One way to solve this challenge is to parallelize the index structures. In [9], the

authors create a data warehousing system on top of Hadoop. This main goal of this

system is the parallelization of the building of the R*-tree index structure and the

subsequent query processing using Hadoop.

Most of the above mentioned index structures, as mentioned earlier, are optimized

for single query processing. There has been some work done for the execution of query

workloads as well. In [25], the authors extend the R-tree index structure to execute

multiple range queries. But in their work, the authors combine adjacent queries into

a single query. Hence, their algorithm is not able to distinguish the results of the

individual queries in the query workload. In [74], the authors find the Hilbert values

of the centroid of the rectangles formed by the given set of range queries. These
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Hilbert values of the queries are then sorted, and the queries are then grouped in

order to execute them over an R-tree.

2.3.3 Space Filling Curve based Indexing

As described in Chapter 4, I use a space-filling curve called Z-order [67] to convert

the multi-dimensional space into a 1-dimensional space, in order to do the indexing

and query processing on the 1-dimensional space. There are two commonly used space

filling curves, one is the Z-order curve that I use, and the other is the Peano-Hilbert

curve [39]. The Z-order curve maps the multi-dimensional space into a 1-dimensional

space using a process called bit-shuffling. This process is very simple and efficient.

On the other hand, even though the Hilbert curve generates a better mapping from

the multidimensional space into a 1-dimensional space, it uses a more complicated

and costly process [72]. Therefore, the Z-order curve has been used to tackle multi-

dimensional problems. Space-filling curves have been used in several index structures

to process spatial queries. In [72], the authors propose an index structure called

BLOCK. The key assumption of this work is that the data and the index structure

fit in the main memory. Hence, their goal is to reduce the number of checks that are

done between the query range and the data. They use the Z-order to convert the

data points into a 1-dimensional space, and then sort the list of the Z-order values.

They start at the coarsest level for a given query. If a block in the index is included

entirely in the query range, they retrieve the entries in this block, else they go to the

next granular level. In our work [70], I don’t assume that the data and the index

can fit into the main memory. Hence, our cost model takes into account the I/O cost

as well. In [100], the authors build a system called VegaGiStore on top of Hadoop

to process spatial queries in parallel. This system creates a bi-level index structure.

In the first level, they create a quadtree-based global index that is used for finding

16



the required part of the data. In the second level, they use a local index that uses

the Hilbert curve for finding the spatial objects in the retrieved part of the data. In

[13], the authors create an index structure called UB-tree. This index structure uses

the Z-order curve to store multi-dimensional data in a B-tree, and do subsequent

query processing on the B-tree. In [85], the authors present a range query algorithm

that is specifically optimized for this UB-tree. The UB-tree is also used in the work

presented in [65]. In this work, the authors create a hierarchical clustering scheme

for the fact table of a data warehouse. The data in this fact table is stored using the

UB-tree. Unlike our work [70], none of the above approaches are optimized to handle

a spatial range query workload.

2.4 Range Query Workload Execution in High-dimensional Spaces

Efficient implementations of range and nearest neighbor queries are critical in

many large data applications. Tree-based indexing methods (such as KD-tree [17],

X-tree [18], SR-tree [51], etc.) have been shown to be effective for lower dimensions

(dimensions less than 10), but suffer from the curse of dimensionality as the num-

ber of dimensions increases – in fact, they are often outperformed even by a linear

scan [44]. One solution to address this problem is to look for approximate results

using approximate indexing techniques, such as VA-files [92] and LSH [44].

2.4.1 Locality Sensitive Hashing (LSH)

The problem of approximate range searches and nearest neighbor queries gained

importance as it is much efficient to retrieve good enough results in much lesser time.

Locality Sensitive Hashing (LSH), first introduced in [44], is a popular technique that

hashes similar data points into same buckets than dissimilar points. Since when using

only one hash function, a lot of false positives may be generated, in order to reduce
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the number of false positives, k different hash functions are conjunctively combined.

Then, in order to satisfy the recall guarantee, multiple layers of such hash functions

(called hash layers) are created. For any query point q, all the points in the hash

buckets that the query point q hashes to are retrieved for all hash layers. These

candidate points potentially contain false positives, and hence in order to remove the

false positives, a filtering step is required where the distance of the candidate point

and the query point q is calculated.

While the original LSH scheme [44] was proposed for binary Hamming spaces,

the authors then extended the scheme for Euclidean spaces [29], and since then LSH

has also been proposed for other distance and similarity measures [91]. While LSH

was originally designed to solve the (r, c)-Near Neighbor problem (introduced in Sec-

tion 5.1.4), it has also been used to solve other related problems. In fact, most of the

following works (except the notable exceptions of E2LSH1, C2LSH [36], and QALSH

[43]) have been primarily designed to solve the c-Approximate Nearest Neighbor prob-

lem [87, 62] (c-k-ANN), where the goal is to find k neighbors such that the distance

of the query point and the ith nearest neighbor is at most (1 + c) times the distance

from the query point to its true ith nearest neighbor.

2.4.2 Efficient Variants of LSH

Due to its effectiveness in supporting range and nearest neighbor queries in high-

dimensional spaces, there are several widely used implementations of LSH. In [11],

the authors propose to create a prefix-tree of hash functions for each hash layer. By

using a prefix-tree, the authors are able to decide during query processing on how

many hash functions to use in order to return the desired number of top-m results.

In [62], the authors propose a probing sequence for the hash buckets in order to get

1http://www.mit.edu/~andoni/LSH/
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the desired number of top-m results. The intuition is that similar data points lie in

neighboring hash buckets, and hence by probing neighboring buckets they are able to

retrieve more results, while creating less number of hash layers. In [88], the authors

project the original points into a new space using hash functions. Each point in this

space is represented using a z-order code, and the points are further retrieved based

on the similarities between their z-order codes. In [59], the goal of the authors is to

reduce the number of random I/O operations that are needed to retrieve candidate

data points. They propose a distance measure between the compound hash keys

(CHKs). They also propose a linear order on these CHKs, which are then stored

in the ascending order on the secondary storage. Their idea is that if similar CHKs

are stored on the same page, the total number of I/O operations will be reduced.

In QALSH [43], the authors propose to build hash functions that are “query-aware”,

i.e., the bucket of the hash functions are created based on an input query point. In

C2LSH [36], the authors propose to build a base of LSH functions, and then the points

that collide most frequently (based on a count threshold) with the query point in these

base functions are chosen as candidate points. By using this concept of “collision

counting”, the number of candidate points are reduced without having the need to

have large number of layers. This approach has been shown to be more effective

by generating less number of candidates, using smaller index structures, than the

original LSH index structure [36, 43]. In this work, using effective parameters based

on our proposed cost models, I build upon this concept of collision counting, and

further reduce the number of candidates and the query processing time for processing

a query set.
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To the best of my knowledge, no existing work tries to solve the problem of giving

guarantees on entire query sets in high-dimensional spaces. In [99], the authors pro-

pose an LSH-based index structure for solving multiple queries with different distance

metrics. None of these works are designed to provide a guarantee for the entire query

set, and hence can generate excessive candidates resulting in slow processing times.
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Chapter 3

EXECUTION OF RANGE QUERY WORKLOADS IN 1D SPACES

3.1 Introduction

Range selection queries are frequent in many applications, including online analyt-

ical processing (OLAP) scenarios, where an aggregation operation needs to be applied

over a certain range of data [41]. When data are large and the query processing work-

loads consist of such data selection and aggregation operations, column-oriented data

stores are generally the preferred choice of data organization, especially because they

enable effective data compression, leading to significantly reduced IO [8].

Recently, many databases have leveraged bitmap-indices, which themselves can

be compressed, for efficiently answering queries [3], [2]. When column-domains (e.g.,

geographical data, categorical data, biological taxonomies, organizational data) are

hierarchical in nature [24], it is often more advantageous to create hierarchical bitmap

indices to efficiently answer queries over different sub-ranges of the domain. [24]

for example proposes a hierarchically organized bitmap index (HOBI) for answering

OLAP queries over data with hierarchical domains.

In this chapter, I also focus on hierarchically organized bitmap indices for answer-

ing queries over column-oriented data and present efficient algorithms for selecting the

subset of bitmap indices to answer queries efficiently over compressed data columns.

3.1.1 Contributions of this Work

Since IO is often the main bottleneck in processing OLAP workloads over large

data sets, given a query or a workload consisting of multiple queries, the main chal-
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lenge in leveraging hierarchically organized bitmap indices is to choose the appropriate

subset of bitmap indices from the given hierarchy to process the query. [24], for ex-

ample, proposes a (what I term as an “inclusive”) strategy which leverages bitmap

indices associated to the internal nodes along with the bitmap indices associated to

the data leaves to bring together the data elements needed to answer the query.

In this chapter, I note that such inclusive strategies can be sub-optimal. In fact,

[24] shows that the inclusive strategy is effective mainly for small query ranges. There-

fore, I introduce a more general cut-selection problem, which aims to help identify a

subset (referred to as a cut) of the nodes of the domain hierarchy, which contain the

operations nodes with the appropriate bitmap indices to efficiently answer queries.

In particular, I discuss inclusive, exclusive, and hybrid strategies for cut-selection

(Section 3.3.1) and experimentally show that the so-called exclusive strategy provides

gains when the query ranges are large and that the hybrid strategy provides best so-

lutions across all query range sizes, improving over the inclusive strategy even when

the ranges of interest are relatively small (Section 3.4.1). I also show that the hy-

brid strategy can be efficiently computed for a single query or a workload of multiple

queries and also that it returns optimal (in terms of IO) results in cases where there

are no memory constraints (Section 3.4.2).

However, in cases where the memory is constrained, the cut-selection problem

becomes difficult to solve. To deal with these cases, in Section 3.2.3, I present efficient

cut-selection strategies that return close to optimal results, especially in situations

where the memory limitations are very strict (i.e., the data and the hierarchy are

much larger than the available memory).

Experiment results presented in Section 3.4 confirm the efficiency and effectiveness

of the proposed cut-selection algorithms.
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3.2 Problem Specification

In this section, I first introduce the relevant concepts and notations, provide a cost

model, and introduce the cut-selection problem for identifying a subset of the nodes

of the domain hierarchy, containing the nodes with the bitmap indices to efficiently

answer a given query or a query workload.

3.2.1 Key Concepts, Parameters, and Notations

I first provide an overview of the concepts and parameters necessary to formulate

the problem described in this chapter and introduce the relevant notations.

Columns and Domain Hierarchies

A database consists of relations, R = {R1, . . . , Rmaxr}. Each relation, Rr, consists of

a set of attributes, Ar = {Ar,1, . . . , Ar,maxar}, with domains Dr = {Dr,1, . . . , Dr,maxar}

In this chapter, without loss of generality, I associate to each attribute, Ar,a, a corre-

sponding hierarchy, Hr,a, which consists of a set of nodes,Nr,a = {Nr,a,1, . . . , Nr,a,maxnr,a}.

Also, since the goal is to efficiently answer queries over a single data column, unless

necessary, I omit explicit references to relation Rr and attribute Ar,a; hence, when I

do not need to refer to a specific relation and attribute, I simply omit the relation

and attribute subscripts; e.g., I refer to H instead of Hr,a.

In this chapter, when talking about the nodes of a domain hierarchy H, I use the

following notations:

• Parent of a node: For all N∗, parent(N∗) denotes the parent of N∗ in the

corresponding hierarchy; if N∗ is the root, then parent(N∗) = ⊥.

• Descendants of a Node: The set of descendants of node n in the correspond-

ing hierarchy is denoted as desc(n).
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• Leaves: LH denotes the set of leaf nodes of the hierarchy H. Any other node

in H that is not a leaf node is called an internal node. The set of internal nodes

of H is denoted by IH . I assume that only the leaves of a hierarchy occur in the

database.

• Leaf Descendants of a Node: Leaf descendants of a node are the set of

nodes such that they are leaf nodes as well as descendants of the given node;

i.e., for a node n, leafDesc(n) returns a set of nodes such that

∀b∈leafDesc(n)b ∈ LH ∧ b ∈ desc(n).

Query Workload

In this chapter, I focus on query workloads with range queries on an attribute (i.e.,

column) of the database relations:

• Range Specification: Given an attribute Aa and the start and end points, i

and j, I denote the corresponding range specification as, rsa,i,j.

Given two range specifications, rsa,i,j and rsa,k,l,

– if k > j, then these two range specifications are disjoint,

– if (i < k, l) ∧ (j > k) ∧ (j < l), then the two range specifications are

intersecting, and

– if (i < k, l)∧ (j > k, l), then the two range specifications are overlapping.

• Range Queries: Each query q involves fetching one or more sets of column

values, such that each set of values belongs to a continuous range over the

domain hierarchy of the attribute.

A query, q, can have multiple range specifications. The set of range specifica-

tions for a query q is denoted as RSq. Without loss of generality, I assume that
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all range specifications in RSq are disjoint. If a query has two intersecting or

overlapping range specifications, rsa,i,j and rsa,k,l, then I partition the query

into two subqueries, q1 and q2, such that range specification for q1 is rsa,i,j and

specification for q2 is rsa,k,l. In Sections 3.3.2 and 3.3.3, I discuss algorithms for

handling multiple queries.

• Range Nodes: Given a range specification, rsa,i,j, the set of leaf nodes that

fall in this range is denoted as, RNa,i,j. These nodes are also referred to as

range nodes.

Given a query, q, and a node n, Gq,n ∈ {0, 1} denotes whether the node n is

a range node for query q. More specifically, if node n is a range node for any

range specification in RSq, then Gq,n = 1 and otherwise, Gq,n = 0.

The set of all range nodes for any range specification of query q is denoted as

RNq. If RNq is empty, the query returns null, whereas if RNq has the exact

same nodes as LH , then the query returns the entire database content for the

attribute on which H is defined.

Hierarchically Organized Bitmap Indices

As described above, the query workload includes queries that fetch ranges of values

from columns of relations in the database, before performing further operations on

these ranges. When bitmap indices are available, these operations are implemented

in terms of bitmap manipulations [75]: for example, intersection of two range queries

can be performed as bitwise-AND of two bitmap indices representing the database

values in the two ranges. This ensures that those data objects that will be pruned as

a result of the query processing are never fetched into memory. In this work, I assume

that indices are organized hierarchically; i.e., every node n in H has a corresponding
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bitmap Bn denoting which of the leaf nodes of n occur in attribute A of the database.

• Bitmap Density: Each bitmap Bn has a bit density, 0 ≤ DBn ≤ 1, denoting

ratio of bits set to 1 to the size in the bitmap.

Note that bitmap Bn may or may not have been materialized in the form of a bitmap

index in the database.

3.2.2 Cost Model and Query Plans

Especially when the data sets are large, the bitmaps are often stored in a com-

pressed manner and the various bit-wise operations are performed on compressed

versions of the bitmap indices, further boosting the query performance [93]. In gen-

eral, the time taken to read the bitmaps from secondary storage into the memory

dominates the overall bitwise manipulation time [75], [31]. The cost of this process

is proportional to the size of the bitmap file on the secondary storage; the larger the

size of a bitmap file on a secondary storage, the longer it takes to bring the bitmap

into the physical memory.

Read Cost of Compressed Bitmap Indices

Therefore, I model the cost of a bitmap operation as proportional to the size of the

corresponding (compressed) bitmap file, which in turn determines the time taken to

read a bitmap into the memory. Note that in general the query performance of a

bitmap index with density greater than 0.5 is equivalent to the performance of a

bitmap with density complement to the original [94]. For example, performance of

a bitmap with density 0.7 is often equivalent to the performance of a bitmap with

density 0.3. This is because a bitmap with density 0.7 can be negated and stored as a

bitmap with density 0.3. I also include this behavior in our cost model, readCost(Bn),
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Figure 3.1: Comparison of Our Cost Model and WAH Library Model. Dx1 = 0.01,

Dx2 = 0.015, Dx3 = 0.03, and a = 1043, b = 0.5895, on a 500 GB SATA Hard Drive

with 7200 RPM, and 16 MB Buffer Size.

of reading a bitmap index, Bn, as follows:

0 if DBn = 0 ∨DBn = 1

aDBn + b if (0 < DBn ≤ Dx1) ∨ (1−Dx1 ≤ DBn < 1)

k1 if (Dx1 < DBn ≤ Dx2)∨

(1−Dx2 ≤ DBn < 1−Dx1)

k2 if (Dx2 < DBn ≤ Dx3)∨

(1−Dx3 ≤ DBn < 1−Dx2)

k3 otherwise

Here DBn is the bit density, 0 < Dx1 < Dx2 < Dx3 < 0.5 are three bit density

thresholds, and a, b, k1, k2, and k3 are constants.

Intuitively, when the bit density of a bitmap is 0 or 1, the size of the bitmap on the

disk is very negligible due to the high-level of compression. Hence, I assume the size of

these bitmaps as non-existant on the secondary storage. The bit density thresholds,
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Dx1 , Dx2 , and Dx3 , and the constant values, a, b, k1, k2, and k3, are specific to the

implementation of the bitmap library.

Figure 3.1 shows alignment of our cost model with the read cost of the WAH

library for different bit densities.

Inclusive, Exclusive, and Hybrid Query Plans

For a query plan for q, I define the set of nodes that are required to execute q as

its operation nodes. Naturally, a given query can be executed in various different

ways, each with a different set, ONq, of operation nodes. In particular, I consider two

distinct types of query plans: inclusive and exclusive plans.

      

  

SFO L.A. S.D. 

U.S. 

    

PHX Tempe 

  

  

Tucson 

CA AZ 

  

Consider the 3-level location hierarchy, H, shown above. Here, the leaf nodes

(cities in U.S.) are the actual values in the database. The node U.S. is the root node

of the hierarchy. Let us consider a query q that has a set of range nodes (shaded

nodes in the figure) RNq =[SFO, L.A., S.D., PHX]. Assume that I have bitmap

indices for all the nodes of H. There are at least two different plans of executing q:

• Inclusive query plans: The first plan is to combine a subset of the bitmaps of

H. In the above example, one inclusive way to do this would be to combine the

bitmaps of RNq.
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Another inclusive plan would be to combine the bitmaps of CA and PHX (i.e.

CA OR PHX). Note that this strategy is similar to what was reported in the

literature [24].

• Exclusive query plans: Alternatively, I can remove the bitmaps of the non-range

nodes of q from the relevant internal nodes of H. For instance, in this example,

I can achieve this by first performing a bitwise-OR operation on the bitmaps

of Tempe and Tucson and then doing a bitwise-ANDNOT operation between

the bitmap of U.S and the resultant bitmap from the OR operation (i.e. U.S

ANDNOT (Tempe OR Tucson)).

Another exclusive plan would be to do the following:

CA OR (AZ ANDNOT (Tempe OR Tucson).

It is easy to see that all four plans would return the same result; however, these plans

have different operation nodes: for the first inclusive query plan, the operation nodes

are ONq = [SFO, L.A., S.D., PHX], whereas for the second inclusive query plan,

ONq = [CA, PHX]. Similarly, for the first exclusive query plan ONq = [U.S., Tempe,

Tucson], and for the second exclusive query plan ONq = [CA, AZ, Tempe, Tucson].

Since different nodes are required, each execution plan also requires different amount

of data being read.

In this chapter, I consider inclusive and exclusive strategies for answering range

queries using hierarchical bitmaps. I also consider hybrid strategies, which combine

inclusive and exclusive strategies (that may make inclusive or exclusive decisions at

different nodes of the hierarchy) for better performance.
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3.2.3 Cut Selection Problem

As described above, any range query, q, on hierarchy H, can be answered (through

inclusive, exclusive, and hybrid strategies) using bitmap indices for the leaves of the

hierarchy. I note however that, if the bitmap indices are also given for a subset of the

internal nodes of the hierarchy, I may be able to reduce the overall cost of the query

significantly by also leveraging the bitmap indices for these internal nodes. I refer to

these subsets as cuts of the hierarchy.

Query Processing with Cuts

A cut, c, is defined as a subset of internal nodes (including the root node) in a

hierarchy, H, satisfying the following two conditions:

• validity: there is exactly one node on any root-to-leaf branch in a given cut (note

that, by this definition, the set containing only the root node of the hierarchy

by itself is a cut); and

• completeness: the nodes in c collectively cover every possible root-to-leaf branch

in the given hierarchy, H.

If a set of internal nodes of H only satisfies the first condition, then the cut is referred

to as an incomplete cut.

The challenge of course is to select the appropriate cut c of the hierarchy H

that will minimize the query processing cost, but will not add significant memory

overhead (if the memory is a constraint). I discuss the alternative formulations of the

cut-selection problem, next.
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Cut Selection Case 1: Single Query without Memory Constraints

The simplest scenario is identifying the cut necessary to execute a single range query.

As explained earlier, the cost for executing a query is proportional to the size of the

bitmaps that are read into the memory from the secondary storage. Thus, given a

query q and cut c on H, problem

cost(c, q) = MIN
ONq⊆(c∪LH)

 ∑
n∈ONq

readCost(Bn)

 (3.1)

denotes the best execution cost for query q given the bitmaps for the leaves, and the

cut c. The cut-selection problem for a given query q on hierarchy H can be formulated

as finding a cut c such that cost(c, q) is the smallest among all cuts of H.

Cut Selection Case 2: Multiple Queries without Memory Constraints

In general, I am not given a single range query, but a set of range queries that need

to be executed on the same data set. Therefore, the above formulation needs to be

generalized to scenarios with multiple range queries. If a set, Q, of queries is given

on a hierarchy H, then one way to formulate the cut-selection problem is to search

for a cut c such that cost(c,Q), defined as

cost(c,Q) =
∑
q∈Q

cost(c, q) (3.2)

is the smallest among all cuts of the hierarchy H.

Note, however, that this formulation treats each query independently and implic-

itly assumes that each query plan accesses the bitmaps of its operation nodes from

the secondary storage; i.e. it pays the cost of reading a bitmap from the secondary

storage every time the node is needed for query processing. This will obviously be re-

dundant when the different queries can be processed using the same operation nodes:
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in such a case, it would be best to bring the bitmap for the operation nodes to the

memory and keep it to process all the relevant queries.

This, however, changes the problem formulation significantly; in particular, I now

need to search for a cut c such that cost′(c,Q), defined as(∑
n∈c

readCost(Bn)

)
+

 ∑
n∈(∪q∈QONq)/c

readCost(Bn))

 (3.3)

is the smallest among all cuts of the hierarchy H. Intuitively, the cut is read into

the memory once and for each query in Q the remaining operation nodes are brought

to the memory as needed. The first term in equation 3.3 is the cost of reading the

bitmaps of the nodes in c from the secondary storage into the memory. Once these

bitmaps have been read into the memory, I reuse them for further query processing,

i.e. the bitmaps of the cuts need to be read into the memory only once. The second

term denotes the cost of reading remaining bitmaps from the secondary storage every

time it is needed to execute a query. These remaining bitmaps are also read only

once and cached subsequently for further re-use for queries in the workload.

Cut Selection Case 3: Multiple Queries with Memory Constraints

The above formulations do not have any memory availability constraints; i.e., as

many bitmaps as needed can be read and cached in memory for the given workload.

In general, however, there may be constraints on the amount of data I can cache in

memory. Therefore, I next consider scenarios where I have a constraint on the amount

of memory that can be used during query processing. Let us assume that I have a

memory availability constraint Stotal. Every bitmap has a size associated to it, SBn ,

denoting the memory requirement of the bitmap file of node n in the main memory.

Given a query workload Q and Stotal, I want to find a (potentially incomplete) cut c
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that minimizes the following cost:(∑
n∈c

readCost(Bn)

)
+

∑
q∈Q

∑
m∈ONq/c

readCost(Bm)

 (3.4)

subject to ∑
n∈c

SBn ≤ Stotal (3.5)

Note that the bitmaps for c are read into the memory once and for each query in

Q the remaining operation nodes are brought to the memory as needed. The major

difference from before is that due to the constraint on the size of the nodes that can

be maintained in memory, c may be an incomplete cut. Moreover, the operation

nodes that are not in the cut cannot be cached in memory for reuse (unless Stotal >∑
n∈c SBn).

3.3 Cut Selection Algorithms

As described in the previous section, query execution times can be reduced if I am

also given the bitmap indices for a subset of the nodes in the domain hierarchy of the

column. A key challenge is to select the appropriate subset (or cut) of the hierarchy H

to minimize the query processing cost, without adding significant memory overhead.

In this section, I present algorithms that search for a cut, c, given a query q or a

workflow of queries Q. It is important to note that these algorithms do not directly

return the operation nodes required to execute q; instead they aim to find a cut, c,

such that there exists a set of operation nodes ONq ⊆ (c∪LH) with a small cost. Once

a good cut of hierarchy is found, the necessary operation nodes ONq are identified in

post-processing by searching within the cut c.
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3.3.1 Case 1: Single Query without Memory Constraints

As described in Section 3.2.2, queries can be processed using inclusive, exclusive,

and hybrid strategies. In this subsection, I first provide three algorithms, corre-

sponding to the previously mentioned strategies, for the basic scenario where there is

a single query without any memory constraints.

Inclusive Cut Selection (I-CS) Algorithm

The inclusive cut selection (I-CS) algorithm associates an inclusive cost to all nodes

of the hierarchy and selects the cut using these inclusive costs. Given node v of the

hierarchy H, let l(v) = {m‖(m ∈ leafDesc(v)) ∧ (Gq,m = 1)}. Formally, given a

query q and a node n on hierarchy H, I define the inclusive cost, nodeInclCost(n, q),

of the node in the cut as follows:

∞ if ∀m∈leafDesc(n)Gq,m = 0

readCost(Bn) if ∀m∈leafDesc(n)Gq,m = 1∑
m∈leafDesc(n)
∧Gq,m=1

readCost(Bm) otherwise

Note that the inclusive cost is only applicable for the internal nodes of a hierarchy;

it is undefined for a leaf node.

In Alg. 1, I present the outline of the proposed algorithm which uses the above

definition of inclusive cost to find a cut c that gives the optimal cost to execute a

single range query q. Note that since a valid cut does not include any leaf nodes, the

algorithm considers only the set of internal nodes, IH , of hierarchy H.

The inclusive cut selection algorithm presented in Alg. 1 is a dynamic programming

solution that traverses the nodes in the hierarchy in a bottom-up manner:

• In line 5 of the pseudo-code, the set children is empty for a node on the second-
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Algorithm 1 Inclusive Cut Selection Algorithm

1: Input: Hierarchy H, Set of internal nodes IH , Query q

2: Output: Set of nodes c

3: Initialize: Node n = root, c

4: procedure findNodeInclusiveCut(n)

5: Set children = findChildren(n, IH);

6: if children is empty then

7: add n to c;

8: return nodeInclCost(n, q);

9: else

10: costChildren = 0;

11: for each child m of n do

12: costChild = findNodeInclusiveCut(m);

13: if costChild 6=∞ then

14: costChildren = costChildren+ costChild;

15: end if

16: end for

17: if costChildren = 0 then

18: costChildren =∞;

19: end if
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20: costCurrNode = nodeInclCost(n, q);

21: if costCurrNode ≤ costChildren then

22: remove all descendants of n from c;

23: add n to c;

24: end if

25: return min(costCurrNode, costChildren)

26: end if

27: end procedure

to-last level of the hierarchy H, since the input to the function findChildren

is the set of internal nodes IH . Whenever the set children is empty, I add the

current node to the cut c, and return the inclusive cost of the current node.

• The condition on line 13 makes sure that the cost of children of n does not

include the cost when a child m has the cost ∞. This will happen when none

of the nodes in leafDesc(m) is a range node, i.e. q does not want the contents

of m to be included in the result of the query.

• The condition on line 17 will be true if for every childm of n, nodeInclCost(m) =

∞. This also means that no node in leafDesc(n) is a range node. In such a

case, I want the total cost of all the children of n to be equal to ∞.

• The algorithm then compares the inclusive cost of the parent with the inclusive

cost of the set of its children. If the inclusive cost of the parent is cheaper than

the combined inclusive cost of its children, then I remove the descendants of n

from c and add n to c. Otherwise, I keep the cut as it is, since using the children

of n is cheaper than using n.

If the resulting c contains only the root node of the hierarchy, then it means that
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using the leaves is the cheapest option.

Note that the algorithm is very efficient: each internal node in the hierarchy

is considered only once and for each node only its immediate children need to be

considered; moreover, the function nodeInclCost(), which is called for each node,

itself has a bottom-up implementation with O(1) cost per node assuming that node

densities for each internal node has been computed ahead of time Consequently, the

cost of this algorithm is linear in the size of the hierarchy, H.

Exclusive Cut Selection (E-CS) Algorithm

Above, I considered the inclusive strategy which uses bitwise OR operations among

the selected bitmaps to execute the query q. As I see in Section 3.4.1, this option

may be costly when the query ranges are large. Alternatively, I can identify query

results using an exclusive strategy: For a given query q, consider a leaf node m such

that Gq,m = 0. That means that this node is not a range node. I call the leaf nodes

(like m), which are outside of the query range, the non-range nodes and denote them

as NSq. The values of these leaf nodes are part of the actual data that q does not

want to be displayed in the result. The exclusive strategy, initially introduced in

Section 3.2.2, would first identify the non-range leaf nodes and then use the rest to

identify the query results.

Like the inclusive cost, I associate an exclusive cost to all internal nodes of the

hierarchy. Consider an internal node n of the hierarchy. If every node in leafDesc(n)

is a range node, that means that the q wants the content of n to be included in the

result of the query, i.e. leafDesc(n) does not contain any non-range node. In this

case, I do not need to remove any node from n, and thus, the exclusive cost of n is

the read cost of the node n. Note, that in the same scenario, the inclusive cost of n

is also the read cost of n. If, in contrast, none of the leaf descendants of n is a range
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node, then the query results will not include n and in this case, the node exclusive

cost of n can be said to be ∞. The main difference is the scenario when only some

of leafDesc(n) are non-range nodes. In this case, the exclusive strategy removes the

non-range nodes from n, and thus, the exclusive cost of n is the read cost of reading

all the non-range nodes under n, in addition to the read cost of n. Based on these, I

can formulate the node exclusive cost, nodeExclCost(n, q) as follows:



∞ if ∀m∈leafDesc(n)Gq,m = 0

readCost(Bn) if ∀m∈leafDesc(n)Gq,m = 1

readCost(Bn)+
∑

m∈leafDesc(n)∧Gq,m=0 readCost(Bm)

otherwise

Given these node exclusive costs (which can again be computed in O(1) time per

node using a bottom-up algorithm), an optimal exclusive cut can be find using a

linear time algorithm similar to the node inclusive cut algorithm presented in Alg. 1;

the main difference being that each internal node in the hierarchy is associated with

an exclusive cost, instead of an inclusive cost. In this case, the results would be a

cut c such that reading every node in ONq ⊆ (c ∪ NSq), I can execute the query q

optimally using the exclusive strategy. If the output cut c is the root node of the

hierarchy, then every node in NSq has to be removed, i.e. an ANDNOT operation

has to be done between the root node and the nodes in NSq.
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Hybrid Cut Selection (H-CS) Algorithm

So far, I have considered inclusive and exclusive strategies independently from each

other. However, we could consider both inclusive and exclusive strategies for each

node in the hierarchy and associate the better strategy to that node. In other words,

I could modify the linear-time, bottom-up algorithm presented in Alg. 1 using the

following cost function for each internal node of the hierarchy, H:

nodeHybridCost(n, q) = min( nodeInclCost(n, q),

nodeExclCost(n, q)).

Unlike when searching for the inclusive or exclusive cuts of the hierarchy, during

the traversal, I also need to mark each node as an inclusive-preferred or exclusive-

preferred node based on the contributor to the hybrid cost. Naturally, in this case

the resulting cut, c, can be partitioned into two: an inclusive cut, ci (whose nodes

are considered in an inclusive way), and an exclusive cut, ce (whose nodes are consid-

ered under the exclusive strategy). Those nodes that have a lower inclusive cost are

included in ci, whereas those that have a lower exclusive cost are included in ce.

• If no leafDesc(n) is in the range, then I call n, an empty node. An empty node

is not used in any query processing and is ignored.

• If all of leafDesc(n) are in the range, then I call n, a complete node. A complete

node indicates that all the leaf descendants of the node are needed for query

processing. Hence, both the inclusive and the exclusive costs of a complete node

are same.

• If only some of the leafDesc(n) are part of the range, then I call n, a partial

node. Note that the only time n will have potentially different inclusive and
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exclusive costs is when n is a partial node. If a node is a partial node, I find

both the inclusive and exclusive costs, and choose the minimum of the two

costs. Subsequently, whichever cost is chosen, I label the node accordingly as

part of the inclusive or the exclusive cut. This helps us in efficiently finding the

operation nodes as described further.

Algorithm 2 Finding the Operation Nodes

1: Input: Set of nodes c, Query q

2: Output: Set of operation nodes ONq

3: Initialize: ONq

4: procedure findOperationNodes(c, q)

5: for each node n in c do

6: if n is a complete node then

7: add n to ONq;

8: else if n is a partial node then

9: inclusiveCost = nodeInclCost(n, q);

10: exclusiveCost = nodeExclCost(n, q);

11: if inclusiveCost ≤ exclusiveCost then

12: add every node from nodeInclusiveCut(n, q) to ONq;

13: else

14: add every node from nodeExclusiveCut(n, q) to ONq;

15: end if

16: end if

17: end for

18: return ONq

19: end procedure
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As I mentioned earlier, the algorithms described in this section return a cut c,

but not the specific operation nodes that are required to optimally execute the query

q. Given a cut c, I need an additional step in order to find the necessary operation

nodes. Alg. 2 provides the pseudo-code for finding the operation nodes following

execution of the H-CS algorithm. Here, the functions nodeInclusiveCut(n, q) and

nodeExclusiveCut(n, q) return the set of operation nodes required to execute the

relevant part of the query q at an internal node n based on inclusive or exclusive

strategies, respectively and the algorithm follows the minimal cost strategy to identify

the operation nodes for the hybrid execution. I explained our marking strategy earlier

in this section. Based on the marking of each node in the cut, I call the respective

function to get the corresponding inclusive or exclusive operation nodes. Note that

if the cut, c, includes the root of the hierarchy, then either reading the nodes as part

of the query range, or removing the non-range nodes from the root is the cheapest

option. This decision is again made based on whether the root node was labeled as

part of the inclusive or exclusive cut. I do not need to recompute the two individual

costs to make that decision.

3.3.2 Case 2: Multiple Queries without Memory Constraint

In this previous section, I have shown that the simple case where there is a single

query to be executed can be handled in linear time in the size of the hierarchy. In

general, however, I may be given a set of range queries and need to identify a cut of

the hierarchy to help process this set of queries efficiently. In this subsection, I present

an algorithm to find a cut for multiple queries without any memory constraints. I

consider the more realistic case with memory constraints in the next subsection.

Assume I am given a query workload Q that contains more than one query (each

with its corresponding range). Since I do not have memory constraints, if a bitmap
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node in the hierarchy has been read into the memory, it can also be cached to be

reused by other queries, without incurring any further read costs.

Remember that in Section 3.3.1 I have discussed how to find a hybrid cut and the

corresponding operation nodes given a single query. Let us first assume that I use

the algorithms discussed in Section 3.3.1 to find the hybrid costs and the appropriate

labeling for each query in the workload, Q, separately. In order to see how important

a particular node n is relative to a particular query workload. Let us consider, Sub-

Operation Nodes, SNn,q, which denote the operation nodes required to execute the

part of q (in Q) that is under n. Hence, SNn,q will contain nodes that are in n ∪

leafDesc(n). In order to decide which nodes to choose in the set n ∪ leafDesc(n)

given q, I use the same hybrid logic as explained in Algorithm 2.

I associate to each node, n, in the hierarchy a new cost, called no constraint node

cost (NCNodeCost(n,Q)), defined as the cost to perform the query workload such

that (a) first the node is read and cached into the memory and (b) the remaining

nodes in each query’s corresponding SNn,q are read:

NCNodeCost(n,Q) =

(readCost(Bn)) +

 ∑
m∈(∪q∈QSNn,q)/n

readCost(Bm)

 .

Intuitively, this cost tells us how important a particular node, n, is relative to the

query workload Q: If there are two nodes, na and nb, such that na appears in SNna,q

for more than one query q ∈ Q and nb does not appear in any SNnb,q for any q ∈ Q,

then theNCNodeCost(na, Q) will be lower thanNCNodeCost(nb, Q). Consequently,

I can say that a node that is included in the SNn,q is more important (caching it would

impact more queries) and such important nodes have small NCNodeCost values. I

use this as the basis of our algorithm, shown in Alg. 3, to find the relevant hybrid cut

given multiple queries. This bottom-up traversing algorithm is similar to the Hybrid
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Algorithm 3 Hybrid Cut Multiple Query Algorithm

1: Input: Hierarchy H, Set of internal nodes IH , Query Workload Q

2: Output: Set of nodes c

3: Initialize: Node n = root, c

4: procedure findHybridCut(n)

5: Set children = findChildren(n, IH);

6: if children is empty then

7: add n to c;

8: return NCNodeCost(n,Q);

9: else

10: costChildren = 0;

11: for each child m of n do

12: costChildren = costChildren+ costChild;

13: end for

14: costCurrNode = NCNodeCost(n,Q);

15: if costCurrNode ≤ costChildren then

16: remove all descendants of n from c;

17: add n to c;

18: end if

19: end if

20: return min(costCurrNode, costChildren)

21: end procedure
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Cut Algorithm explained in the previous section. The main difference is that I use

the cost NCNodeCost(n,Q) for each node, which is derived using the hybrid logic

as explained in the previous section.

3.3.3 Case 3: Multiple Queries with Memory Constraint

In the previous subsection, I introduced a node cost (based on the cost model

as described in 3.2.3.) to capture the importance of a node in a multiple query

scenario without a memory constraint. In this section, I relax the assumption of

unlimited memory availability and consider the more general situation where we have

a memory constraint, limiting how many bitmaps I can keep in memory at a time.

More specifically, in this section, I present two algorithms, namely 1-Cut Selection

Algorithm and k-Cut Selection Algorithm, that find a cut given a query workload and

a memory constraint. Note that, as discussed in Section 3.2.3, due to the memory

constraint, the resulting cuts may be incomplete.

Let us consider a set of nodes for each query and each n, called Constraint Oper-

ation Nodes, denoted by CONn,q. Here, CONn,q ⊆ n ∪ LH . CONn,q chooses the set

of nodes from n ∪ LH that are required to execute q in the cheapest possible manner

given n and the set of leaf nodes.

CONn,q consists of two sets of nodes. The first set is the set of nodes that includes

n and its leaf descendants. I have to decide which nodes to choose in the set n ∪

leafDesc(n) given q. In order to make this decision, I use the same hybrid logic as

explained in Algorithm 2. The second set of nodes, consists of the set of leaf nodes

that are not descendants of n , i.e. LH ∩ leafDesc(n). In order to execute q, all the

query range nodes in this set have to be read, and hence we include them in CONn,q.

As I have done in Case 2 (without memory constraints), I introduce a node cost

to capture the importance of each internal node in the hierarchy relative to query
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workload Q. This cost, called constrained node cost (CNodeCost(n,Q)), reflects the

cost of performing the query in such a way that (a) only nodes with low cost, and

that can fit into the memory within the given constraint, are read and cached into

the memory and (b) the remaining nodes in each query’s CONn,q are read from the

secondary storage as needed.

CNodeCost(n,Q) =

(readCost(Bn)) +

∑
q∈Q

∑
m∈CONn,q/n

readCost(Bm)


Intuitively, if more queries can reuse a node for further query processing when the

node is cached, the lower the constrained node cost of the node is relative to the query

workload Q.

1-Cut Selection Algorithm

In Alg. 4, I present the pseudo-code of 1-Cut Selection Algorithm, for Case 3 with

multiple queries in the presence of a memory constraint.

Here, Savailable denotes the amount of memory available for adding nodes to a cut

and SBn denotes the size of the bitmap index of node n on the secondary storage.

The first time the algorithm is called, I initialize Savailable to the memory available

for the whole process, i.e., Stotal; in subsequent calls, the amount is reduced as new

bitmaps are added to the cut. Note that

• In line 6, I choose a node that has the lowest node cost and the size of the node

is lesser than or equal to the remaining memory availability.

• In line 9, I ensure that the returned cut does not contain any two nodes that

are on the same root-to-leaf branch.
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Algorithm 4 1-Cut Selection Algorithm

1: Input: Hierarchy H, Set of internal nodes IH , Query Workload Q, Savailable

2: Output: Set of nodes c

3: Initialize: Savailable = Stotal

4: procedure findCutConstraint(DH , Savailable)

5: while IH is not empty OR there exists a node n such that SBn ≤ Savailable do

6: choose node n such that n has the lowest CNodeCost(n,Q) among nodes

in IH & SBn ≤ Savailable;

7: add n to c;

8: remove n from IH ;

9: remove ancestors and descendants of n from IH ;

10: update Savailable = Savailable − SBn ;

11: end while

12: return c

13: end procedure

The stopping condition of the greedy process is reached when the input set of nodes

is empty (i.e. a complete cut is found) or when each of the remaining nodes have sizes

larger than Savailable. Note that it is possible that in some cases the optimal subset

of nodes required to execute the given query workload may all fit in the available

memory. Our algorithm adds nodes until all nodes are seen or no nodes can be added

further due to memory constraints. In order to avoid adding nodes that are not going

to be used in query processing, I introduce a new node label, unused, applied while

calculating the CNodeCost(n,Q) indicating that the node as unused if the node is

not used by any query. This is easy to find out if for every q in Q, Pn,q does not

include n, then the node is an unused node.
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It is important to note that the above algorithm does not necessarily return a cut

that has the optimal cost. As I see in Section 3.4.3, the sub-optimality of the algo-

rithm is most apparent in situations where I have plenty (yet still insufficient amount

of) memory and, consequently, the cost-sensitive greedy algorithm over-prunes the so-

lution space (though it still provides cuts that are significantly more efficient than a

näıve execution plan). In situations where the memory constraints are tight, however,

the algorithm returns very close to optimal or optimal cuts, proving the effectiveness

of the cost model and the proposed approach.

k-Cut Selection Algorithm

In this subsection, I note that the key weakness of the above algorithm is that it

considers only a single cut of the hierarchy: When I choose to include a node in the

cut, I remove all the ancestors and descendants of the node from further consideration;

however, it is possible that a node can have the lowest cost, but two or more of its

ancestors or descendants combined can lead to a better execution plan. A node n

may be chosen before its ancestor m, because cost(n) is lesser than cost(m). But, it

is also possible that choosing m could be a better choice than choosing n if m can be

used to execute a larger portion of the range nodes of the query.

Therefore, in Alg. 5, I present a variation of the algorithm, called the k-Cut Se-

lection Algorithm. In this variation, the algorithm considers k different cuts. When

a node, n, is added to a cut, the algorithm does not eliminate its ancestors and de-

scendants from further consideration; instead, it simply does not add these ancestors

and descendants to the same cut as n to follow the rules of validity as described in

Section 3.2.3. These ancestors and descendants however may be added to the other

k-1 cuts.

In Algorithm 5, the ith cut has a corresponding memory requirement, Sci,available.
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Algorithm 5 k-Cut Selection Algorithm

1: Input: Hierarchy H, Set of internal nodes IH , Query Workload Q, Savailable,

cutList

2: Output: Set of nodes c

3: Initialize: ∀c∈cutListSci,available = Stotal.

4: procedure findkCutConstraint(H)

5: while each node n in IH is seen OR there exists a node n such that SBn ≤

Sci,available for i ≤ k do

6: choose node n such that n has the lowest CNodeCost(n,Q) among nodes

in H;

7: mark n as seen;

8: for each cut c in cutList do

9: if SBn ≤ Sci,available then

10: if there is no conflict in c for node n then

11: if n has not been added to any empty cut then

12: add n to c;

13: update Sci,available = Sci,available − SBn ;

14: end if

15: else

16: copy each node in c to the next available empty cut;

17: replace the conflicting node with node n;

18: end if

19: end if
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20: end for

21: Sort the cutList based on the lowest cost for each cut;

22: end while

23: return the cut c in cutList that has the lowest total cost;

24: end procedure

• In the algorithm, line 11 ensures that a node is not added more than once to

an empty cut. This prevents two cuts containing identical nodes.

• Lines 16 and 17 are part of the replacement procedure. According to Section

3.2.3, a cut cannot have two nodes on the same root-to-leaf branch. Hence, n

cannot be added to the existing cut if there is such a conflict. In these lines,

when I detect a conflict, I add the nodes of a cut to an empty cut and replace

the conflicting node with the current node. This lets us construct multiple

conflicting cuts that are individually conflict-free.

Note that if after replacing the conflicting node with the current node, the

size of the cut exceeds the size of available memory, then this node and the

corresponding conflicting cut is ignored.

• In Line 21, I sort the cutList in ascending order based on the overall cost of

each discovered cut. I do this in order to give more preference to the cuts with

a lower cost during the next iteration.

Auto Selection of k

As I see in the next section, in practice it is sufficient to consider fairly small number

of cuts to significantly improve the effectiveness of the proposed greedy algorithm

(returning very close to optimal cuts), without increasing the cost of the optimization

step significantly. However, in cases where it is difficult for the user to set the value
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of k ahead of the time, I propose a δ auto-stop condition: after finding the i’th cut,

I evaluate if costi−1 − costi < δ, for a user provided per-iteration cost gain value, δ.

The algorithm auto-stops when the condition is satisfied (i.e., when the cost gain of

the iteration drops below the predetermined gain). In Section 3.4.3, the auto-stop

condition is effective, even when I simply set δ = 0; i.e., I stop when the cost of the

new cut has the same cost as the previous cut (note that, for any two integers l,m > 1,

and l > m, the cost of l-greedy cut will always be equal to or lesser than the cost

of m-greedy cut; this is because whatever cut that is returned by the m-greedy cut

algorithm will always be enumerated and considered by the l-greedy cut algorithm).

3.4 Evaluation

In order to evaluate the cut-selection algorithms presented in this work, I consid-

ered two datasets: (a) a synthetically generated dataset (with normal value distribu-

tion) and (b) the TPC-H dataset [28], each with 150 million records. In particular, in

the TPC-H dataset, I focused on the account balance attribute whose values demon-

strate a near-uniform distribution, with spikes in the occurrences for some values.

In this section, I have two main evaluation criteria: (1) query execution IO cost

and (2) optimization time. I compared the results of our cut-selection algorithms

against (a) leaf-only query execution, (b) random cut-selection, and (c) exhaustive

cut-search strategies.

For both of the above data sets, I considered (balanced) attribute hierarchies of

different depth and internal-node fanout: these were generated for different numbers

of leaf nodes and maximum possible fanouts of the internal nodes of the hierarchy.

Since finding the optimal cut using an exhaustive strategy for comparison purposes

is prohibitively expensive, I initially considered small hierarchies, with 20, 50, and

100 leaf nodes and heights of 4, 5, and 4 respectively (the root of the hierarchy being
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considered at height 1).

In Section 3.4.4, I consider hierarchies of larger sizes and higher number of queries

to study the scalability of the cut-selection algorithms against the hierarchy size.

Bitmap indices were generated for the nodes of these hierarchies using the Java

library, WAH bitset [1] as explained in [93]. The parameters of the read cost model

presented in Section 3.2.2, and shown in Figure 3.1 were computed based on these

bitmap indices.

I have also created query workloads with different target range sizes. For example,

for a hierarchy of 100 leaf nodes, 10% query range size indicates that each range query

covers 10 consecutive leaf nodes.

I ran the experiments on a quad-core Intel R©CoreTMi5-2400 CPU @ 3.10GHz ma-

chine with 8.00GB RAM. All codes are implemented and run using Java v1.7.

3.4.1 Case 1: Single Query without Memory Constraints

I first evaluate the cut-selection algorithm for the single query without memory

constraints scenario. All reported costs are averages of the costs for 10 different runs.

Figures 3.2(a) through (f) compares the three different cut-selection algorithms

(I-CS, E-CS, and H-CS) presented in Section 3.3.1 for different data sets and varying

hierarchy and range query sizes. As I see in these charts, the inclusive strategy is

efficient when the query ranges are small; this is consistent with the observation in

[24]. The exclusive strategy, however, is more efficient than the inclusive strategy

when the query ranges are larger. Most importantly, in all cases, the hybrid strategy

(H-CS) returns the best cuts.

In Figure 3.3, I compare the hybrid (H-CS) strategy against (exhaustively found)

optimal and average cuts. The figure also shows the performance of the worst cut.

As expected, the H-CS strategy returns optimal cuts. On the average, randomly
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(c) synthetic data, 90% query range
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(d) TPC-H data, 10% query range
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(e) TPC-H data, 50% query range
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Figure 3.2: Case 1, Single Query without Memory Constraints: Effects of Varying

Hierarchy and Range Sizes on the Amount of Data Read by the Three Different

Cut-Selection Algorithms
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selecting a cut performs quite poorly (almost as bad as selecting the worst possible

cut), especially as the query range sizes increase. This highlights the importance of

utilizing an effective (hybrid) cut-selection algorithm for answering queries.

In Figure 3.4, I show the percentages of nodes that are labeled inclusive-preferred

or exclusive-preferred in a hybrid cut, as explained in Section 3.3.1, for different query

ranges. As defined in Section 3.3.1, empty nodes are nodes that are not used in query

processing. When the query range size is small, most of the query processing can be

done using the leaf nodes. Hence, I see in the figure that most of the nodes in the cut

are empty nodes. As expected, when the query range is small, the inclusive strategy

dominates and when the range is large, the exclusive strategy dominates. For ranges

that are neither small nor large, the hybrid algorithm leverages a mix of inclusive and

exclusive strategies.

3.4.2 Case 2: Multiple Queries without Memory Constraints

In this section, I evaluate the hybrid cut selection algorithm (Alg. 3) for query

workloads with multiple queries. For our evaluations, we considered query workloads

of different sizes (and with different ranges). All reported costs are averages of the

costs for 10 different runs.

Figure 3.5 shows the impact of using the proposed hybrid cut selection algorithm

for different numbers of queries. As I see in this figure, as expected, the hybrid

cut selection algorithm returns the optimal cut. The impact of the proposed cut

selection algorithm is especially strong when the query includes large ranges as when

there are large overlaps among the queries, the query evaluation algorithm has more

opportunities for reusing cached nodes, and the proposed hybrid cut strategy is able

to leverage these opportunities most effectively.
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Figure 3.5: Case 2, Multiple Queries without Memory Constraints (TPC-H Data)
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3.4.3 Case 3: Multiple Queries under Memory Constraints

In this section, I evaluate the effectiveness of the proposed k-hybrid cut algorithm

(Alg. 5, described in Section 3.3.3), for multiple queries, but under memory con-

straints. I report the memory availability in terms of the percentage of the memory

needed to store the bitmap indices corresponding to the maximum cut of the given

hierarchy. The presented results are averages of 10 different runs.

Once again, I compare the proposed cut selection algorithm against solutions

found through exhaustive enumeration, average solutions representing randomly se-

lected cuts, and also the worst solution. Remember, that under memory limitations,

I need to consider also the incomplete cuts of the input hierarchies.

Note that the number of incomplete cuts that an exhaustive algorithm would need

to consider grows very fast:

Num. of leaves Height Incomplete cuts

20 4 154

50 5 296,381

100 4 1,185,922

However, since the number of incomplete cuts grow even faster than the number

of complete cuts, enumerating all incomplete cuts for the exhaustive algorithm (which

I use to locate the optimal cut for comparison purposes), becomes prohibitive beyond

hierarchies with 100 leaf nodes.

Figure 3.6 shows that, in this case, the proposed hybrid cut selection algorithms

are not optimal; however, they return cuts that are very close to optimal. In fact,

especially when the memory availability is very restricted (which is the expected sit-

uation in most realistic deployments), even the 1-Cut algorithm is able to return

optimal or very close to optimal answers. As the available memory increases, the

57



0

500

1000

1500

2000

10% 30% 50% 70% 90%A
m

o
u

n
t 

o
f 

D
at

a 
R

e
ad

 (
in

 m
b

) 

Memory Availability 

Amount of Data Read vs. Memory Availability, 
Queries=15, Query Range Size=10%,  

Hierarchy Size = 100 

Exhaustive Cut 1-Cut 10-Cut Average Cut Worst Cut

(a) 10% query range

0

2500

5000

7500

10000

10% 30% 50% 70% 90%

A
m

o
u

n
t 

o
f 

D
at

a 
R

e
ad

 (
in

 m
b

) 

Memory Availability 

Amount of Data Read vs. Memory Availability, 
Queries=15, Query Range Size=50%,  

Hierarchy Size = 100 
Exhaustive Cut 1-Cut 10-Cut Average Cut Worst Cut

(b) 50% query range

0

2500

5000

7500

10000

10% 30% 50% 70% 90%A
m

o
u

n
t 

o
f 

D
at

a 
R

e
ad

 (
in

 m
b

) 

Memory Availability 

Amount of Data Read vs. Memory Availability, 
Queries=15, Query Range Size=90%,  

Hierarchy Size = 100 
Exhaustive Cut 1-Cut 10-Cut Average Cut Worst Cut

(c) 90% query range

Figure 3.6: Case 3, Multiple Queries with Varying Memory Availability (TPC-H Data
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optimal cost decreases as there are more caching opportunities, but 1-Cut strategy

may not be able to leverage this effectively, especially for larger query ranges. How-

ever, I see that the multi-cut strategy (10-Cut in this figure) performs quite close

to optimal. Figure 3.7, which plots the ratio of the cost of the solutions found by

the multi-cut strategy (for different values of k) to the cost of the optimal cut found

through an exhaustive search, confirms this observation: note the figure also shows

that the auto-stop strategy described in Section 3.3.3 is effective in reducing the cost,

without having to fix the value k ahead of time.

Figures 3.8 through 3.10 further confirm that the proposed multi-cut strategy

is robust against changes in the size of the query ranges, number of queries, and

hierarchy sizes.
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3.4.4 Cut-Selection Time

Up to now, I considered query processing cost using cuts. I now focus on the time

needed to select cuts for hierarchies of different sizes. In Figures 3.11 and 3.12, I see

the cut selection time as a function of the size of the hierarchy (number of leaf nodes;

i.e., the size of the domain) and the number of queries, respectively. Please note that,

in these figures, I do not compare our algorithm with exhaustively found cuts, and

hence are able to consider larger hierarchy sizes and higher number of queries. The

figures confirm that the time taken to find the cut increases linearly with size of the

attribute domain and the number of queries.
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Chapter 4

EXECUTION OF RANGE QUERY WORKLOADS IN 2D SPACES

4.1 Introduction

Spatial and mobile applications are gaining in popularity, thanks to the wide-

spread use of mobile devices, coupled with increasing availability of very detailed

spatial data (such as Google Maps and OpenStreetMap [4]), and location-aware ser-

vices (such as FourSquare and Yelp). For implementing range queries (Section 4.2.1),

many of these applications and services rely on spatial database management sys-

tems, which represent objects in the database in terms of their coordinates in 2D

space. Queries in this 2D space are then processed using multidimensional/spatial

index structures that help quick access to the data [78].

4.1.1 Spatial Data Structures

The key principle behind most indexing mechanisms is to ensure that data objects

closer to each other in the data space are also closer to each other on the storage

medium. In the case of 1D data, this task is relatively easy as the total order implicit

in the 1D space helps sorting the objects so that they can be stored in a way that

satisfies the above principle. When the space in which the objects are embedded has

more than one dimension, however, the data has multiple degrees of freedom and,

as a consequence, there are many different ways in which the data can be ordered

on the storage medium and this complicates the design of search data structures.

One common approach to developing index structures for multi-dimensional data is

to partition the space hierarchically in such a way that (a) nearby points fall into
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the same partition and (b) point pairs that are far from each other fall into different

partitions. The resulting hierarchy of partitions then can either be organized in the

form of trees (such as quadtrees, KD-trees, R-trees and their many variants [78]) or,

alternatively, the root-to-leaf partition paths can be serialized in the form of strings

and these strings can be stored in a string-specific search structure. Apache Lucene,

a highly-popular search engine, for example, leverages such serializations of quadtree

partitions to store spatial data in a spatial prefix tree [61].

An alternative to applying the partitioning process in the given multi-dimensional

space is to map the coordinates of the data into a 1D space and perform indexing and

query processing on this 1D space instead. Intuitively, in this alternative, one seeks

an embedding from the 2D space to a 1D space such that (a) data objects closer to

each other in the original space are also closer to each other on the 1D space, and

(b) data objects further away from each other in the original space are also further

away from each other on the 1D space. This embedding is often achieved through

fractal-based space-filling curves [20, 40]. In particular, the Peano-Hilbert curve [40]

and Z-order curve [67] have been shown to be very effective in helping cluster nearby

objects in the space. Consequently, if data are stored in an order implied by the

space-filling curve, then the data elements that are nearby in the data space are also

clustered, thus enabling efficient retrieval. In this work, I leverage these properties

of space-filling curves to develop a highly compressible bitmap-based index structure

for spatial data.

4.1.2 Bitmap-based Indexing

Bitmap indexes [83, 93] have been shown to be highly effective in answering queries

in data warehouses [97] and column-oriented data stores [8]. There are two chief rea-

sons for this: (a) first of all, bitmap indexes provide an efficient way to evaluate
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logical conditions on large data sets thanks to efficient implementations of the bit-

wise logical “AND”, “OR”, and “NOT” operations; (b) secondly, especially when

data satisfying a particular predicate are clustered, bitmap indexes provide signifi-

cant opportunities for compression, enabling either reduced I/O or, even, complete

in-memory maintenance of large index structures. In addition, (c) existence of com-

pression algorithms [31, 94] that support compressed domain implementations of the

bitwise logical operations enables query processors to operate directly on compressed

bitmaps without having to decompress them until the query processing is over and

the results are to be fetched from the disk to be presented to the user.

4.1.3 Contributions of this Work

In this work, I show that bitmap-based indexing is also an effective solution for

managing spatial data sets. More specifically, I first propose compressed spatial hi-

erarchical bitmap (cSHB) indexes to support spatial range queries. In particular, I

(a) convert the given 2D space into a 1D space using Z-order traversal, (b) create a

hierarchical representation of the resulting 2D space, where each node of the hierarchy

corresponds to a (sub-)quadrant (i.e., effectively creating an implicit “quadtree”), and

(c) associate a bitmap file to each node in the quadtree representing the data elements

that fall in the corresponding partition. I present efficient algorithms for answering

range queries using a select subset of bitmap files stored in a given cSHB index.

I then consider a service provider that has to answer multiple concurrent queries

over the same spatial data and, thus, focus on query workloads involving multiple

range queries. Since the same set of queries can be answered using different subsets

of the bitmaps in the cSHB index structure, I consider the problem of identifying the

appropriate bitmap nodes for processing the given query workload. More specifically,

as I visualize in Figure 4.1, (a) I develop cost models for range query processing over
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Figure 4.1: Processing a Range Query Workload using compressed Spatial Hierarchical

Bitmap (cSHB)

compressed spatial hierarchical bitmap files and (b) propose efficient bitmap selection

algorithms that select the best bitmap nodes from the cSHB index structure to be

fetched into the main-memory for processing of the query workload. In this chapter,

I also present an efficient disk-based organization of compressed bitmaps. To my best

knowledge, this is the first work that provides an efficient index structure to execute

a query workload involving multiple spatial range queries by using bitmap indexes.

Experimental evaluations of the cSHB index structure and the bitmap selection al-

gorithms show that cSHB is highly efficient in answering a given query workload.
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4.2 Compressed Spatial Hierarchical Bitmap (cSHB) Indexes

In this section, I present the key concepts used in this work and introduce the

compressed spatial hierarchical bitmap (cSHB) index structure for answering spatial

range queries.

4.2.1 Key Concepts and Notations

Spatial Database

A multidimensional database, D, consists of points that belong to a (bounded and of

finite-granularity) multidimensional space S with d dimensions. A spatial database

is a special case where d = 2. I consider rectangular spaces such that the boundaries

of S can be described using a pair of south-west and a north-east corner points,

csw and cne (csw.x ≤ cne.x and csw.y ≤ cne.y and ∀p∈S csw.x ≤ p.x ≤ cne.x and

csw.y ≤ p.y ≤ cne.y).

Spatial Query Workload

In this chapter, I consider query workloads, Q, consisting of a set of rectangular spatial

range queries.

• Spatial Range Query: A range query, q ∈ Q, is defined by a corresponding

range specification q.rs = 〈qsw, qne〉, consisting of a south-west point and a

north-east point, such that qsw.x ≤ qne.x and qsw.y ≤ qne.y.

Given a range query, q, with a range specification, q.rs = 〈qsw, qne〉, a data point

p ∈ D is said to be contained within the query range (or is a range point) if and

only if qsw.x ≤ p.x ≤ qne.x and qsw.y ≤ p.y ≤ qne.y.
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Spatial Hierarchy

In cSHB, we associate to the space S a hierarchy H, which consists of the node set

N (H) = {n1, . . . , nmaxn}:

• Nodes of the hierarchy: Intuitively, each node, ni ∈ N (H) corresponds to

a (bounded) subspace, Si ⊆ S, described by a pair of corner points, ci,sw and

ci,nw.

• Leaves of the hierarchy: LH denotes the set of leaf nodes of the hierarchy H

and correspond to all potential point positions of the finite space S. Assuming

that the database, D, contains only points, only the leaves of the spatial hierarchy

occur in the database.

• Parent of a node: For all ni, parent(ni) denotes the parent of ni in the

corresponding hierarchy; if ni is the root, then parent(ni) = ⊥.

• Children of a node: For all ni, children(ni) denotes the children of ni in the

corresponding hierarchy; if ni ∈ LH , then children(ni) = ∅. In this work, I

assume that the children induce a partition of the region corresponding to the

parent node:

(
∀

nh 6=nj∈children(ni)
Sh ∩ Sj = ∅

)
and

Si =
⋃

nh∈children(ni)

Sh

 .

• Descendants of a Node: The set of descendants of node ni in the correspond-

ing hierarchy is denoted as desc(ni). Naturally, if ni ∈ LH , then desc(ni) = ∅.

• Internal Nodes: Any node in H that is not a leaf node is called an internal

node. The set of internal nodes of H is denoted by IH . Each internal node

in the hierarchy corresponds to a (non-point) sub-region of the given space. If
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N (H, l) denotes the subset of the nodes at level l of the hierarchy H, then I

have (
∀ni 6=nj∈N (H,l) Si ∩ Sj = ∅

)
and

S =
⋃

ni∈N (H,l)

Si

 .

The root node corresponds to the entire space, S.

• Leaf Descendants of a Node: Leaf descendants, leafDesc(ni), of a node are

the set of nodes such that

leafDesc(ni) = desc(ni) ∩ LH .

4.2.2 Compressed Spatial Hierarchical Bitmap (cSHB) Index Structure

In this section, I introduce the proposed compressed spatial hierarchical bitmap

(cSHB) index structure:

Definition 4.2.1 (cSHB Index Stucture) Given a spatial database D consisting

of a space, S, and a spatial hierarchy, H, a cSHB index is a set, B of bitmaps, such

that for each ni ∈ N (H), there is a corresponding bitmap, Bi ∈ B, where the following

holds:

• if ni is an internal node (i.e., ni ∈ IH), then
(
∃o∈D∃nh∈leafDesc(ni) located at(o, nh)

)
↔

(Bi[o] = 1), whereas

• if ni is a leaf node (i.e., ni ∈ LH), then
(
∃o∈D located at(o, ni)

)
↔ (Bi[o] = 1)

Our Implementation of cSHB

A cSHB index structure can be created based on any hierarchy satisfying the require-

ments1 specified in Section 4.2.1.

1In fact, cSHB can be created even when some of the requirements are relaxed –
for example children do not need to cover the parent range entirely (as in R-trees).
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Figure 4.2: Z-order Curve for a Sample 2D Space.
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Figure 4.3: A Sample 4-level Hierarchy Defined on the Z-order Space Defined in

Figure 4.2 (The String Associated to Each Node Corresponds to its Unique Label)

In this work, without loss of generality, I discuss a Z-curve based construction

scheme for cSHB. The resulting hierarchy is analogous to the MX-quadtree data

structure, where all the leaves are at the same level and a given region is always par-

titioned to its quadrants at the center [78]. As introduced in Sections 4.1.1 and 2.3.3,

a space-filling curve is a fractal that maps a given finite multidimensional data space

onto a 1D curve, while preserving the locality of the multidimensional data points

(Figure 4.2): in other words nearby points in the data space tend to be mapped to
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nearby points on the 1D curve. As I also discussed earlier, Z-curve is a fractal com-

monly used as a space-filling curve (thanks to its effectiveness in clustering the points

in the data space and the efficiency with which the mapping can be computed).

A key advantage of the Z-order curve (for my work) is that, due to the iterative

(and self-similar) nature of the underlying fractal, the Z-curve can also be used to

impose a hierarchy on the space. As visualized in Figure 4.3, each internal node,

ni, in the resulting hierarchy has four children corresponding to the four quadrants

of the space, Si. Consequently, given a 2h-by-2h space, this leads to an (h + 1)-level

hierarchy, (analogous to an MX-quadtree [78]) which can be used to construct a cSHB

index structure2. As I show in Section 4.4, this leads to highly compressible bitmaps

and efficient execution plans.

Blocked Organization of Compressed Bitmaps

Given a spatial database, D, with a corresponding hierarchy, H, I create and store a

compressed bitmap for each node in the hierarchy, except for those that correspond to

regions that are empty. These bitmaps are created in a bottom-up manner, starting

from the leaves (which encode for each point in space, S, which data objects in D

are located at that point) and merging bitmaps of children nodes into the bitmaps of

their parents. Each resulting bitmap is stored as a compressed file on disk.

It is important to note that, while compression provides significant savings in stor-

age and execution time, a naive storage of compressed bitmaps can still be detrimental

for performance: in particular, in a data set with large number of objects located at

unique points, there is a possibility that a very large number of leaf bitmaps need

to be created on the secondary storage. Thus, creating a separate bitmap file for

2Without loss of generality, I assume that the width and height are 2h units for
some integer h ≥ 1.
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Algorithm 6 Writing blocks of compressed bitmaps to disk

1: Input:

• A spatial database, D, defined over 2h-by-2h size space, S and a correspond-

ing (h + 1)-level (Z-curve based) hierarchy, H, with set of internal nodes,

IH

• Minimum block size, K

2: procedure writeBitmaps

3: Block T = ∅

4: availableSize = K

5: for level l = (h+ 1) (i.e., leaves) to 0 (i.e., root) do

6: for each node ni in l in increasing Z-order do

7: if l == (h+ 1) then

8: Initialize a compressed bitmap Bi

9: else

10: Bi = OR
nj∈children(ni)

Bj

11: end if

12: if size(Bi) ≥ K then

13: write Bi to disk;

14: else

15: T = append(T,Bi)

16: availableSize = availableSize− size(Bi)
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17: if (availableSize ≤ 0) or (ni is the last node at this

level) then

18: write T to disk;

19: Block T = ∅

20: availableSize = K

21: end if

22: end if

23: end for

24: end for

25: end procedure

each node may lead to inefficiencies in indexing as well as during query processing

(as directory and file management overhead of these bitmaps may be non-negligible).

To overcome this problem, cSHB takes a target block size, K, as input and ensures

that all index-files written to the disk (with the possible exception of the last bitmap

file in each level) are at least K bytes. This is achieved by concatenating, if needed,

compressed bitmap files (corresponding to nodes at the same level of hierarchy). In

Algorithm 6, I provide an overview of this block-based bottom-up cSHB index creation

process. In Line 10, I see that the bitmap of an internal node is created by performing

a bitwise OR operation between the bitmaps of the children of the node. These OR

operations are implemented in the compressed bitmap domain enabling fast creation

of the bitmap hierarchy. As it creates compressed bitmaps, the algorithm packs them

into a block (Line 15). When the size of the block exceeds K, the bitmaps in the

block are written to the disk (Line 18) as a single file and the block is re-initialized.
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Example 4.2.1 Let us assume that K = 10 and also that I am considering the

following sequence of nodes with the associated (compressed) bitmap sizes:

〈n1, 3〉; 〈n2, 4〉; 〈n3, 2〉; 〈n4, 15〉; 〈n5, 3〉; . . .

This node sequence will lead to following sequence of bitmap files materialized on disk:

[B4]︸︷︷︸
size=15

; [B1‖B2‖B3‖B5]︸ ︷︷ ︸
size=3+4+2+3=12

; . . .

Note that, since the bitmap for node n4 is larger than the target block size, B4 is

written to disk as a separate bitmap file; on the other hand, bitmaps for nodes n1,

n2, n3, and n5 need to be concatenated into a single file to obtain a block larger than

K = 10 units.

Note that this block-based structure implies that the size of the files and the

number of bitmap files on the disk will be upper bounded, but it also means that

the cost of the bitmap reads will be lower bounded by K. Therefore, to obtain

the best performance, repeated access to a block to fetch different bitmaps must

be avoided through bitmap buffering and/or bitmap request clustering. In the next

section, I discuss the use of cSHB index for range query processing. In Section 4.4, I

experimentally analyze the impact of block-size on the performance of the proposed

cSHB index structure.

4.3 Query Processing with the cSHB Index Structure

In this section, I describe how query workloads are processed using the cSHB index

structure. In particular, I consider query workloads involving multiple range queries

and propose spatial bitmap selection algorithms that select a subset of the bitmap

nodes from the cSHB index structure for efficient processing of the query workload.
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4.3.1 Range Query Plans and Operating Nodes

In order to utilize the cSHB index for answering a spatial range query, I first need

to map the range specification associated with the given query from the 2D space

to the 1D space (defined by the Z-curve). As I see in Figure 4.4, due to the way

the Z-curve spans the 2D-space, it is possible that a single contiguous query range

in the 2D space may be mapped to multiple contiguous ranges on the 1D space.

Therefore, given a 2D range query, q, I denote the resulting set of (disjoint) 1D range

specifications, as RSq.

Let us be given a query, q, with the set of 1D range specifications, RSq. Naturally,

there may be many different ways to process the query, each using a different set of

bitmaps in the cSHB index structure, including simply fetching and combining only

the relevant leaf bitmaps:

Example 4.3.1 (Alternative Range Query Plans) Consider a query q with q.rs =

75



〈(1, 0), (3, 1)〉 on the space shown in Figure 4.2. The corresponding 1D range, [2, 11],

would cover the following leaf nodes of the hierarchy shown in Figure 4.3: RSq =

(000010, 000011, 001000, 001001, 001010, 001011). The following are some of the al-

ternative query plans for q using the proposed cSHB index structure:

• Inclusive query plans: The most straightforward way to execute the query would

be to combine (bitwise OR operation) the bitmaps of the leaf nodes covered in

1D range, [2, 11]. I refer to such plans, which construct the result by combining

bitmaps of selected nodes using the OR operator, as inclusive plans.

An alternative inclusive plan for this query would be to combine the bitmaps of

nodes 000010, 000011, 0010**:

B000010 OR B000011 OR B0010∗∗.

• Exclusive query plans: In general, an exclusive query plan includes removal

of some of the children or descendant bitmaps from the bitmaps of a parent or

ancestor through the ANDNOT operation. One such exclusive plan would be

to combine the bitmaps of all leafs nodes, except for B000010, B000011, B001000,

B001001, B001010, B001011, into a bitmap Bnon result and return

BrootANDNOTBnon result.

• Hybrid query plans: Both inclusive and exclusive only query plans may miss

efficient query processing alternatives. Hybrid plans combine inclusive and ex-

clusive strategies at different nodes of the hierarchy. A sample hybrid query plan

for the above query would be

(
B0000∗∗ ANDNOT (B000000 OR B000001)

)
OR B0010∗∗.
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As illustrated in the above example, a range query, q, on hierarchy H, can be an-

swered using different query plans, involving bitmaps of the leaves and certain internal

nodes of the hierarchy, collectively referred to as the operating nodes of a query plan.

In Section 4.3.3, I present algorithms for selecting the operating nodes for a given

workload, Q; but first we discuss the cost model that drives the selection process.

4.3.2 Cost Models and Execution Strategies

In cSHB, the bitwise operations needed to construct the result are performed on

compressed bitmaps directly, without having to decompress them.

Cost Model for Individual Operations

I consider two cases: (a) logical operations on disk-resident compressed bitmaps and

(b) logical operations on in-buffer compressed bitmaps.

Operations on Disk-Resident Compressed Bitmaps In general, when the log-

ical operations are implemented on compressed bitmaps that reside on the disk, the

time taken to read a bitmap from the secondary storage to the main memory domi-

nates the overall bitwise manipulation time [31]. The overall cost is hence proportional

to the size of the (compressed) bitmap file on the secondary storage.

Let us consider a logical operation on bitmaps Bi and Bj. Let us assume that

T (Bi) and T (Bj) denotes the blocks in which Bi and Bj are stored, respectively. Since

multiple bitmaps can be stored in a single block, it is possible that Bi and Bj are in

the same block. Hence, let us further assume that T(Bi,Bj) is the set of unique blocks

that contain the bitmaps, Bi and Bj. Then the overall I/O cost is:

costio(Bi op Bj) = αIO
( ∑
T∈T(Bi,Bj)

size(T )
)
,
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where αIO is an I/O cost multiplier and op is a binary bitwise logical operator. A

similar result also holds for the unary operation NOT.

Operations on In-Buffer Compressed Bitmaps When the compressed bitmaps

on which the logical operations are implemented are already in-memory, the disk

access cost is not a factor. However, also in this case, the cost is proportional to the

sizes of the compressed bitmap files in the memory, independent of the specific logical

operator that is involved [94], leading to

costcpu(Bi op Bj) = αcpu
(
size(Bi) + size(Bj)

)
,

where αcpu is the CPU cost multiplier. A similar result also holds for the unary

operation NOT.

Cost Models for Multiple Operations

In this section, a cost model is considered which assumes that blocks are disk-resident.

Therefore, I consider a storage hierarchy that consists of a disk (which stores all

bitmaps), RAM (as a buffer that stores all relevant bitmaps), and L3/L2 caches (that

stores currently needed bitmaps).

Buffered Strategy In the buffered strategy, visualized in Figure 4.1, the bitmaps

that correspond to any leaf or non-leaf operating nodes for the query plan of a given

query workload, Q, are brought into the buffer once and cached for later use. Then, for

each query q ∈ Q, the corresponding result bitmap is extracted using these buffered

operating node bitmaps. Consequently, if a node is an operating one for more than

one q ∈ Q, it is read from the disk only once (and once for each query from the

memory). Let us assume that TONQ denotes the set of unique blocks that contains
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all the necessary operating nodes given a query workload Q(ONQ). This leads to the

overall processing cost, time costbuf (Q,ONQ), of

αIO

 ∑
T∈TONQ

size(T )


︸ ︷︷ ︸

read cost

+αcpu

∑
q∈Q

∑
ni∈ONq

size(Bi)


︸ ︷︷ ︸

operating cost

.

Since all operating nodes need to be buffered, this execution strategy requires a

total of storage costbuf (Q,ONQ) =
∑

ni∈ONQ size(Bi) buffer space. Note that, in

general, αIO > αcpu. However, in Section 4.4, I see that the number of queries in the

query workload and query ranges determine the relative costs of in-buffer operations

vs. disk I/O.

The buffered strategy has the advantage that each query can be processed indi-

vidually on the buffered bitmaps and the results for each completed query can be

pipelined to the next operator without waiting for the results of the other queries

in the workload. This reduces the memory needed to temporarily store the result

bitmaps. However, in the buffered strategy, the buffer needed to store the operating

node bitmaps can be large.

Incremental Strategy The incremental strategy avoids buffering of all operat-

ing node bitmaps simultaneously. Instead, all leaf and non-leaf operating nodes are

fetched from the disk one at a time on demand and results for each query are con-

structed incrementally. This is achieved by considering one internal operating node

at a time and, for each query, focusing only on the leaf operating nodes under that

internal node. For this purpose, a result accumulator bitmap, Resj, is maintained for

each query in qj ∈ Q and each operating node read from the disk is applied directly

on this result accumulator bitmap.

While it does not need buffer to store all operating node bitmaps, the incremental

strategy may also benefit from partial caching of the relevant blocks. This is because,
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Figure 4.5: Buffer Misses and the Overall Read Time (Data and Other Details are

Presented in Section 4.4)

while each internal node needs to be accessed only once, each leaf node under this

internal node may need to be brought to the memory for multiple queries. More-

over, since the data is organized in terms of blocks, rather than individual nodes

(Section 4.2.2), a single block may serve multiple nodes to different queries. When

sufficient buffer is available to store the working set of blocks (containing the operating

leaf nodes under the current internal node), the execution cost, time costinc(Q,ONQ),

of the incremental strategy is identical to that of the buffered strategy. Otherwise,

as illustrated in Figure 4.5, the read cost component is a function of buffer misses,

αIO ×# buffer misses, which itself depends on the size of the buffer and the clus-

tering of the data.
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The storage complexity3 is storage costinc(Q,ONQ) =
∑

qj∈Q size(Resj) plus the

space needed to maintain the most recently read blocks in the working set. Experi-

ments reported in Section 4.4 show that, for the considered data sets, the sizes of the

working sets are small enough to fit into the L3-caches of many modern hardware.

4.3.3 Selecting the Operating Bitmaps for a Given Query Workload

To process a range query workload, Q, on a data set, D, with the underlying

cSHB hierarchy H, I need to select a set of operating bitmap nodes, ONQ, of H from

which I can construct the results for all qj ∈ Q, such that time cost(Q,ONQ) is the

minimum among all possible sets of operating bitmaps for Q. It is easy to see that

the number of alternative sets of operating bitmaps for a given query workload Q is

exponential in the size of the hierarchy H. Therefore, instead of seeking the set of

operating bitmaps among all subsets of the nodes in H, I focus the attention on the

cuts of the hierarchy, defined as follows:

Definition 4.3.1 (Cuts of H Relative to Q) A complete cut, C, of a hierarchy,

H, relative to a query load, Q, is a subset of the internal nodes (including the root)

of the hierarchy, satisfying the following two conditions:

• validity: there is exactly one node on any root-to-leaf branch in a given cut; and

• completeness: the nodes in C collectively cover every possible root-to-leaf branch

for all leaf nodes in the result sets for queries in Q.

If a set of internal nodes of H only satisfies the first condition, then I refer to the cut

as an incomplete cut.

3The space complexity of the incremental strategy can be upper-bounded if the
results for the queries in Q can be pipelined to the next set of operators progressively
as partial results constructed incrementally.
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As visualized in Figure 4.1, given a cut C, cSHB queries are processed by using

only the bitmaps of the nodes in this cut, along with some of the leaf

bitmaps necessary to construct results of the queries in Q. In the rest of this

subsection, I first describe how queries are processed given a cut, C, of H and then

present algorithms that search for a cut, C, given a workload, Q.

Range Query Processing with Cuts

It is easy to see that any workload, Q, of queries can be processed by any (even

incomplete) cut, C, of the hierarchy and a suitable set of leaf nodes: Let Rq denote

the set of leaf nodes that appear in the result set of query q ∈ Q and R̄q be the set of

leaf nodes that do not appear in the result set. Let also RC
q be the set of the result

leaves covered by a node in C. Then, one possible way to construct the result bitmap,

Bq, is as follows:

Bq =


(

OR
ni∈C

Bi

)
OR

(
OR

ni∈Rq\RCq
Bi

)
︸ ︷︷ ︸

inclusions

 ANDNOT
nj∈RCq ∩R̄q

Bj︸︷︷︸
exclusions

.

Intuitively any result nodes that are not covered by the cut need to be included in the

result using a bitwise OR operation, whereas any leaf node that is not in any result

needs to be excluded using an ANDNOT operation. Consequently,

• if C ∩Rq = ∅, an inclusion-only plan is necessary,

• an exclusion-only plan is possible only if C covers Rq completely.

Naturally, given a range query workload, Q, different query plans with different cuts

will have different execution costs. The challenge is, then,

• to select an appropriate cut, C, of the hierarchy, H, for query workload, Q, and
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• to pick, for each query qj ∈ Q, a subset Cj ∈ C for processing qj,

in such a way that these will minimize the overall processing cost for the set of range

queries in Q. Intuitively, I want to include in the cut, those nodes that will not lead

to a large number of exclusions and cannot be cheaply constructed by combining

bitmaps of the leaf nodes using OR operations.

Cut Bitmap Selection Process

Given the above cut-based query processing model, in this section we propose a cut

selection algorithm consisting of two steps: (a) a per-node cost estimation step and

(b) a bottom-up cut-node selection step. I next describe each of these two steps.

Node Cost Estimation First, the process assigns an estimated cost to those hier-

archy nodes that are relevant to the given query workload, Q. For this, the algorithm

traverses through the hierarchy, H, in a top-down manner and identifies part, R, of

the hierarchy relevant for the execution of at least one query, q ∈ Q (i.e., for at least

one query, q, the range associated with the node and the query range intersect). Note

that this process also converts the range in 2-D space into 1-D space by identifying

the relevant nodes in the hierarchy. Next, for each internal node, ni ∈ R, a cost, costi,

is estimated assuming that this node and its leaf descendants are used for identifying

the matches in the range Si. The outline of this process is presented in Algorithm 7

and is detailed below:

• Top-Down Traversal and Pruning. Line 5 indicates that the process starts at the

root and moves towards the leaves. For each internal node, ni, being visited, first,

the set, Q(ni) ⊆ Q, of queries for which ni is relevant is identified by intersecting the

ranges of the queries relevant to the parent (i.e., Q(parent(ni))) with the range of ni.
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Algorithm 7 Cost and Leaf Access Plan Assignment Algorithm

1: Input: Hierarchy H, Query Workload Q

2: Outputs: Query workload, Q(ni), and cost estimate, costi, for each node, ni ∈

H; leaf access plan, Ei,j, for all node/query pairs ni ∈ H and qj ∈ Q(ni); a set,

R ⊆ IH , or relevant internal nodes

3: Initialize: R = ∅

4: procedure Cost and LeafAccessPlanAssignment

5: for each internal node ni ∈ IH in top-down fashion do

6: if ni = “root′′ then

7: Q(ni) = Q

8: else

9: Q(ni) = {q ∈ Q(parent(ni)) s.t. (q.rs ∩ Si) 6= ∅}

10: end if

11: if Q(ni) 6= ∅ then

12: add ni into R

13: end if

14: end for

15: for each node ni ∈ R in a bottom-up fashion do

16: for qj ∈ Q(ni) do

17: Compute icost(ni, q)

18: Compute ecost(ni, q)
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19: Compute the leaf access plan, Ei,j, as

Ei,j = [ecost(ni, qj) < icost(ni, qj)]

20: end for

21: Compute the leaf access cost, leaf costi, as(∑
qj∈Q(ni)

Ei,j × ecost(ni, qj) + (1− Ei,j)× icost(ni, qj)
)

22: end for

23: end procedure

More specifically,

Q(ni) = {q ∈ Q(parent(ni)) s.t. (q.rs ∩ Si) 6= ∅}.

If Q(ni) = ∅, then ni and all its descendants are ignored, otherwise ni is included in

the set R.

• Inclusive and Exclusive Cost Computation. Once the portion, R, of the hierarchy

relevant to the query workload is identified, next, the algorithm re-visits all internal

nodes in R in a bottom-up manner and computes a cost estimate for executing queries

in Q(ni): for each query, q ∈ Q(ni), the algorithm computes inclusive and exclusive

leaf access costs:

• Inclusive leaf access plan (Line 17): If query, q, is executed using an inclusive

plan at node, ni, this means that the result for the range (q.rs ∩ Si) will be

obtained by identifying and combining (using bitwise ORs) all relevant leaf

bitmaps under node ni. Therefore, the cost of this leaf access plan is

icost(ni, q) =
∑

(nj∈leafDesc(ni))∧((q.rs∩Sj)6=∅)

size(Bj).

This value can be computed incrementally, simply by summing up the inclusive

costs of the children of ni.
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• Exclusive leaf access plan (Line 18): If query, q, is executed using an exclusive

leaf access plan at node, ni, this means that the result for the range (q.rs ∩

Si) will be obtained by using Bi and then identifying and excluding (using

bitwise ANDNOT operations) all irrelevant leaf bitmaps under node ni. Thus,

I compute the exclusive leaf access plan cost, ecost(ni, q), of this query at node

ni as

ecost(ni, q) = size(Bi)

+
∑

(nj∈leafDesc(ni))∧((q.rs∩Sj)=∅)

size(Bj)

or equivalently as

ecost(ni, q) = size(Bi) +

 ∑
nj∈leafDesc(ni)

size(Bj)


− icost(ni, q)

Since the initial two terms above are recorded in the index creation time, the

computation of exclusive cost is a constant time operation.

• Overall Cost Estimation and the Leaf Access Plan. Given the above, I can find the

best strategy for processing the query set Q(ni) at node ni by considering the overall

estimated cost term, cost(ni, Q(ni)), defined as ∑
qj∈Q(ni)

Ei,j × ecost(ni, qj) + (1− Ei,j)× icost(ni, qj)


︸ ︷︷ ︸

leaf access cost for all relevant queries

where Ei,j = 1 means an exclusive leaf access plan is chosen for query, qj, at this node

and Ei,j = 0 otherwise.

Cut Bitmap Selection Once the nodes in the hierarchy are assigned estimated

costs as described above, the cut that will be used for query processing is found
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Algorithm 8 Cut Selection Algorithm

1: Input: Hierarchy H; per-node query workload Q(ni); per-node cost estimates

costi; and the corresponding leaf access plans, Ei,j, for node/query pairs ni ∈ H

and qj ∈ Q(ni); the set, R ⊆ IH , or relevant internal nodes

2: Output: All-inclusive, CI , and Exclusive, CE, cut nodes

3: Initialize: Cand = ∅

4: procedure findCut

5: for each relevant internal node ni in R in a bottom-

6: up fashion do

7: Set internal children = children(ni) ∩ IH ;

8: if internal children = ∅ then

9: add ni to Cand;

10: rcosti = costi

11: else

12: costChildren =
∑

nj∈internal children rcostj

13: rcostIOi = findBlockIO(ni)

14: for each child nj in internal children do

15: costChildrenIO = costChildrenIO + findBlockIO(nj)

16: end for

17: if (rcosti + rcostIOi) ≤ (costChildren+ costChildrenIO) then

18: for each descendant nk of ni in Cand do

19: remove nk from Cand;

20: if nk is the only node to read from T (Bk) then

21: mark T (Bk) as “not-to-read”;

22: end if

23: end for
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24: add ni to Cand;

25: rcosti = costi

26: mark T (Bi) as “to-read”;

27: else

28: rcosti = costChildren

29: end if

30: end if

31: end for

32: CE = {ni ∈ Cand s.t. ∃qj∈Q(ni)Ei,j == 1}

33: CI = Cand/CE

34: end procedure

by traversing the hierarchy in a bottom-up fashion and picking nodes based on their

estimated costs4. The process is outlined in Algorithm 8. Intuitively, for each internal

node, ni ∈ IH , the algorithm computes a revised cost estimate, rcosti, by comparing

the cost, costi, estimated in the earlier phase of the process, with the total revised

costs of ni’s children:

• In Line 13, the function findBlockIO(ni) returns the cost of reading the block

T (Bi). If this block has already been marked “to-read”, then the reading cost

has already been accounted for, so the cost is zero. Otherwise, the cost is equal

to the size of the block T (Bi), as explained in Section 4.3.2.

• It is possible that a block T is first marked “to-read” and then, later in the

process, marked “not-to-read”, because for the corresponding nodes in the cut,

more suitable ancestors are found and the block is no longer needed (Line 21).

4Note that this bottom-up traversal can be combined with the bottom-up traversal
of the prior phase. I am describing them as separate processes for clarity.
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• If costi is smaller (Line 17), then ni and its leaf descendants can be used for

identifying the matches to the queries in the range Si. In this case, no revision

is necessary and the revised cost, rcosti is equal to costi. Any descendants of ni

are removed from the set, Cand, of cut candidates and ni is inserted instead.

• If, on the other hand, the total revised cost of ni’s children is smaller than costi,

then matches to the queries in the range Si can be more cheaply identified by

considering the descendants of ni, rather than ni itself (Line 27). Consequently,

in this case, the revised cost, rcosti, is set to

rcosti =
∑

nj∈children(ni)

rcostj.

As I experimentally show in Section 4.4, the above process has a small cost. This is

primarily because, during bottom-up traversal, only those nodes that have not been

pruned in the previous top-down phase are considered. Once the traversal is over,

the nodes in the set, Cand, of cut candidates are reconsidered and those that include

exclusive leaf access plans are included in the exclusive cut set, CE, and the rest are

included in the all-inclusive cut set, CI .

Caching of Cut and Leaf Bitmaps During query execution, the bitmaps of the

nodes in CE are read into a cut bitmaps buffer, whereas the bitmaps for the nodes

in CI do not need to be read as the queries will be answered only by accessing

relevant leaves under the nodes in CI . The blocks that contain bitmaps of these

relevant leaves are stored in an LRU-based cache so that leaf bitmaps can be reused

by multiple queries.
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Complexity

The bitmap selection process consists of two steps: (a) a per-node cost estimation

step and (b) a cut bitmap selection step. Each of these steps visit only the relevant

nodes of the hierarchy. Therefore, if I denote the set of nodes of the hierarchy, H,

that intersect with any query in Q, as H(Q), then the overall work is linear in the

size of H(Q).

During the cost estimation phase, for each visited node, ni, an inclusive and

exclusive cost is estimated for any query that intersects with this node. Therefore,

the worst case time cost of the overall process (assuming that all queries in Q intersect

with all nodes in H(Q)) is O(|Q| × |H(Q)|).

4.4 Experimental Evaluation

In this section, I evaluate the effectiveness of the proposed compressed spatial hi-

erarchical bitmap (cSHB) index structure using spatial data sets with different char-

acteristics, under different system parameters. To assess the effectiveness of cSHB,

we also compare it against alternatives.

I ran the experiments on a quad-core Intel Core i5-2400 CPU @ 3.10GHz machine

with 8.00GB RAM, and a 3TB SATA Hard Drive with 7200 RPM and 64MB Buffer

Size, and in the same Windows 7 environment. All codes were implemented and run

using Java v1.7.

4.4.1 Alternative Spatial Index Structures and the Details of the cSHB

Implementation

As alternatives to cSHB, I considered different systems operating based on dif-

ferent spatial indexing paradigms. In particular, we considered spatial extensions of

PostgreSQL called PostGIS [64], of a widely used commercial DBMS (which we refer
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to as DBMS-X), and of Lucene [61]:

• PostGIS [64] creates spatial index structures using an R-tree index implemented

on top of GiST.

• DBMS-X maps 2D space into a 1D space using a variation of Hilbert space

filling curve and then indexes the data using B-trees.

• Apache Lucene [61, 47], a leading system for text indexing and search, provides

a spatial module that supports geo-spatial range queries in 2D space using

quadtrees and prefix-based indexing. Intuitively, the space is partitioned using

a MX-quadtree structure (where all the leaves are at the same level and a given

region is always partitioned to its quadrants at the center [78]) and each root-

to-leaf path is given a unique path-string. These path-strings are then indexed

(using efficient prefix-indexing algorithms) for spatial query processing.

Since database systems potentially have overheads beyond pure query processing

needs, I also considered disk-based implementations of R*-tree [14] and the Hilbert

R-tree [49]. For this purpose, I used the popular XXL Java library [19]:

• A packed R*-tree, with average leaf node utilization ∼ 95% (page size 4MB).

• A packed Hilbert R-tree, with average leaf node utilization ∼ 99%

(page size 4MB).

I also implemented the proposed cSHB index structure on top of Lucene. In particular,

I used the MX-quadtree hierarchy created by Lucene as the spatial hierarchy for

building cSHB. I also leveraged Lucene’s (Java-based) region comparison libraries to

implement range searches. The compressed bitmaps and compressed domain logical

operations were implemented using the JavaEWAH library [56].
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Data set #points #points per (non-empty) cell

(h = 10)

Min. Avg. Max.

Synthetic (Uniform) 100M 54 95 143

Gowalla (Clustered) 6.4M 1 352 312944

OSM (Clustered) 688M 1 3422 1.2M

Table 4.1: Data Sets and Clustering

As described in Section 4.3.2, I have introduced two different execution strate-

gies, namely buffered and incremental strategies, and presented the corresponding

cost models. The buffered strategy assumes that all the bitmaps corresponding to

any leaf or non-leaf operating nodes for the query plan can be brought into the buffer

once and cached for later use. The incremental strategy, however, relaxes this assump-

tion and consequently, does not need sufficient buffer space to store all operating node

bitmaps; instead, the incremental strategy relies on partial caching of only the rel-

evant blocks. While the data sets considered in our experiments could all benefit

from the buffered strategy given a sufficiently modern hardware, in the experiments

presented in this thesis, our goal is to see whether the cSHB method is still advanta-

geous and competitive against other systems when this is not the case. Therefore, in

the experiments presented in this thesis, I consider those cases where cSHB cannot

leverage a full buffered strategy for high performance and, instead, needs to rely on

partial caching through the proposed incremental strategy.
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Figure 4.6: Data Skew

4.4.2 Data Sets

For the experiments, I used three data sets: (a) a uniformly distributed data set

that consists of 100 million synthetically generated data points. These points are

mapped to the range 〈−180,−90〉 to 〈180, 90〉, (b) a clustered data set from Gowalla,

which contains the locations of check-ins made by users. This data set is downloaded

from the Standford Large Network Dataset Collection [57], and (c) a clustered data

set from OpenStreetMap (OSM) [4] which contains locations of different entities dis-

tributed across North America. The OSM data set consists of approximately 688

million data points in North America. I also normalized both the real data sets to

the range 〈−180,−90〉 to 〈180, 90〉. In order to obtain a fair comparison across all

index structures and the data sets, all three data sets are mapped onto a 2h×2h space

and the positions of the points in this space are used for indexing. Table 4.1 provides

an overview of the characteristics of these three very different data sets. Figure 4.6

re-confirms the data skew in the three data sets using the box-counting method pro-

posed in [16]: in the figure, the lower the negative slope, the more skewed the data.

The figure shows that the clustered Gowalla data set has the largest skew.
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Parameter Value range

Block Size (MB) 0.5; 1; 2.5; 5; 10

Query range size 0.5% 1%; 5%

|Q| 100; 500; 1000

h 9; 10; 11

Buffer size (MB) 2; 3; 5; 10; 20; 100

Table 4.2: Parameters and Default Values (in bold)

4.4.3 Evaluation Criteria and Parameters

I evaluate the effectiveness of the proposed compressed spatial hierarchical bitmap

(cSHB) index structure by comparing its (a) index creation time, (b) index size, and

(c) query processing time to those of the alternative index structures described above

under different parameter settings. Table 4.2 describes the parameters considered in

these experiments and the default parameter settings.

Since the goal is to assess the contribution of the index in the cost of the query

plans, all index structures in the comparison used index-only query plans. More

specifically, I executed a count(∗) query and configured the index structures such

that only the index is used to identify the relevant entries and count them to return

the results. Consequently, only the index files are used and data files are not accessed.

Note that all considered index structures accept square-shaped query ranges.

The range sizes indicated in Table 4.2 are the lengths of the boundaries relative to

the size of the considered 2D space. These query ranges in the query workloads are

generated uniformly.
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Dataset cSHB Lucene DBMS-X PostGIS R*-

tree

Hilbert

R-tree

Synthetic 1601 2396 3865 4606 2160 2139

Gowalla 24 114 232 112 22 20

OSM 2869 12027 30002 76238 18466 17511

Table 4.3: Index Creation Time (in seconds)

Dataset cSHB Lucene DBMS-X PostGIS R*-

tree

Hilbert

R-tree

Synthetic 10900 5190 1882 8076 3210 1510

Gowalla 44 220 121 600 211 100

OSM 2440 22200 12959 61440 22100 10400

Table 4.4: Index Size on Disk (MB)

4.4.4 Discussion of the Indexing Results

Indexing Time. Table 4.3 shows the index creation times for different systems and

index structures, for different data sets (with different sizes and uniformity): cSHB

index creation is fastest for the larger Synthetic and OSM data sets, and competitive

for the smaller Gowalla data set. As the data size gets larger, the alternative index

structures become significantly slower, whereas cSHB is minimally affected by the

increase in data size. The index creation time also includes the time spent on creating

the hierarchy for cSHB.

Index Size. Table 4.4 shows the sizes of the resulting index files for different systems

and index structures and for different data sets. As I see here, cSHB provides a

competitive index size for uniform data (where compression is not very effective).
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Figure 4.7: Impact of the Block Size on Index Creation Time of cSHB (Uniform Data

Set)

On the other hand, on clustered data, cSHB provides very significant gains in index

size – in fact, even though the clustered data set, OSM, contains more points, cSHB

requires less space for indexing this data set than it does for indexing the uniform

data set.
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Range cSHB Lucene DBMS-X PostGIS R*- Hilbert cSHB-LO

tree R-tree

Synthetic (Uniform; 100M)

0.5% 35 123 414 12887 2211 4391 52

1% 42 131 345 28736 2329 4480 59

5% 137 187 368 72005 2535 4881 1700

Gowalla (Clustered; 6.4M)

0.5% 2 2 24 19 8 24 2

1% 3 3 29 34 11 26 3

5% 3 48 37 194 20 45 5

OSM (Clustered; 688M)

0.5% 13 23 303 1129 3486 4368 13

1% 15 30 645 4117 3889 5599 14

5% 28 66 15567 18172 4626 6402 78

Table 4.5: Comparison of Search Times for Alternative Schemes and Impact of the

Search Range on the Time to Execute 500 Range Queries (in seconds)

Impact of Block Size. As I discussed in Section 4.2.2, cSHB writes data on the

disk in a blocked manner. In Figure 4.7, I see the impact of the block sizes on the

time needed to create the bitmaps. As I see here, one advantage of using blocked

storage is that the larger the blocks used, the faster the index creation becomes.

4.4.5 Discussion of the Search Results

Impact of the Search Range. Table 4.5 shows the impact of the query range

on search times for 500 queries under the default parameter settings, for different
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Figure 4.8: cSHB Execution Breakdown

systems. As I expected, as the search range increases, the execution time becomes

larger for all alternatives. However, cSHB provides the best performance for all ranges

considered, especially for the clustered data sets. Here, I also compare cSHB with its

leaf-only version (called cSHB-LO), where instead of a cut consisting of potentially

internal nodes, I only choose the leaf nodes for query processing. As you can see from

the figure, while cSHB-LO is a good option for very small query ranges (0.5% and

1%), it becomes very slow as the query range increases (since the number of bitwise

operations increases, and it is not able to benefit from clustering).

Execution Time Breakdown. Figure 4.8 provides a breakdown of the various com-

ponents of cSHB index search (for 500 queries under the default parameter settings):

The bitmap selection algorithm presented in Section 4.3.3 is extremely fast. In fact,

the most significant components of the execution are the times needed for reading

the hierarchy into memory5, and for fetching the selected bitmaps from the disk into

the buffer, and performing bitwise operations on them. As expected, this component

sees a major increase as the search range grows, whereas the other costs are more or

5Once a hierarchy is read into the memory, the hierarchy does not need to be
re-read for the following queries.
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Figure 4.9: Impact of the Block Size (500 queries, 1% Query Range, Uniform Data)

less independent of the sizes of the query ranges.

Impact of the Block Sizes. As I see above, reading bitmaps from the disk and

operating on them is a major part of cSHB query execution cost; therefore these

need to be performed as efficiently as possible. As I discussed in Section 4.2.2, cSHB

reads data from the disk in a blocked manner. In Figure 4.9, I see the impact of the

block sizes on the execution time of cSHB, including the time needed to read bitmaps

from the disk. As I see here, small blocks are disadvantageous (due to the directory

management overhead they cause). Very large blocks are also disadvantageous as,

the larger the block gets, the larger becomes the amount of redundant data read
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Figure 4.10: Impact of the Number of Queries on the Execution Time of cSHB (1%

Query Range, Uniform Data)

for each block access. As I see in the figure, for the configuration considered in the

experiments, 1MB blocks provided the best execution time.

Impact of the Number of Queries in the Workload. Figure 4.10 shows the

total execution times as well as the breakdown of the execution times for cSHB

for different number of simultaneously executing queries. While the total execution

time increases with the number of simultaneous queries, the increase is sub-linear,

indicating that there are savings due to the shared processing across these queries.

Also, in Section 4.3.2, I had observed that the number of queries in the query workload

and query ranges determine the relative costs of in-buffer operations vs. disk I/O. In

Figures 4.8 and 4.10, I see that this is indeed the case.

Impact of the Depth of the Hierarchy. Figure 4.11 shows the impact of the

hierarchy depth on the execution time of cSHB: a 4× increase in the number of cells

in the space (due to a 1-level increase in the number of levels of the hierarchy) results

in < 4× increase in the execution time. Most significant contributors to this increase

are the time needed to read the hierarchy and the time for bitmap operations.

Impact of the Cache Buffer. As we discussed in Section 4.3.2, the incremen-
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Q.Range (on 100M data) Min Avg. Max.

0.5% 1 2.82 36

1% 1 2.51 178

5% 1 1.02 95

Table 4.6: Working Set Size in Terms of 1MB Blocks

tal scheduling algorithm keeps a buffer of blocks containing the working set of leaf

bitmaps. As Table 4.6 shows, the average size of the working set is fairly small and

can easily fit into the L3 caches of modern hardware. Table 4.7 confirms that a small

buffer, moderately larger than the average working set size, is sufficient and larger

buffers do not provide significant gains.
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Query Buffer Size

Range 2MB 3MB 5MB 10MB 20MB 100MB

0.5% 11.8 11.3 10.9 10.6 10.5 10.2

1% 24.2 19.1 18.1 17.5 17.3 16.3

5% 823.8 399.9 155.9 105.8 101.6 94.9

Table 4.7: Impact of the Buffer Size on Execution Time (in seconds, for 500 queries,

100M data)
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Chapter 5

EXECUTION OF RANGE QUERY WORKLOADS IN HIGH-DIMENSIONAL

SPACES

5.1 Introduction

The similarity search problem in high dimensional spaces is a very well-known

problem. Tree-based indexing structures (KD-tree [17], X-tree [18], SR-tree [51], etc.)

have been shown to be effective for only up to ten dimensions [44]. Beyond dimensions

greater than this, tree-based index structures are often out-performed even by linear

scans (a problem popularly known as the curse of dimensionality. One solution to

address this problem for higher dimensions is to look for approximate results instead

of exact results. Especially given that, in many applications, 100% accuracy is not

needed, searches that return points that are close enough to the query point rather

than the closest ones, are often times, more effective and much faster than solutions

that attempt to find exact query results [29].

One of the most popular solutions for approximate searching is called Locality

Sensitive Hashing (LSH), first proposed in [44]. The idea behind locality sensitive

hashing is to map high dimensional data to lower dimensional representations, in such

a way that searches are nevertheless reasonably accurate. In the lower dimensional

space, which is obtained through random projections, data points are mapped to

individual buckets based on a hash function. The intuition behind this method is

that data points closer in the original space will be mapped to the same buckets with

a higher probability in the lower dimensional space than dissimilar points. This may,

however, lead to misses as well as false positives. Given a distance metric and a
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corresponding locality sensitive hashing family (detailed in Section 5.1.4), LSH data

structures control their precision and recall by using multiple independently chosen

hash functions organized into several hash layers: intuitively, conjunctively combined

hashes at each layer reduce false positives, whereas disjunctively combined layers of

hash functions help avoid misses – often, at the expense of identifying candidate data

elements that needs to be eliminated during post-processing.

Locality Sensitive Hashing has been studied and improved upon extensively in the

research community [62, 98, 48, 59, 11, 29, 36]. In particular, most existing solutions

follow the original framework proposed in the seminal LSH work [44], which aimed to

address the (r, c)-near neighbors problem: every point p that lies within a distance of

r from query point q should be reported with a probability guarantee of at least 1− δ

(where δ is a user-specified error probability), whereas points that lie beyond distance

of c× r, for some c > 1, from the query point q should have a very low likelihood of

being included in the query result1. Intuitively, the user provides a success probability

that decides the balance between the accuracy of the results and query processing

speed for a given radius. Higher the target success probability, higher is the accuracy

for the results, but slower the query processing speed, and vice-versa. Since using

more layers helps eliminate misses, this may increase the number of candidate points

that need to be enumerated and potentially eliminated during post-processing. The

parameters of the index structure need to be selected carefully to achieve the target

accuracy for the given target radius.

1While the original work address searches for Hamming distance, this was quickly extended to

Euclidean and other distances [29].
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5.1.1 Motivation

Similarity search queries are a crucial set of queries in multimedia applications.

Multimedia data is often represented by the most important points that can help

identify the data, without having to store the entire data. These points, also called

features, are extracted using popular localized feature extraction algorithms such as

SIFT [60] or SURF [12]. A user may want to find all the data objects in the database

that are similar to a particular data object. Each object is represented by a set of

features, and a similarity query has to be performed on each of these features in order

to find the objects in the database that have similar features. Collectively, these

individual query points form a query set. In traditional and state-of-the-art LSH-

based techniques, users input a success guarantee for each individual query point,

instead of a guarantee for the entire query set. A lower guarantee on these individual

query points can lead to overall misses, and a higher guarantee can lead to redundant

and wasteful work for the whole set. Returning results (or features) that satisfy all

the query points is an expensive process. Returning approximate results can save

time as well as return “good enough” results. Hence, users may only be interested in

features that satisfy a certain number of query points instead of all the points in the

query set. Then the challenge is to design an index structure that can take a target

number of points and a guarantee on the entire set as an input, and return the data

points, that satisfy at least “target” number of query points in the query set while

satisfying the success guarantee, in an efficient and waste-avoiding manner.

5.1.2 Research Contributions

To deal with the challenge of giving a guarantee for a set query (instead of in-

dividual query points), I design and develop a novel index structure, Point Set LSH
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(PSLSH), which creates a layer of an LSH index structure based on the Hamming

distance (called PSLSHH), on top of the existing LSH index structure (that is based

on the Euclidean distance - called PSLSHE). Since, especially for secondary-storage

based implementations, the post-processing step (where the precise positions for the

enumerated candidates are fetched from storage to identify and eliminate false posi-

tives2) is the most expensive step, the goal of PSLSH is to design the index structure

such that less candidates are generated. In particular, given a total budget of hash

functions to use, I present a novel strategy that decides how many hash functions

PSLSHE can use and how many hash functions PSLSHH can use. The existing exist-

ing collision counting approach [36] is not designed to work effectively in a multi-level

index structure. I present an extension to the collision counting approach so that it

can effectively remove false positives in a multi-level index structure. I also present

novel cost models that can effectively predict the total query set execution time for

different strategies, and thus choose the most efficient design strategy. To the best of

my knowledge, this is the first work that presents an index structure that can give

guarantees for an entire set query instead of guarantees on individual query points.

Experimental evaluations of PSLSH shows the effectiveness of the proposed index

structure and the design strategies in avoiding wasted and redundant work while

giving a guarantee on the entire set query.

5.1.3 Organization of the Chapter

The rest of the chapter is organized in the following way: in Section 5.2, I describe

the relevant works that try to solve the similarity search problem using LSH. I describe

the (r, c)-Near Neighbor Problem and the preliminaries necessary to understand Point

2If the computed precise distance is more than the query radius, the candidate is
a false positive and it is eliminated.
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Set LSH in Section 5.1.4. In Section 5.4, I describe the design of Point Set LSH and

provide the theoretical analysis behind the proposed novel design. I evaluate the

proposed index structure in Section 5.5.

5.1.4 Background and Preliminaries

In this section, I briefly describe the key concepts underlying LSH, relying pri-

marily on the terminology and formulations in E2LSH1 and C2LSH [36], and then

formally describe the problem is solved in this chapter.

5.1.5 Key Concepts

Hash Functions. A hash function family H is said to be (r, c, P1, P2)-sensitive if it

satisfies all the following conditions for any two points x and y in a data set D ⊂ Rd:

• if |x− y| ≤ r, then Pr[h(x) = h(y)] ≥ P1, and

• if |x− y| > cr, then Pr[h(x) = h(y)] ≤ P2

Here, c is an approximation ratio, P1 and P2 are probabilities, and in order for

the definition to work, c > 1 and P1 > P2. The above definition states that the two

points x and y are hashed to the same bucket with a very high probability ≥ P1 if

they are close to each other (i.e. the distance between the two points is less than or

equal to r), and if they are not close to each other (i.e. the distance between the two

points is greater than cr), then they will be hashed to the same bucket with a low

probability ≤ P2.

In the original LSH scheme for Euclidean distance, each hash function is defined

as ha,b(v) = a.v+b
w
, where a is a d-dimensional random vector with entries chosen

independently from the standard normal distribution and b is a real number chosen

uniformly from [0, w), such that w is the width of the hash bucket [29]. This leads to
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the following collision probability function [59]:

P (r) =

∫ w

0

1

r

2√
2π
e
−t2
2r2 (1− t

w
)dt. (5.1)

Note that the collision probability is governed by the width, w, of the hash bucket: if

the size is chosen to be much larger than the query radius, then there can be a lot of

candidates generated. If the size is chosen to be much smaller than the query radius,

then there can be potentially several misses.

Controlling Accuracy through Layer Structure. To control false positives,

LSH concatenates multiple hash functions to create a compound hash function for a

single hash table. For k hash functions h1(x), h2(x), ..., hk(x), it creates a compound

hash function g(x) = (h1(x), h2(x), ..., hk(x)). For a data point x, the answer of this

compound hash function g(x) is used as the bucket id for the given hash table (which

is made up of k hash functions).

On the other hand, as the number of hash functions increases, the recall of the

entire index drops. In order to increase the recall, LSH creates multiple hash layers

each consisting of these k hash functions. Let m be the total number of hash layers in

the LSH index and let us assume that the user is interested in objects within distance

r. The probability that points x and y fail to collide in all m hash layers is (1−P k
1 )m.

The probability that the two points x and y collide in at least one hash layer (which

is the same as the expected recall for the index) is

1− δ ≥ 1− (1− P k
1 )m, (5.2)

where δ is a user-provided input denoting the expected miss probability. In other

words, the number, k, of hash functions per layer and the number, m, of layers can

together be used to control the accuracy of the index structure.
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5.1.6 C2LSH Method

The C2LSH method [36] relies on the concept of collision counting. [36] theoreti-

cally shows that two close points x and y (i.e., |x− y| ≤ r) collide in at least l layers

with a probability 1− δ, when the total number, m, of layers in the hash structure is

set to be

m =
⌈ ln(1

δ
)

2(p1 − p2)2
(1 + z)2

⌉
, (5.3)

where z =
√

ln( 2
β
)/ ln(1

δ
), and β is the percentage of points whose distance with

a query point is greater than cr3. Given this, the authors suggest that only those

points that collide above a collision count threshold, l, with the query point are

considered as candidate points. The collision count threshold is defined as a ratio

of the total number of layers; more specifically, l = dα × me, where the collision

threshold percentage, α, is

α =
zp1 + p2

1 + z
. (5.4)

Note that, in C2LSH, since there is only one hash function per hash layer, the total

number of hash functions are equal to the total number of available hash layers. In

further discussions, the terms hash functions and hash layers are used interchangeably.

5.2 Problem Specification

Given a multidimensional database D that consists of points that belong to a

bounded multidimensional space S, a single query representing a point in S is called

a point query.

Definition 5.2.1 (Positive Point Query) A data point x satisfies a positive point

query, qi (and its corresponding radius rqi), if dist(x, qi) ≤ rqi.

3C2LSH sets β = 100
n

, where n is the cardinality of the dataset.
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Figure 5.1: Illustration of Two Point Queries (q1 and q2)

Similarly,

Definition 5.2.2 (Negative Point Query) A data point x satisfies a negative point

query, qi (and its corresponding radius rqi), if dist(x, qi) > rqi.

A set of point queries is referred to as a set query Q. Figure 5.1 illustrates two point

queries and their respective radiuses. Let us consider q1 is a positive point query and

q2 is a negative point query. In this example, data points x3 and x4 satisfy q1, while

data points x1 and x4 satisfy q2. Data point x4 satisfies both point queries q1 and q2.

Definition 5.2.3 (Set Query Satisfaction) Consider a set query Q that consists

of s point queries. Each ith query in Q is also represented by its corresponding radius

rqi and a flag fqi. The flag fqi ∈ (0, 1) denotes whether a point query is a positive

point query (fqi = 1) or a negative point query (fqi = 1). A point x satisfies qi,

• if fqi = 1 and dist(x, qi) ≤ rqi, or

• if fqi = 0 and dist(x, qi) > rqi.
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A data point x satisfies a given set query Q if x satisfies at least θ point queries (where

1 ≤ θ ≤ s) of Q.

In Figure 5.1, if the set query Q consisted of q1 and q2 (θ = 1, fq1 = 1, and fq2 = 0),

then data points x1, x3, and x4 satisfy Q, whereas x2 satisfies no query. If θ = 2,

then only the data point x4 satisfies Q.

Definition 5.2.4 (Set Query Guarantee) Every data point x that satisfies at least

θ point queries in a given set query Q, should be reported with a probability of at least

1− δ probability (where δ is a user-specified probability).

In particular, in this work, two key questions are answered:

• Given a budget of total hash functions, how are the hash functions distributed

to PSLSHE and PSLSHH such that the number of candidates are reduced while

satisfying the user-input guarantee, 1− δ, for the entire set query?

• As noted earlier, the precise distance computation is an expensive process. Once

the candidates from individual queries are computed, the next step is to remove

those points that do not satisfy at least θ queries. In the recently introduced

collision counting approach, only the points that collide4 are considered as can-

didates. Since PSLSHH is built on top of PSLSHE, the input to PSLSHH is the

output of PSLSHE (which can potentially contain misses and false positives).

The existing collision threshold [36] does not consider the scenario when the

input data potentially contains misses and false positives. The second question

that is answered is: how can the collision counting approach be extended such

that it accounts for the input data to contain misses and false positives?

4Two points are said to collide if they hash to the same set of hash functions in
multiple layers
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5.3 Naive Solution

The naive solution to this problem consists of three steps:

• Step 1: for each point query qi in the set queryQ, determine a success guarantee

1− δ,

• Step 2: using the standard LSH index based on the above success guarantee,

find the candidates for each point query qi in Q,

• Step 3: for each candidate point x, find all the point queries satisfied by x (as

explained in Section 5.2). Let us consider a list VQ that contains the flags of

each query in the given set query (i.e. the ith value of VQ (V i
Q) would be equal

to the flag value of query qi). Let us also consider that for every point x in the

database, we have a list Vx where the ith value of Vx (V i
x) = 1 if dist(x, qi) ≤ ri,

or V i
x = 0 if dist(x, qi) > ri. In order for point x to be considered in the final

result set of Q, x has to satisfy at least θ query points in the set query Q. Note

that, this is equivalent to the following: point x is to be considered in the final

results if the Hamming distance between VQ and Vx is ≤ s− θ.

There are two main problems with the naive approach: a) The user is unable to

input an overall guarantee for the set query, and instead has to input a guarantee

on individual point queries, b) Underestimating the guarantee on individual point

queries can lead to overall misses, while overestimating the guarantee on individual

point queries can lead to redundant and wasteful work!

There is additional computation necessary for the Hamming distance in order to

find the final results. By leveraging this need for the Hamming distance computation,

I introduce an LSH index structure based on the Hamming distance, in order to give

a guarantee on the set query.
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Figure 5.2: Architecture of PSLSH (for scenarios with different Splitting Factors (ρ))
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5.4 Point Set LSH (PSLSH)

In this section, I describe the proposed index structure, Point Set LSH (PSLSH).

In order to provide guarantee for the entire set query, PSLSH introduces an additional

index structure based on the Hamming distance on top of the existing LSH index

structure. In PSLSH, the goal is to find the points in a database that satisfy at least

θ queries from a given set query Q.

5.4.1 Design of PSLSH

In this section, I describe the design and the intuition behind the design of PSLSH.

The design of PSLSH can be summarized as follows:

• Similar to the original LSH [44], PSLSH is built for a user-specified m number

of layers.

• In the naive solution, once the candidates for each individual point query are

found, the false positives need to be removed (for each individual point query)

by fetching the data from the secondary storage, which is an expensive opera-

tion. Instead, in PSLSH, an additional index structure based on the Hamming

distance (called PSLSHH) is created in order to provide a guarantee on the entire

set query, and in process, avoid removing the false positives after the candidates

for each query are found. Given a set query (that consists of s point queries),

PSLSH randomly chooses ρ point queries to be processed (which is similar to

randomly choosing a dimension in the Hamming space [44]). Each of these ρ

point queries are further processed using LSH-indexes based on the Euclidean

distance (called PSLSHE). Given a total budget of hash layers (which in Figure

5.2 = 10), the goal is to appropriately allocate these hash layers to PSLSHE

and PSLSHH . In other words, we want to split the m total layers into ρ “sub-
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indexes” (hence, ρ is called the Splitting Factor), such that each sub-index will

process an individual query using m
ρ

layers. PSLSHE generates candidates from

individual point queries which are further pruned by using the novel modified

Hamming Collision Threshold (further explained in Section 5.4.2). Figure 5.2

(a) shows the scenario where ρ = 1, i.e. 1 point query is randomly chosen to

be processed and there is only one sub-index. All the m (which in this Figure

is equal to 10) layers are assigned to this sub-index. When the splitting fac-

tor is 2 (Figure 5.2 (b)), there are two point queries to be processed on two

sub-indexes (where each of the sub-indexes have 5 layers assigned to it). The

following discussion is based on the observation that as the number of layers

assigned to PSLSHE decrease, the accuracy of PSLSHE decreases [36]. Simi-

larly, as the number of layers assigned to PSLSHH increases, the accuracy of

PSLSHH increases.

– When ρ = 1, there will be m layers assigned to PSLSHE, whereas only 1

layer assigned to PSLSHH . In this option, PSLSHE will have high accuracy,

but the accuracy of PSLSHH will be low.

– On the contrary, when ρ = m, PSLSHE will only have 1 layer per sub-

index resulting in low accuracy, and PSLSHH will have m layers resulting

in high accuracy.

Our goal is to choose a ρ such that the resultant accuracy of PSLSH is high.

• Since false positives are not removed from the candidates generated from PSLSHE,

one has to appropriately modify the collision threshold for PSLSHH . Also, since

the input to PSLSHH is the output of PSLSHE, it can further contain false neg-

atives. The collision threshold for PSLSHH is based on ρ, and each ρ has a

different positive and negative collision probabilities for the Hamming distance.
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I present the theoretical analysis behind the modified positive and negative col-

lision probabilities for the Hamming distance in Section 5.4.2. By using this

modified collision threshold for the Hamming distance, the number of candi-

dates needed to find the final results are further reduced, thus improving the

execution time of the given set query.

• If the total number of layers (m) are not completely divisible by ρ, then there will

be an uneven distribution of layers among the sub-indexes. Uneven distribution

of layers can lead to unpredictable behavior of the individual sub-indexes. In

order to avoid this, I present the distribution strategy of PSLSH in detail in

Section 5.4.4.

5.4.2 Theoretical Analysis of the Positive and Negative Colliding Probabilities

The naive way to find the results for the set query would be to calculate the

distance of each candidate with each query s in Q, and then remove the points that

do not satisfy θ of the s point queries in the set query Q. As noted earlier, LSH

was originally designed for the Hamming distance metric. In PSLSH, I propose to

add a layer of LSH based on the Hamming distance (PSLSHH) in order to give a

guarantee on the entire set query. But this process is not trivial, since in the original

formulation [44], the input does not consider the possibility of having false positives

and false negatives. Note that, once the candidates for each of the ρ point queries are

found, the exact Euclidean distance of each candidate point with its corresponding

query (in order to remove the false positives) are not computed. These candidates

can also have misses resulting in false negatives. These candidates are an input to the

PSLSHH . Hence, the original LSH formulation for the Hamming distance needs to be

extended such that it accounts for the input data to possibly contain false positives

and false negatives.
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First, I briefly describe the original LSH formulation as described in [44]. Let us

denote the probability that two close points in the Hamming space are hashed to the

same bucket as P1H , and the probability that two distant objects are hashed to the

same bucket as P2H . For a given Hamming radius rH , a dH-dimensional Hamming

space, and an approximation factor cH , P1H = 1 − rH
dH

and P2H = 1 − cHrH
dH

. As

described earlier, the number of Hamming dimensions is equal to the number of

queries in the set query (i.e. s), and since our goal is to satisfy at least θ queries, the

Hamming radius rH = s− θ.

The input to PSLSHH (which are the candidate sets generated by PSLSHE for

each of the ρ queries) can contain false negatives (i.e. V i
x should have been equal to

1 instead of 0) or false positives (i.e. V i
x should have been equal to 0 instead of 1).

Let us denote the error probability of a false negative generated by PSLSHE as δFNE ,

and the error probability that a false positive is generated by PSLSHE as δFPE .

There are four possible cases that need to be taken into consideration, which are

described as follows:

• agrPRIN : The case where V i
Q and V i

x should be returned with the same value,

i.e. they agree in principle,

• disPRIN : The case where V i
Q and V i

x should be returned with different values,

i.e. they disagree in principle,

• agrPRAC: The case where V i
Q and V i

x are returned with the same value, i.e. they

agree in practice,

• disPRAC: The case where V i
Q and V i

x are returned with different values, i.e. they

disagree in practice.
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In order to find P1H and P2H while accounting for the false positives and false

negatives, I consider the following scenarios:

• Scenario 1: V i
Q and V i

x agree in practice and also agree in principle (i.e.

P (agrPRAC ∩ agrPRIN)),

• Scenario 2: V i
Q and V i

x agree in practice but disagree in principle (i.e. P (agrPRAC∩

disPRIN)),

• Scenario 3: V i
Q and V i

x disagree in practice but agree in principle (i.e. P (disPRAC∩

agrPRIN)), and

• Scenario 4: V i
Q and V i

x disagree in practice and also disagree in principle (i.e.

P (disPRAC ∩ disPRIN)).

Set Query that Consists of Only Positive Point Queries

Let us denote the probability that two close points are hashed to the same bucket

(while accounting for false positives and false negatives) as P ′1H . As described in

Section 5.2, a set query can contain both positive and negative point queries. In

order to explain better, I first present the analysis where a set query contains only

positive point queries, and then extend it to include both positive and negative point

queries.

P ′1H = P (agrPRAC ∩ agrPRIN) + P (agrPRAC ∩ disPRIN)

+P (disPRAC ∩ agrPRIN) + P (disPRAC ∩ disPRIN)

(5.5)

118



P ′1H = P (agrPRAC |agrPRIN).P (agrPRIN)

+P (agrPRAC |disPRIN).P (disPRIN)

+P (disPRAC |agrPRIN).P (agrPRIN)

+P (disPRAC |disPRIN).P (disPRIN)

(5.6)

P ′1H = P (agrPRIN) [P (agrPRAC |agrPRIN) + P (disPRAC |agrPRIN)]

+P (disPRIN) [P (agrPRAC |disPRIN) + P (disPRAC |disPRIN)]

(5.7)

In the original LSH formulation, P (agrPRAC |agrPRIN)+P (disPRAC |agrPRIN) = 1

and P (agrPRAC |disPRIN)+P (disPRAC |disPRIN) = 0 because it assumes that there are

no errors in the input data. Since the input data can have false negatives and false pos-

itives, P (agrPRAC |agrPRIN) + P (disPRAC |agrPRIN) < 1 and P (agrPRAC |disPRIN) +

P (disPRAC |disPRIN) > 0. Let us denote the number of true positives in the candi-

date set generated by PSLSHE (for a single query qi) as TP , the number of false

positives generated as FP , the number of true negatives as TN , and the number of

false negatives as FN .

• P (agrPRAC |agrPRIN), the probability of true positives occurring, = TP
TP+FN

=

1− δFNE , and

• P (agrPRAC |disPRIN), the probability of false positives occurring, = FP
FP+TN

=

δFPE

Note that, from [44], we know that P (agrPRIN) ≤ 1− rH
s

and P (disPRIN) > rH
s

. Due

to the opposing inequalities, the two terms in Equation 5.7 cannot be simply added.

Since the Hamming Radius (rH) is a discrete variable, each of the probabilities of the

possible values of Hamming Radius can be summed up to get the following:
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P ′1H =

[ rH−1∑
h=0

P (h|h ≤ rH).

(
1− h

s

)
. (1− δFNE)

]

+

[ rH−1∑
h=0

P (h|h ≤ rH).

(
h

s

)
. (δFPE)

] (5.8)

where P (h|h ≤ rH) = 1
rH

.

P ′1H =
1

rH
. (1− δFNE)

[ rH−1∑
h=0

(
1− h

s

)]

+
1

rH
. (δFPE)

[ rH−1∑
h=0

(
h

s

)] (5.9)

Similarly, for the calculation of the negative collision probability (P ′2H ) and an

approximation ratio cH > 1,

P ′2H =

[ s∑
h=cHrH

P (h|h > cHrH).

(
1− h

s

)
. (1− δFNE)

]

+

[ s∑
h=cHrH

P (h|h > cHrH).

(
h

s

)
. (δFPE)

] (5.10)

where P (h|h > cHrH) = 1
s−cHrH+1

.

P ′2H =
1

s− cHrH + 1
. (1− δFNE)

[ s∑
h=cHrH

(
1− h

s

)]

+
1

s− cHrH + 1
. (δFPE)

[ s∑
h=cHrH

(
h

s

)] (5.11)

Set Queries that Contain Negative Point Queries

Let us now extend P ′1H and P ′2H to consider a set query that contains both positive

(i.e. V i
Q = 1) and negative point queries (i.e. V i

Q = 0). VQ is the list that contains
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flags that denotes whether a point query in the set query Q is a positive or a negative

query. For a negative point query qi, as described in Section 5.2, a point query x

satisfies qi if dist(x, qi) > rqi . Thus, for a candidate set generated by PSLSHE of a

negative query qi, a point x is a false positive if it is included in the candidate set of

qi but dist(x, qi) ≤ rqi . Thus, P ′1H and P ′2H for a set query with both positive and

negative point queries:

P ′1H = P (V i
Q = 1)

[
1

rH
. (1− δFNE)

[ rH−1∑
h=0

(
1− h

s

)]

+
1

rH
. (δFPE)

[ rH−1∑
h=0

(
h

s

)]]

+P (V i
Q = 0)

[
1

rH
. (δFPE)

[ rH−1∑
h=0

(
1− h

s

)]

+
1

rH
. (1− δFNE)

[ rH−1∑
h=0

(
h

s

)]]
(5.12)

P ′2H = P (V i
Q = 1)

[
1

s− cHrH + 1
. (1− δFNE)

[ s∑
h=cHrH

(
1− h

s

)]

+
1

s− cHrH + 1
. (δFPE)

[ s∑
h=cHrH

(
h

s

)]

+P (V i
Q = 0)

[
1

s− cHrH + 1
. (δFPE)

[ s∑
h=cHrH

(
1− h

s

)]

+
1

s− cHrH + 1
. (1− δFNE)

[ s∑
h=cHrH

(
h

s

)]
(5.13)

Calculation of the Hamming Collision Threshold

By using Equations 5.12 and 5.13, the collision counting method (as proposed in [36]

and described in Section 5.1.4) for PSLSHH can now be extended in order to handle

the scenario where false positives and false negatives are introduced to the input data.
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For a user-provided failure probability threshold δH , only the candidates that collide

with VQ at least lH times are considered (where lH = dρ × αHe, αH =
zHP

′
1H

+P ′2H
1+zH

,

zH =
√

ln( 2
βH

)/ ln( 1
δH

), βH is the percentage of points whose distance with the set

query is greater than cHrH , and δH is the error percentage for the set query). By using

this modified collision threshold for PSLSHH , PSLSH is able to effectively reduce the

final candidates and the overall set query processing time.

5.4.3 Finding the Optimal Splitting Factor

The idea behind PSLSH is that one can process a subset of queries from the set

query due to the locality sensitive nature of the query candidates in the set query. In

order to do that, the number of layers, m, of PSLSH are split into ρ sub-indexes, such

that each sub-index has (approximately) m
ρ

layers. Hence, ρ is called the Splitting

Factor. Then each of the ρ queries are processed on the corresponding ρth sub-index.

As explained in Section 5.4.1, for a splitting factor ρ, the number of layers assigned

to PSLSHE are (approximately) m
ρ

, while the number of layers assigned to PSLSHH

are ρ. Intuitively, for a very small ρ (e.g. ρ = 2), the number of candidates generated

by PSLSHH are high because the number of layers assigned to PSLSHH are low,

and hence the collision threshold is not able to effectively prune the false positives,

which increases the total set query execution time. On the contrary, when ρ is very

large (e.g. ρ close to m), then the number of layers assigned to PSLSHE are low,

which causes PSLSHE to generate excessive false positives. Also, as ρ increases, more

queries have to be processed which increases the time taken by PSLSH to identify

the candidates by accessing the hash layers. Hence, the goal is to find the optimal

value of the Splitting Factor ρ such that the total number of candidates generated

by PSLSHE and PSLSHH are minimized, which in turn minimizes the set query

execution time. Before the optimization function is presented, the breakdown of the
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set query execution time is explained. Let us denote the set query execution time as

TimeQ. The set query execution time is dominated by two main sub-costs:

• Index Access cost: This cost includes the time taken to access the index

structure in order to find the candidates for all the queries. This cost is denoted

by TimeIA. TimeIA is proportional to the number of queries executed (i.e. the

total number of sub-indexes). As the number of queries processed increases,

the number of index accesses also increase, which increases the TimeIA, and

vice-versa. Assuming λIA is an index access cost multiplier, we have TimeIA =

λIA × f(ρ). As explained further in Section 5.4.5, λIA is a function of the size

of the input dataset.

• IO cost: This cost (denoted by TimeIO) includes the time needed to bring

each candidate into the memory from the secondary storage, compute the exact

distance between the candidate and each query in the set query, and compute

whether the candidate satisfies at least θ queries of the given set query. The

number of candidates generated are related to the number of queries processed,

but it is not a straightforward conclusion as further explained in Section 5.4.3.

Assuming λIO is an IO cost multiplier, we have TimeIO = λIO × g(ρ).

The goal is to find ρ such that TimeQ (where TimeQ = TimeIA + TimeIO) is

minimized, i.e.

minimize (λIA × f(ρ)) + (λIO × g(ρ))

subject to 1 ≤ ρ ≤ m.
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Finding the Relationship between ρ and TimeIO

TimeIO is proportional to the number of candidates generated by PSLSH. Each can-

didate point has to be brought from the specific location on the secondary storage

into the main memory for further computation. Intuitively, as ρ increases (i.e. more

hash functions are assigned to PSLSHH than PSLSHE), more candidates would be

generated by PSLSHE but less candidates would be generated by PSLSHE. The main

challenge then would be to choose the splitting factor (ρ) such that the least total

number of candidates are generated by both PSLSHE than PSLSHH .

However, the above hypothesis does not hold true. The total number of candidates

generated by PSLSH are dependent on the collision thresholds used by PSLSHE and

PSLSHH (i.e. lE and lH respectively). As explained in Section 5.1.6 and Section

5.4.2, lE = dmE×αEe and lH = dρ×αHe. In the following discussion, for the sake of

simplicity, we refer to lE when the ceiling function is used (i.e. lE = dmE×αEe), and

refer to l′E when the ceiling function is not used (i.e. l′E = mE × αE). Thus, we have

lE ≥ l′E. The goal is to estimate TimeIO for different values of ρ. In order to find

this relationship, the number of candidates generated by PSLSH for different values

of ρ needs to be estimated.

Let us consider two splitting factors, ρi and ρj, used by PSLSHEi and PSLSHEj re-

spectively. Let us denote their corresponding collision thresholds (as explained in Sec-

tion 5.1.6) as lEi and lEj respectively. Let us also denote the number of candidates gen-

erated by PSLSHEi as cand(PSLSHEi), and by PSLSHEj as cand(PSLSHEj). Let

us consider the similar notations (lHi , lHj , cand(PSLSHHi), and cand(PSLSHHj))

for PSLSHH .
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Observation 5.4.1 If lEi−l′Ei > lEj−l′Ej , then cand(PSLSHEi) < cand(PSLSHEj).

The same holds true for PSLSHH . If lHi − l′Hi > lHj − l′Hj , then cand(PSLSHHi) <

cand(PSLSHHj).

In the collision counting approach (defined in [36]), the collision threshold has to be

an integer since it counts the number of times a data point collides with a given query

point. When the ceiling function is used on l′E, the collision counting approach uses

a more constrained collision threshold lE than l′E. As the difference between lE − l′E

increases, this over-constraint increases misses (while still satisfying the user-input

error guarantee) but also reduces false positives. Thus, the value of lE − l′E needs to

be taken into consideration when predicting the number of candidates generated by

PSLSH for a particular splitting factor. As explained in Section 5.4.1, PSLSH splits

the total number of layers in ρ sub-indexes. In some cases, each ρ sub-index have

exactly m
ρ

layers, but in some cases, different sub-indexes have different number of

layers (as presented in Algorithm 9). Let us consider mo are the number of layers

assigned to the oth sub-index (and lEo is the collision threshold for mo layers). In

order to predict the number of candidates generated by PSLSHE, we define

DiffEρ = 1−
∑ρ

o=1 lEo − l′Eo
ρ

(5.14)

where for a given ρ, DiffEρ defines the average of the difference between lE and l′E

over the ρ sub-indexes. Similarly, for PSLSHH , we define

DiffHρ = 1− (lHρ − l′Hρ) (5.15)

Note that, since for any given ρ, there is only one collision threshold for PSLSHH

(and hence an average is not needed unlike PSLSHE).

Observation 5.4.2 For two splitting factors i and j, the total candidates generated

by PSLSHρ=i and PSLSHρ=j depend on the values of DiffEρ=i, DiffHρ=i, DiffEρ=j ,

and DiffHρ=j .
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The total number candidates generated by PSLSH is dependent on the total number of

candidates generated by PSLSHE and PSLSHH . If DiffEρ is close to 1, then PSLSHE

will produce less number of candidates than when DiffEρ is close to 0. Similarly,

when DiffHρ is close to 1, then PSLSHH will produce less number of candidates

than when DiffHρ is close to 0. Thus, PSLSH will generate less candidates when

both DiffEρ and DiffHρ are close to 1. But it will not necessarily generate less

candidates when only DiffEρ or DiffHρ are close to 1, and the other is close to 0.

Thus, scenarios when there is a large difference between DiffEρ and DiffHρ need

to be penalized. Hence, we define another metric, φDiffρ , which takes the harmonic

mean between DiffEρ and DiffHρ (and thus further penalizes the scenarios where

there is a large difference between DiffEρ and DiffHρ) in order to predict the number

of candidates PSLSH generates,

φDiffρ =
2

1
DiffEρ

+ 1
DiffHρ

(5.16)

Note that, this harmonic mean is also called the F-score or the F-measure. In Section

5.5.4, the effectiveness of the proposed φDiffρ is evaluated.

Mapping φDiffρ to the Number of Candidates. By simply using Equation

5.16, the number of candidates generated by a particular splitting factor cannot be

estimated. In order to estimate the number of candidates generated by different

splitting factors, there has to be a mapping between at least one φDiffρ and the number

of candidates generated by that particular ρ. In order to find this mapping, during

runtime, PSLSH finds the number of candidates generated for ρ = 1 by executing 1

query from the given set query. Note that, this is an inexpensive step because there

is no need to build any additional layers or index structures and there is no need for a

disk access either (since we only need to find the number of candidates generated and

we do not need to remove any false positives - which is usually the most expensive
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part of the query execution time). Let us denote the number of candidates generated

by PSLSH for ρ as cand(PSLSHρ). The number of candidates for ρ > 1 can then

by estimated by considering the change between the WDiff values for two adjacent

splitting factors.

∀mi=2cand(PSLSHρ=i) =
φDiffρ=i
φDiffρ=i−1

× cand(PSLSHρ=i−1) (5.17)

In Section 5.5.4, the accuracy of the proposed method of estimating the number of

candidates for different splitting factors is evaluated. Once the number of candidates

for different splitting factors are estimated, TimeIO can then be estimated for different

splitting factors. Note that, the values of φDiff for different splitting factors can

be pre-calculated for a given dataset since the collision thresholds for PSLSHE and

PSLSHH can be pre-calculated for a given dataset. As further explained in Section 5.5,

this time to calculate candidates for ρ = 1 is included in the overall query processing

time. Once TimeIA and TimeIO can be estimated, the splitting factor that minimizes

the overall query execution time can be predicted.

5.4.4 Distribution of Layers to ρ Sub-Indexes

In PSLSH, the m layers of the LSH index are split into ρ sub-indexes. If m is not

completely divisible by ρ, then there can be an uneven distribution of these layers to

the individual sub-indexes. One naive solution would be to assign bm
ρ
c layers to each

of the ρ − 1 sub-indexes, and the remaining layers (m − (ρ − 1).bm
ρ
c) are assigned

to the ρth index. This can lead to unpredictable behavior of δFNE and δFPE as the

last sub-index can have significantly more layers to process the sub-queries resulting

in a smaller δFNE and δFPE relative to the other layers. In order to avoid this, a

simple layer distribution strategy is presented in Algorithm 9. The remaining layers

are further distributed among the ρ indexes (Lines 8-11) such that the maximum
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Algorithm 9 Distribution of Layers to Sub-indexes

1: Input:

• Total number of layers (m)

• Splitting Factor (ρ)

2: Output: Mapping of layers to sub-indexes (i.e. ∀i∈ρmi
ρ)

3: procedure mapLayers

4: for sub-index i = 1; i ≤ ρ; i+ + do

5: if m mod ρ == 0 then

6: mi
ρ = m

ρ

7: else

8: if i ≤ m mod ρ then

9: mi
ρ = bm

ρ
c+ 1

10: else

11: mi
ρ = bm

ρ
c

12: end if

13: end if

14: end for

15: end procedure

difference in the number of layers mapped to any sub-index is always 1.

5.4.5 Space and Query Time Complexities

As noted earlier, PSLSH uses C2LSH to do the LSH query processing. The total

space complexity needed for PSLSH is same as C2LSH, since the total number of

layers needed for PSLSH is m layers. PSLSH accepts m as a user-input, and in

general, m� n [36, 29]. C2LSH requires space to store the m layers and the dataset.
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For a dataset with d dimensions and n data points, the space consumption for the

data is O(dn). In each hash layer, there are n data point IDs. Hence, the total space

consumption for PSLSH is O(dn+mn).

PSLSH has three major costs: a) Locating the m buckets for each of the ρ queries.

Assuming the worst case, where ρ = m, then the cost of locating m buckets for d-

dimensional objects is O(m2d). b) The second cost includes the cost of collision

counting for PSLSHE and PSLSHH . Collision counting has to be done for at most n

data points over m layers for ρ queries (where ρ = m in the worst case), and collision

counting for PSLSHH can be done while doing the collision counting for PSLSHH .

Thus, the cost for collision counting is O(m2n). c) The third cost includes the distance

computation necessary to remove false positives to get the results for the set query

execution. Let us consider |candQ| is the number of candidates that PSLSH generates.

The cost of computing the distance of |candQ| with s queries is O(|candQ|ds). Note

that, if βH = 100
n

and the number of points that do not satisfy at least cHθ queries in Q

is denoted by cHrHgroundTruth(Q), then |candQ| < |cHrHgroundTruth(Q)| + 100.

Thus, the total query time cost is O(m2d+m2n+ |candQ|ds).

5.4.6 C2LSH vs. QALSH

PSLSH uses the collision counting method of C2LSH for performing query pro-

cessing. In [43] (called QALSH), the authors build upon the collision counting method

in order to create “query-aware” hash functions (where the buckets of the hash func-

tions are created based on the input query point). In QALSH, the authors show that

by building query-aware hash functions, they are able to improve the top-k query

processing time of C2LSH. My work is focused on the (r, c)-near neighbor problem.

the codes of C2LSH and QALSH were modified (with the help of their authors) in

order to execute the (r, c)-near neighbor problem. After executing (r, c)-near neigh-
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bor queries, it was found that C2LSH actually performs better than QALSH for the

(r, c)-near neighbor problem by generating less candidates for different query sizes.

I present these results in Figures 5.3 and 5.4. Figure 5.3 shows that for different

query range sizes, C2LSH generates less candidates than QALSH, and Figure 5.4

shows that both C2LSH and QALSH return a very high recall for a target input

recall of 0.9. It is also important to note that QALSH incurs extra runtime process-

ing because it has to hash the data into query-aware buckets (in [43], the authors

show that for the top-k problem, their approach is still faster than C2LSH even with

this additional overhead). Since C2LSH generates less candidates than QALSH for

the (r,c)-near neighbor problem, C2LSH was used instead of QALSH for performing

high-dimensional range query processing in PSLSH.

5.5 Experimental Evaluation

In this section, I evaluate the effectiveness of the proposed index structure, PSLSH.

In order to evaluate, several real data sets with different characteristics were used,

under different system parameters. All the experiments were run on the academic

cloud environment, Chameleon Cloud5. M1.large instances, consisting of an 8GB

RAM and an 80GB non-volatile storage were used. All the experiments were run

on an Ubuntu 16.04 operating system. All results presented in this section are an

average of 20 runs. Under the guidance of the authors of C2LSH [36], their source

code (that could only run top-k nearest neighbor (c-k-NN) queries) was modified

to run radius search (r-c-NN) queries. Since there is no work that directly aims at

solving my problem, PSLSH was evaluated against the following alternatives. In each

of the alternatives, the state-of-the-art C2LSH implementation is used for finding the

candidates of the point queries in the set query.

5https://www.chameleoncloud.org/
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• Naive-LSH-Pre: In this alternative, the candidates for each point query in

the set query are found, then the false positives that don’t satisfy each of the

point queries (by finding the exact distance between each candidate and the

corresponding point query) are removed, and then the points that satisfy at

least θ point queries in the set query are found. In the following figures, in this

chapter, this alternative is referred to as Naive-Pre.

• Naive-LSH-Post: In this alternative, the candidates for each point query in

the set query are found, then the candidates that satisfy at least θ point queries

in the set query are found, and then the false positives (by finding the exact

distance of each candidate with each of the point queries) that don’t satisfy the

set query are found to calculate the final result set. In the following figures, in

this chapter, this alternative is referred to as Naive-Post.

• Naive-LSH-Hamming: This alternative is similar to PSLSH, except the pro-

posed modified Hamming Collision Threshold (as explained in Section 5.4.2)

is not used. In this alternative, no Hamming Collision Threshold is used. In

the following figures, in this chapter, this alternative is referred to as Naive-

Hamming.

5.5.1 Datasets

For the experiments, the following four datasets (of which 1 is synthetically gener-

ated - Epidemic - and the rest are real datasets) are used. Similar to the experimental

setup in [36], each of the dimension values are normalized to be integers in the range

of [0,10000].

• Epidemic: This dataset consists of 193,185 128-dimensional SIFT points that

are extracted from time-series simulation data depicting the SEIR model. 128-
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Parameter Value range

Target Recall (δH) 0.85; 0.9; 0.95;

# of Queries in Query Workload (s) 30; 40; 50;

Ratio of Satisfied Queries (θ/s) 0.65; 0.75; 0.85;

Number of Layers (m) 125; 150; 200;

Ratio of Negative Queries 0; 0.05; 0.1;

Table 5.1: Parameters and Default Values (in bold)

dimensional SIFT feature points are extracted from the simulated time-series of

the SEIR model. The simulation ensembles for the SEIR model are generated

by using the Spatiotemporal Epidemiological Modeler [32] as described in [58].

The page size is set to be 4KB.

• ColorHistogram[5]: This dataset consists of 68,040 32-dimensional color his-

tograms. The page size is set to be 4KB.

• Mnist[6]: This dataset consists of 60K objects of 50-dimensions. The page size

is set to be 4KB.

• P53[7]: This dataset consists of 31,008 objects of 5409-dimensions. The page

size is set to be 64KB.

5.5.2 Evaluation Criteria and Parameters

I evaluate the effectiveness of PSLSH by comparing the total set query execution

time to those of the alternative strategies. Since C2LSH is used as the base LSH

algorithm for all the alternative strategies, the index creation time or the index size is

not presented (since the same total number of layers are created for all alternatives).
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Table 4.2 shows the parameters and their range values that are used in the evaluation

of PSLSH. In the experiments, cH = 2. Note that, the values for all cost models that

are presented in this section are chosen by using the Epidemic dataset as the training

dataset. I show the effectiveness of these models by comparing the estimated values

of the cost models with the observed values for the P53 dataset. The observed values

for the remaining datasets also follow similar behavior.

5.5.3 Distribution of Different Set Queries

In order to show its effectiveness, PSLSH is evaluated against set queries of varying

sizes. The size of a set query is measured as the number of results in the set query

with respect to the dataset size. The radiuses of the point queries are chosen such

that the number of results for the point queries are between 0.1% and 2% of the

dataset size, and the total number of results of the set queries are between 0.1% and

2% of the size of the dataset. These ranges were chosen so that the set query sizes will

be diverse. Figure 5.5 shows the diverse distribution of sizes of different set queries

for the P53 dataset.
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Figure 5.6: Estimated vs Observed δFPE [Data=P53, Number of Point Queries=40,

θ = 30]
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5.5.4 Analysis of Cost Models

Estimated vs Observed δFPE and δFNE

As mentioned, the models were generated using past statistics from the Epidemic

dataset. Figures 5.6 and 5.7 show that these models are applicable for real datasets

such as P53 as well. The variations that are seen in the Figures are due to the values
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of the Euclidean Collision Thresholds (as explained in Section 5.4.3). These variations

are taken into consideration while finding the relationship between ρ and TimeIO.

Proposed Theoretical vs Observed Collision Probabilities

I compare the proposed theoretical collision probabilities (P ′1H and P ′2H ) and observed

collision probabilities in this section. Suppose candList(qi) is the list of candidates

for a point query qi generated by PSLSHE, and the ground truth list for the set

query Q (i.e. all the data points that satisfy at least θ point queries) is denoted by

groundTruth(Q). Then the observed P ′1H w.r.t query qi:

|candList(qi) ∩ groundTruth(Q)|
|groundTruth(Q)|

(5.18)

Similarly, suppose the cHrH-ground truth for Q (i.e. all the data points that do not

satisfy at least cHθ point queries) is denoted by cHrHgroundTruth(Q). Then the

observed P ′2H w.r.t query qi:

|candList(qi) ∩ cHrHgroundTruth(Q)|
|cHrHgroundTruth(Q)|

(5.19)
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In Figure 5.8, I show how the proposed theoretical positive and negative collision

probabilities effectively estimate the observed positive and negative collision prob-

abilities for PSLSHH . These values are dependent on the effectiveness of the cost

models of δFPE and δFNE (as explained in Section 5.4.2).

Estimated vs Observed Number of Candidates for Different Splitting Fac-

tors

Figure 5.9 shows the effectiveness of φDiffρ in predicting the behavior of the number

of candidates generated by different splitting factors. It validates Observation 5.4.2

(explained in Section 5.4.3) that φDiffρ is dependent on the values of l′E and l′H .

In Figure 5.10, I compare the estimated number of candidates against the observed

number of candidates for different splitting factors. The figure shows the accuracy of

the proposed design in estimating the number of candidates based on φDiffρ .
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Estimated vs Observed TimeIA and TimeIO

Figures 5.11 and 5.12 show the estimated TimeIA and TimeIO against the observed

values. The models were created using statistics from the Epidemic dataset. Hence,

in these figures, I show how the estimated TimeIA and TimeIO compare for the

observed values for a different dataset (P53). As explained in Sections 5.4.3 and

5.4.5, TimeIA is proportional to the splitting factor and the number of data points in

the dataset. The time taken to access the index for 1 data point for different splitting

factors is first calculated. For any given dataset, TimeIA can then be estimated for

any splitting factor. Similarly, TimeIO is proportional to the number of candidates

and the dimensionality of the dataset (as explained in Sections 5.4.3 and 5.4.5). The

time taken to access a 1 1-dimensional data point is calculated. Since PSLSH is

able to estimate the number of candidates (using the strategy presented in Section

5.4.3), PSLSH can then estimate the time it takes to access the number of estimated

d-dimensional candidate points.
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5.5.5 Discussion of the Performance Results

In this section, I analyze the execution performance of PSLSH against its alter-

natives. I first compare the performance of PSLSH against an exhaustive search for

the most efficient splitting factor. Figure 5.13 shows the execution times for different

set queries for different datasets (for the default settings as described in Table5.1).

For number of layers (<200; which are enough number of layers), splitting factors

above (approximately) 20 are not very effective because large number of false pos-

itives and misses are generated by PSLSHE (since very few layers are assigned to

PSLSHE). Hence, in the following discussions, the most efficient splitting factor is

found from the first 20 splitting factors. In the following discussion, the datasets, Col-

orHistogram, Mnist, and Epidemic, are referred to as low-dimensional datasets, and

P53 as a high-dimensional dataset. For low-dimensional datasets, it can be seen from

Figure 5.13 that the most efficient splitting factor is a smaller splitting factor (e.g.

for all these datasets, the splitting factor of 2 is the most efficient). In contrast, for

the high-dimensional dataset, the most efficient splitting factor is 10. This is because,

for low-dimensional datasets, TimeIA dominates the overall set query execution cost.

Since TimeIA increases with the splitting factor, the most efficient splitting factor is

a smaller splitting factor. For a splitting factor of 2, the Hamming Collision threshold

is better able to prune false positives than a splitting factor of 1, and hence a splitting

factor of 2 is better than a splitting factor of 1. For the high-dimensional dataset,

TimeIO dominates the overall set query execution cost, and hence a higher splitting

factor (that minimizes the number of candidates) is chosen. Figure 5.14 shows the

corresponding observed recalls for the set queries for different datasets across different

splitting factors. This figure shows that, by using a splitting factor up to 20, PSLSH

can also achieve the target recall (default=0.9). The only exception in the above
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figure, is for when the splitting factor is 20 for the Epidemic dataset. This happens

because the misses in PSLSHE are higher than expected because less number of layers

are assigned to PSLSHE.

Figure 5.15 shows the execution times for different set queries for different datasets

for PSLSH and its alternatives. The splitting factor that was chosen by PSLSH al-

ways was the most efficient splitting factor when compared with the first 20 splitting

factors. It is worth noting that the main difference between the execution times of

PSLSH in Figures 5.13 and 5.15 is that the execution time of PSLSH in Figure 5.15

includes the time to estimate TimeIO (as described in Section 5.4.3). Due to the

accuracy and effectiveness of the cost models and the proposed design, PSLSH can

determine the most efficient splitting factor. Figure 5.15 also shows that PSLSH is

the most efficient when compared to its alternatives. Naive-LSH-Pre is always the

slowest strategy across datasets. This is because it has to remove false positives after

processing each point query in the set query (by fetching the data point from the sec-

ondary storage). Naive-LSH-Hamming generates more candidates than PSLSH across

datasets (which can be seen from Figure 5.16), but the execution times are compa-

rable for the low-dimensional datasets. As the dimensionality increases, TimeIO be-

comes more dominant, and hence it is much slower for the high-dimensional dataset.

Naive-LSH-Post generates less candidates than Naive-LSH-Hamming, but since it re-

quires to process more point queries than Naive-LSH-Hamming, for low-dimensional

datasets (where TimeIA is the dominant cost), Naive-LSH-Hamming is still faster. For

high-dimensional datasets, Naive-LSH-Post is much faster than Naive-LSH-Hamming

because it generates less candidates. Figure 5.16 shows the number of candidates that

are generated by PSLSH and the alternative strategies. It is worth noting that Naive-

LSH-Pre generates substantially more candidates than PSLSH and other strategies.

For instance, for the P53 dataset, Naive-LSH-Pre generates approximately 75 times
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more candidates than Naive-LSH-Post, but the execution time (Figure 5.15) of Naive-

LSH-Pre is approximately only 2.5 times more than that of Naive-LSH-Post. TimeIO

consists of two sub-costs: a) the time required to fetch the candidate data points

from the secondary storage (Figure 5.17), and b) the time required to calculate the

exact distance between each candidate point and the point queries to remove false

positives that do not satisfy at least θ point queries (Figure 5.18). It can be seen in

Figure 5.17 that the time to fetch the candidate points from the secondary storage for

Naive-LSH-Pre is approximately 65 times the cost of Naive-LSH-Post. On the other

hand, the time to calculate distances for Naive-LSH-Pre is approximately only 1.75

times than that of Naive-LSH-Post. This happens because of the way the Euclidean

distance calculation function is implemented. If the target radius is known, the Eu-

clidean distance calculation can be terminated if the distance between the two points

is greater than the target radius. In this case, all the dimensions of the points are not

compared with. For several candidates generated by Naive-LSH-Pre, the Euclidean

distance calculation is able to terminate early. Hence, even though substantially

higher number of candidates are generated by Naive-LSH-Pre when compared with

other alternatives, the total time is not as high as one would expect. Yet, in all

scenarios, Naive-LSH-Pre is the slowest alternative.

Impact of Varying Target Recall

Figures 5.19 and 5.20 show the impact of varying target recall for different datasets.

In this figure, the secondary axis shows the achieved recall for the different alternative

strategies. Naive-LSH-Pre and Naive-LSH-Post are unable to adapt to the varying

recall. Both of these strategies return very high recall even when the target recall

is 0.85, which results in wasted work and slower execution times. Naive-LSH-Post is

always able to achieve the highest recall (at the expense of slower execution times).
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Figure 5.19: Impact of Varying Target Recall (0.85) (for Different Datasets)
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Figure 5.20: Impact of Varying Target Recall (0.95) (for Different Datasets)
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PSLSH is able to adapt appropriately according to the input target recall for the set

query. In all the cases, PSLSH is able to satisfy the target recall.

Impact of Varying Number of Layers

Figures 5.21 and 5.22 shows the impact of varying number of layers on PSLSH. When

the number of layers changed significantly, I had to retrain the δFPE and δFNE mod-

els. As mentioned before, when there are less number of layers available to PSLSHE,

more false positives and false negatives are generated by PSLSHE. Hence, for differ-

ent number of layers, since the subsequent models and calculation of the Hamming

Collision Threshold are dependent on the values of δFPE and δFNE , I retrained the

models on the Epidemic dataset. These figures show that PSLSH can choose a split-

ting factor that is still faster than its alternatives for different number of layers, across

all datasets.

Impact of Varying Number of Point Queries in the Set Query

Figures 5.23 and 5.24 show that PSLSH can still perform better than its competitors

even when the number of point queries in the set query vary. For low-dimensional

datasets, as consistent with the previous results, PSLSH is much faster than Naive-

LSH-Pre and Naive-LSH-Post. For high-dimensional datasets, Naive-LSH-Post is the

fastest among the alternative strategies, but still slower than PSLSH. As the number

of point queries in the set query decrease or increase, the time gain of PSLSH over

Naive-LSH-Post (for high-dimensional datasets) remains consistently high.
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Figure 5.21: Impact of Number of Layers (125) (for Different Datasets)

151



0.129 0.140

0.999 1.000 0.997
0.998

0.9

0.92

0.94

0.96

0.98

1

0

0.5

1

1.5

2

Naïve-Pre Naïve-Post Naïve-Hamming PSLSH

O
b

se
rv

e
d

 R
e

ca
ll

Ti
m

e 
(i

n
 s

ec
)

Set Query Execution Time [ColorHistogram, 

#PQ=40, θ=30, Target Recall=0.9, #Layers=200]

Time

Recall

0.659 0.513

0.998

1.000
0.999

0.970

0.9

0.92

0.94

0.96

0.98

1

0

1.5

3

4.5

6

Naïve-Pre Naïve-Post Naïve-Hamming PSLSH

O
b

se
rv

ed
 R

ec
al

l

Ti
m

e 
(i

n
 s

e
c)

Set Query Execution Time [Epidemic, 

#PQ=40, θ=30, Target Recall=0.9, , #Layers=200]

Time

Recall

0.106 0.109

0.999 1.000 0.998
0.999

0.9

0.92

0.94

0.96

0.98

1

0

0.4

0.8

1.2

1.6

Naïve-Pre Naïve-Post Naïve-Hamming PSLSH

O
b

se
rv

e
d

 R
e

ca
ll

Ti
m

e 
(i

n
 s

ec
)

Set Query Execution Time [Mnist, 

#PQ=40, θ=30, Target Recall=0.9, #Layers=200]

Time

Recall

2.100

1.593

0.998 1.000

0.994

0.980

0.9

0.92

0.94

0.96

0.98

1

0

1.3

2.6

3.9

5.2

Naïve-Pre Naïve-Post Naïve-Hamming PSLSH

O
b

se
rv

e
d

 R
e

ca
ll

Ti
m

e 
(i

n
 s

e
c)

Set Query Execution Time [P53, 

#PQ=40, θ=30, Target Recall=0.9, #Layers=200]

Time

Recall

Figure 5.22: Impact of Number of Layers (200) (for Different Datasets)
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Figure 5.23: Impact of Varying Number of Point Queries (30) in the Set Query (for

Different Datasets)
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Figure 5.24: Impact of Varying Number of Point Queries (50) in the Set Query (for

Different Datasets)
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Figure 5.25: Impact of Varying % of Required Satisfied Point Queries (65%) in the

Set Query (for Different Datasets)
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Figure 5.26: Impact of Varying % of Required Satisfied Point Queries (85%) in the

Set Query (for Different Datasets)
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Figure 5.27: Impact of Varying % of Negative Point Queries (5%) in the Set Query

(for Different Datasets)
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Figure 5.28: Impact of Varying % of Negative Point Queries (10%) in the Set Query

(for Different Datasets)
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Impact of Varying % of Required Satisfied Point Queries, Negative Point

Queries in the Set Query

Figures 5.25 and 5.26 show the performance results of PSLSH and the competitors for

varying % of required satisfied point queries in a given set query. PSLSH is again the

fastest strategy across all datasets for different % of required satisfied point queries in

the set query. Figure 5.26 shows that, for high-dimensional datasets, the time gain of

PSLSH over Naive-LSH-Post is significantly higher when the % of required satisfied

point queries in the set query is higher (85%). Figures 5.27 and 5.28 show the impact

of negative point queries in the set query. Even when the set query contains negative

point queries, PSLSH shows a time gain over the alternative strategies.
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Chapter 6

CONCLUSION

The main goal of this dissertation is to design scalable index structures that are

optimized for executing range query workloads. I particularly look at three different

kinds of spaces: a) 1D spaces, b) 2D spaces, and c) high-dimensional spaces. Each of

these spaces have their own unique challenges and different index structures need to

be built to address these challenges. In this dissertation, I proposed index structures

that tackled these challenges for each of the above mentioned different dimensional

spaces. I presented unique cost models, storage mechanisms, and algorithms for these

index structures to efficiently execute range query workloads.

6.1 Range Query Workloads in 1D Spaces

Column-stores use compressed bitmap-indices for answering queries over data

columns. When the data domain is hierarchical, organizing the bitmap indices hier-

archically can help answer queries over different sub-ranges of the attribute domain

more efficiently. In Chapter 3, I showed that existing inclusive strategies for leveraging

hierarchically organized bitmap indices can be sub-optimal in terms of their IO costs

unless the query ranges are small. I also showed that an exclusive (cut-selection) strat-

egy provides gains when the query ranges are large and that a hybrid (cut-selection)

strategy can provide best solutions, improving over both strategies even when the

ranges of interest are relatively small. I also presented algorithms for implementing

the hybrid strategy efficiently for a single query or a workload of multiple queries, in

scenarios with and without memory limitations. In particular, I showed that when the

memory is constrained, selecting the right subset of bitmap indices becomes difficult;
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but, I also showed that, even in this case, there exists efficient cut-selection strategies

that return close to optimal results, especially in situations where the memory limita-

tions are very strict. Experiment results confirmed that the cut-selection algorithms

presented in Chapter 3 are efficient, scalable, and highly-effective.

6.2 Range Query Workloads in 2D Spaces

In Chapter 4, I showed that bitmap-based indexing can be highly effective for ex-

ecuting range query workloads on spatial data sets. I introduced a novel compressed

spatial hierarchical bitmap (cSHB) index structure that takes a spatial hierarchy and

uses that to create a hierarchy of compressed bitmaps to support spatial range queries.

I also introduced a novel block-based storage mechanism for storing the hierarchy of

compressed bitmaps effectively. Queries are processed on cSHB index structure by

selecting a relevant subset of the bitmaps and performing compressed-domain bitwise

logical operations. I also developed novel cost models and bitmap selection algorithms

that identify the subset of the bitmap files in this hierarchy for processing a given

spatial range query workload. These cost models and algorithms are further opti-

mized to take into consideration the block-based storage mechanism. I compared the

proposed compressed spatial hierarchical bitmap (cSHB) index structure with state-

of-the-art spatial extensions of popular database management systems. Experiments

on synthetic and real data sets showed that the proposed index structure is highly

efficient in supporting spatial range query workloads.

6.3 Range Query Workloads in High-Dimensional Spaces

In Chapter 5, I presented the novel index structure, Point Set LSH (PSLSH)

for solving range query workloads in high-dimensional spaces. Multimedia such as

image data or time series data are represented by a set of important features that
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are extracted using feature extraction algorithms. Similarity search queries over these

features are an important part of several multimedia applications. Often times, points

that satisfy certain number of queries are needed to answer these similarity search

queries. Traditional LSH-based index structures require users to input a guarantee

on individual query points instead of a guarantee on the entire set query. This can

lead to potential misses and false positives, which lead to higher query processing

times. In this work, I introduced a novel index structure, PSLSH, by designing

a Hamming distance based LSH index structure (PSLSHH) on top of the existing

Euclidean distance base LSH structure (PSLSHE) to solve the above challenge. I also

presented the design and the theoretical analysis of PSLSH. The experimental analysis

proves the effectiveness of PSLSH for different datasets under different settings.
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APPENDIX A

SAMPLE RANGE QUERY WORKLOAD IN 2D SPACE
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In this Appendix, I present sample data (Table A.1) and a sample range query
workload (Table A.2) used in Chapter 4. Let us consider a range query workload Q
that consists of 3 rectangular spatial range queries (q1, q2, q3).

ID xCoordinate yCoordinate

1 50.2 62.8
2 32.5 16.4
3 12.6 41.3
4 53.1 87.6
5 65.2 10.5

Table A.1: A sample Table PointsData that consists of 2D points

As described in Section 4.2.1 of Chapter 4, the range specification of these queries
is defined by a south-west point (qswi ) and a north-east (qnei ) point.

QueryID sw.xCoor sw.yCoor ne.xCoor ne.yCoor

1 50.0 50.0 60.0 90.0
2 40.5 52.8 62.4 73.4
3 45.5 5.8 68.4 70.3

Table A.2: Sample Range Queries and their Range Query Specifications

Let us consider the sample range specifications as presented in Table (Table A.2).
For each query qi in Q, the goal is to find IDs of points that would satisfy the following
SQL query:

select ID from PointsData
where xCoordinate ≥ qswi .xCoor AND xCoordinate ≤ qnei .xCoor
AND yCoordinate ≥ qswi .yCoor AND yCoordinate ≤ qnei .yCoor

In the above example, q1 would return Point 1 and Point 4, q2 would return Point 1,
whereas q3 would return Point 1 and Point 5.
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