288 research outputs found

    Inference of Tumor Phylogenies from Genomic Assays on Heterogeneous Samples

    Get PDF
    Tumorigenesis can in principle result from many combinations of mutations, but only a few roughly equivalent sequences of mutations, or “progression pathways,” seem to account for most human tumors. Phylogenetics provides a promising way to identify common progression pathways and markers of those pathways. This approach, however, can be confounded by the high heterogeneity within and between tumors, which makes it difficult to identify conserved progression stages or organize them into robust progression pathways. To tackle this problem, we previously developed methods for inferring progression stages from heterogeneous tumor profiles through computational unmixing. In this paper, we develop a novel pipeline for building trees of tumor evolution from the unmixed tumor data. The pipeline implements a statistical approach for identifying robust progression markers from unmixed tumor data and calling those markers in inferred cell states. The result is a set of phylogenetic characters and their assignments in progression states to which we apply maximum parsimony phylogenetic inference to infer tumor progression pathways. We demonstrate the full pipeline on simulated and real comparative genomic hybridization (CGH) data, validating its effectiveness and making novel predictions of major progression pathways and ancestral cell states in breast cancers

    Algorithms for Analysis of Heterogeneous Cancer and Viral Populations Using High-Throughput Sequencing Data

    Get PDF
    Next-generation sequencing (NGS) technologies experienced giant leaps in recent years. Short read samples reach millions of reads, and the number of samples has been growing enormously in the wake of the COVID-19 pandemic. This data can expose essential aspects of disease transmission and development and reveal the key to its treatment. At the same time, single-cell sequencing saw the progress of getting from dozens to tens of thousands of cells per sample. These technological advances bring new challenges for computational biology and require the development of scalable, robust methods to deal with a wide range of problems varying from epidemiology to cancer studies. The first part of this work is focused on processing virus NGS data. It proposes algorithms that can facilitate the initial data analysis steps by filtering genetically related sequencing and the tool investigating intra-host virus diversity vital for biomedical research and epidemiology. The second part addresses single-cell data in cancer studies. It develops evolutionary cancer models involving new quantitative parameters of cancer subclones to understand the underlying processes of cancer development better

    Algorithmic methods to infer the evolutionary trajectories in cancer progression

    Full text link
    The genomic evolution inherent to cancer relates directly to a renewed focus on the voluminous next-generation sequencing data and machine learning for the inference of explanatory models of how the (epi)genomic events are choreographed in cancer initiation and development. However, despite the increasing availability of multiple additional -omics data, this quest has been frustrated by various theoretical and technical hurdles, mostly stemming from the dramatic heterogeneity of the disease. In this paper, we build on our recent work on the 'selective advantage' relation among driver mutations in cancer progression and investigate its applicability to the modeling problem at the population level. Here, we introduce PiCnIc (Pipeline for Cancer Inference), a versatile, modular, and customizable pipeline to extract ensemble-level progression models from cross-sectional sequenced cancer genomes. The pipeline has many translational implications because it combines state-of-the-art techniques for sample stratification, driver selection, identification of fitness-equivalent exclusive alterations, and progression model inference. We demonstrate PiCnIc's ability to reproduce much of the current knowledge on colorectal cancer progression as well as to suggest novel experimentally verifiable hypotheses

    Statistical Methods For Genomic And Transcriptomic Sequencing

    Get PDF
    Part 1: High-throughput sequencing of DNA coding regions has become a common way of assaying genomic variation in the study of human diseases. Copy number variation (CNV) is an important type of genomic variation, but CNV profiling from whole-exome sequencing (WES) is challenging due to the high level of biases and artifacts. We propose CODEX, a normalization and CNV calling procedure for WES data. CODEX includes a Poisson latent factor model, which includes terms that specifically remove biases due to GC content, exon capture and amplification efficiency, and latent systemic artifacts. CODEX also includes a Poisson likelihood-based segmentation procedure that explicitly models the count-based WES data. CODEX is compared to existing methods on germline CNV detection in HapMap samples using microarray-based gold standard and is further evaluated on 222 neuroblastoma samples with matched normal, with focus on somatic CNVs within the ATRX gene. Part 2: Cancer is a disease driven by evolutionary selection on somatic genetic and epigenetic alterations. We propose Canopy, a method for inferring the evolutionary phylogeny of a tumor using both somatic copy number alterations and single nucleotide alterations from one or more samples derived from a single patient. Canopy is applied to bulk sequencing datasets of both longitudinal and spatial experimental designs and to a transplantable metastasis model derived from human cancer cell line MDA-MB-231. Canopy successfully identifies cell populations and infers phylogenies that are in concordance with existing knowledge and ground truth. Through simulations, we explore the effects of key parameters on deconvolution accuracy, and compare against existing methods. Part 3: Allele-specific expression is traditionally studied by bulk RNA sequencing, which measures average expression across cells. Single-cell RNA sequencing (scRNA-seq) allows the comparison of expression distribution between the two alleles of a diploid organism and thus the characterization of allele-specific bursting. We propose SCALE to analyze genome-wide allele-specific bursting, with adjustment of technical variability. SCALE detects genes exhibiting allelic differences in bursting parameters, and genes whose alleles burst non-independently. We apply SCALE to mouse blastocyst and human fibroblast cells and find that, globally, cis control in gene expression overwhelmingly manifests as differences in burst frequency

    INVESTIGATING INVASION IN DUCTAL CARCINOMA IN SITU WITH TOPOGRAPHICAL SINGLE CELL GENOME SEQUENCING

    Get PDF
    Synchronous Ductal Carcinoma in situ (DCIS-IDC) is an early stage breast cancer invasion in which it is possible to delineate genomic evolution during invasion because of the presence of both in situ and invasive regions within the same sample. While laser capture microdissection studies of DCIS-IDC examined the relationship between the paired in situ (DCIS) and invasive (IDC) regions, these studies were either confounded by bulk tissue or limited to a small set of genes or markers. To overcome these challenges, we developed Topographic Single Cell Sequencing (TSCS), which combines laser-catapulting with single cell DNA sequencing to measure genomic copy number profiles from single tumor cells while preserving their spatial context. We applied TSCS to sequence 1,293 single cells from 10 synchronous DCIS patients. We also applied deep-exome sequencing to the in situ, invasive and normal tissues for the DCIS-IDC patients. Previous bulk tissue studies had produced several conflicting models of tumor evolution. Our data support a multiclonal invasion model, in which genome evolution occurs within the ducts and gives rise to multiple subclones that escape the ducts into the adjacent tissues to establish the invasive carcinomas. In summary, we have developed a novel method for single cell DNA sequencing, which preserves spatial context, and applied this method to understand clonal evolution during the transition between carcinoma in situ to invasive ductal carcinoma

    MEDALT: Single-cell copy number lineage tracing enabling gene discovery

    Get PDF
    We present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm that infers the evolution history of a cell population based on single-cell copy number (SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA), whichty facilitates discovery of fitness-associated alterations and genes from SCCN lineage trees. MEDALT appears more accurate than phylogenetics approaches in reconstructing copy number lineage. From data from 20 triple-negative breast cancer patients, our approaches effectively prioritize genes that are essential for breast cancer cell fitness and predict patient survival, including those implicating convergent evolution.The source code of our study is available at https://github.com/KChen-lab/MEDALT
    corecore