136,450 research outputs found

    Faceted navigation for browsing large video collection

    Get PDF
    This paper presents a content-based interactive video brows- ing system to address the challenge in a live video search competition to find specific video clips from a large video collection under time constraints. Since the target of this evaluation forum is to evaluate and demonstrate the development of interactive video search tools, we do not need to consider if the most commonly used query-by-example or query-by-text approaches for large-scale image/video retrieval are appropriate in this scenario. In this paper, we describe an interactive video retrieval system which employs the concept filters and faceted navigation to aid users quickly and intuitively locate the interested content when browsing in large video collections based on automatically extracted semantic concepts, object labels and attributes from video content

    Combining geometric edge detectors for feature detection

    Get PDF
    We propose a novel framework for the analysis and modeling of discrete edge filters, based on the notion of signed rays. This framework will allow us to easily deduce the geometric and localization properties of a family of first-order filters, and use this information to design custom filter banks for specific applications. As an example, a set of angle-selective corner detectors is constructed for the detection of buildings in video sequences. This clearly illustrates the merit of the theory for solving practical recognition problems

    Learning Latent Super-Events to Detect Multiple Activities in Videos

    Full text link
    In this paper, we introduce the concept of learning latent super-events from activity videos, and present how it benefits activity detection in continuous videos. We define a super-event as a set of multiple events occurring together in videos with a particular temporal organization; it is the opposite concept of sub-events. Real-world videos contain multiple activities and are rarely segmented (e.g., surveillance videos), and learning latent super-events allows the model to capture how the events are temporally related in videos. We design temporal structure filters that enable the model to focus on particular sub-intervals of the videos, and use them together with a soft attention mechanism to learn representations of latent super-events. Super-event representations are combined with per-frame or per-segment CNNs to provide frame-level annotations. Our approach is designed to be fully differentiable, enabling end-to-end learning of latent super-event representations jointly with the activity detector using them. Our experiments with multiple public video datasets confirm that the proposed concept of latent super-event learning significantly benefits activity detection, advancing the state-of-the-arts.Comment: CVPR 201

    Cloudlet-based just-in-time indexing of IoT video

    Get PDF
    P

    Quality Adaptive Least Squares Trained Filters for Video Compression Artifacts Removal Using a No-reference Block Visibility Metric

    No full text
    Compression artifacts removal is a challenging problem because videos can be compressed at different qualities. In this paper, a least squares approach that is self-adaptive to the visual quality of the input sequence is proposed. For compression artifacts, the visual quality of an image is measured by a no-reference block visibility metric. According to the blockiness visibility of an input image, an appropriate set of filter coefficients that are trained beforehand is selected for optimally removing coding artifacts and reconstructing object details. The performance of the proposed algorithm is evaluated on a variety of sequences compressed at different qualities in comparison to several other deblocking techniques. The proposed method outperforms the others significantly both objectively and subjectively
    corecore