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INVESTIGATING INVASION IN DUCTAL CARCINOMA IN SITU WITH 

TOPOGRAPHICAL SINGLE CELL GENOME SEQUENCING 

 

Anna Kristina Casasent, B.S. 

Advisory Professor: Nicholas Navin, Ph.D. 

 

Synchronous Ductal Carcinoma in situ (DCIS-IDC) is an early stage breast 

cancer invasion in which it is possible to delineate genomic evolution during invasion 

because of the presence of both in situ and invasive regions within the same sample. 

While laser capture microdissection studies of DCIS-IDC examined the relationship 

between the paired in situ (DCIS) and invasive (IDC) regions, these studies were 

either confounded by bulk tissue or limited to a small set of genes or markers. 

To overcome these challenges, we developed Topographic Single Cell 

Sequencing (TSCS), which combines laser-catapulting with single cell DNA 

sequencing to measure genomic copy number profiles from single tumor cells while 

preserving their spatial context. We applied TSCS to sequence 1,293 single cells 

from 10 synchronous DCIS patients. We also applied deep-exome sequencing to the 

in situ, invasive and normal tissues for the DCIS-IDC patients.  

Previous bulk tissue studies had produced several conflicting models of 

tumor evolution. Our data support a multiclonal invasion model, in which genome 

evolution occurs within the ducts and gives rise to multiple subclones that escape the 

ducts into the adjacent tissues to establish the invasive carcinomas. In summary, we 

have developed a novel method for single cell DNA sequencing, which preserves 

spatial context, and applied this method to understand clonal evolution during the 

transition between carcinoma in situ to invasive ductal carcinoma. 
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1 Introduction 

Portions of this introduction are adapted from the review paper "Genome evolution in 

ductal carcinoma in situ: invasion of the clones" published in the Journal of Pathology in 2017, 

by Casasent, Edgerton, and Navin2. Figures and text from this paper have been reused or 

modified under the journal's academic copyright license with permission from John Wiley & 

Sons, Ltd for the Pathological Society of Great Britain and Ireland. This is an expanded version 

of the review paper that focuses on spatially resolved single cell sequencing and the 

progression of breast cancer.  

Understanding how tumors progress is vital to refining treatment in cancer. Since it is 

neither ethical nor feasible to sample patients longitudinally during tumor progression, it is 

imperative to have methods that can deduce as much as possible from a single time point and 

single tumor sample. The more data we can gather from a single sample the better chance we 

have at reconstructing tumor evolution to generate more extensive knowledge of tumor 

development and therefore hopefully improve treatments.  

While we are limited by the lack of longitudinal data, it is still possible (1) to infer 

progression from a cohort of single cells4 and (2) to gather regional information from surgically 

resected tumors5, 6. Reconstructing or inferring tumor progression from a tumor sample is 

possible because mutations accumulate as cells divide, leaving an imprint of tumor evolution4. 

While bulk regional information has been gathered during the dissection of tumors though 

tumor macrodissection and regional microdissection, the local spatial information is still lost6. 

In the original single cell sequencing (SCS) studies, tumors were subdivided into 1mm 

cubic regions before being flow sorted by ploidy7, 4, 8, 9. The other common methods of single 

cell isolation are mouth pipetting, micromanipulators, and microfluidic10. These methods still 

require cell suspensions and lose spatial information. Previous methods that retain spatial 

information for deoxyribonucleic acid (DNA) alterations, such as fluorescence in situ 

hybridization (FISH)11, are limited to known targeted genetic alterations. Recent developments 
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in ribonucleic acid single cell sequencing (RNA-SCS) have provided two methods that retain 

spatial information while examining whole transcription alterations: (1) fluorescence in situ 

sequencing (FISSEQ)5 and (2) a combination of laser capture microdissection (LCM) to isolate 

clumps of cells and of single-cell RNA-seq (Geo-Seq, ~10 cells)12, 13 and LCM-Seq (1 to 50 

cells)14. However, these methods are limited to ribonucleic acid (RNA) and have several 

technical challenges.  

For DNA-SCS, the only previous study to attempt to retain spatial information divided 

the tumor into 100-micron thick sections and isolated clusters of morphologically distinct 

regions and flow sorted these clusters to examine single cells6. However, this method loses 

most of the spatial information within the tumor, and therefore is more of a purification method 

than a spatially resolved SCS method. In this thesis we will provide an alternative approach to 

retain spatial data called Topographical Single Cell Sequencing (TSCS)1.  

Previous studies have shown that breast cancers have significant intratumor 

heterogeneity (ITH)15, 16, 8, 17, making them an ideal tumor to examine spatial ITH. We describe 

current topics for ITH in DCIS and IDC in 1.2.3 IDC Intratumor Heterogeneity. A recent review 

by Gulisa Turashvili and Edi Brogi describes the history of scientific understanding of ITH in 

breast cancer and how this has affected treatment18. While ITH can be a hindrance in treatment 

and studies that use bulk tissue, in our study, we use ITH as markers to help deconvolute 

tumor evolution based on the number of unique events that differentiate tumor cells from 

normal cells. By isolating single cells while retaining their spatial information, we can survey the 

spatial intermixture of tumor clones to help determine which model of tumor progression best 

fits our data (Figure 1 Models of Progression)3.  
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This figure illustrates the four models of progression distinguishable via spatial resolved 
SCS, based on spatial intratumor heterogeneity and phylogenetic trees. From top to bottom: 
the mutator phenotype, self-seeding method, clonal expansions, and monoclonal or clonal 
sweep.3  
 

Figure 1 Models of Progression 
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1.1 Breast Cancer 

One of the most common female malignancies across the globe is breast carcinoma, with 

1 in every 8 females experiencing breast cancer during their lifetime. In the United States 

alone, over a quarter-million women annually are diagnosed with invasive breast carcinoma 

and another 60,000 with early stage breast cancer as of 2018. While survival of this disease 

has increased steadily since 1989, about 50,000 women are expected to die from breast 

cancer in 201819. Lung cancer is the only cancer with higher fatality rates than breast cancer20.  

Breast cancer is a loss of genetic regulation of cell division and shares many of the same 

risk factors of other cancers21-23, such as family history; however, less than 15% of women with 

breast cancer report familial disease/incidence19, 24. Germline mutations in BRCA1 and BRCA2 

increase lifetime risk of breast cancer from 12.5% in the general female population to 55-65% 

with a BRCA1 and 45% for those with BRCA2. However, only 5-10% of breast cancer cases 

have germline BRCA1 or BRCA2 mutations. Sadly, at this point the highest risk factors for 

breast cancer are being a woman and age19. 

Breast cancer is defined by changes in ploidy, proliferation, and apoptosis of cells within 

the breast25. The more obvious "hallmarks of cancer" for breast cancer are sustaining 

proliferative signaling, evading growth suppressors, resisting cell death, genome instability 

(ploidy), and increased mutations 21, 22. This thesis focuses on the genomic instability and 

intratumor heterogeneity (ITH) in synchronous ductal carcinoma, where both in situ and 

invasive regions are present in the same patient at the time of diagnosis and surgery. 
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This figure is adapted from Casasent et al. 20162 and used by permission. From top to 
bottom this Illustrates the histopathology of hypothesized progression of breast cancer. 

Figure 2 Sequential Progression from DH to IDC 
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1.1.1 Model of Breast Cancer Progression 

Invasive ductal carcinoma (IDC) is the most common type of breast cancer and is 

thought to originate from ductal hyperplasia (DH) 26, following a similar progression model as 

observed in colon cancer27. This model of breast cancer suggests a sequential progression 

from DH to IDC (see Figure 2 Sequential Progression from DH to IDC). Sequential models of 

progression are appealing, because it is simpler to assume a straightforward progression from 

step to step. Under this model, any increased risk for an individual with other breast 

proliferation dysregulations, such as atypical ductal hyperplasia (ADH) and ductal carcinoma in 

situ (DCIS), automatically increase risk of IDC. Epidemiological evidence however indicates 

that ADH and DCIS often never progress to IDC. The inconsistent progression of DCIS has 

caused DCIS to be termed a non-obligatory precursor to IDC. Some experts even question the 

use of the term ‘carcinoma’ to label DCIS; stating that DCIS is not actually cancer because by 

definition DCIS is confined to the ducts and therefore localized. Predicting progression is a 

major clinical challenge and affects the diagnosis and treatment of patients 28-32.  

Due to the inconsistent nature of DCIS progression to IDC, physicians must make the 

difficult decision to advise patients to either treat DCIS with aggressive therapy or utilize ‘active 

surveillance’. Caution has led many oncologists to treat more aggressively, resulting in an 

epidemic of over-treatment in DCIS patients. While many studies have focused on identifying 

prognostic biomarkers by examining the progression of DCIS to IDC, few of these markers 

have been useful for treatment33-35. 
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This figure is adapted from Casasent et al. 20162 and used by permission.  
 
(A-D) H&E-stained tissue sections of DCIS and IDC at 200× original magnification: (A) low- 
to intermediate-grade cribriform-type DCIS; (B) cross section of a duct involved by high-
grade solid-type DCIS; (C) synchronous high-grade DCIS-IDC with microinvasion and (D) 
invasive ductal carcinoma (IDC). 

Figure 3 Examples of Pathology DCIS and DCIS-IDC 
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1.1.2 Pathology 

DCIS is considered a non-obligate precursor of IDC. This designation relies on the 

concept of sequential progression illustrated in Figure 2 Sequential Progression from DH to 

IDC. While DCIS is the most common diagnosed early breast cancer, IDC makes up about 

eighty percent of all diagnosed breast cancer and is the most commonly diagnosed invasive 

breast cancer.  

Histopathology, using hematoxylin and eosin (H&E) staining, is used to determine, 

grade, stage and cell types of DCIS and IDC. Classification of DCIS and IDC are principally 

based on patterns observed in the overproliferated areas of the ducts (DCIS) and invasive cell 

clusters (IDC). The patterns are solid/comedo, cribriform, micropapillary, and mixed for DCIS 

and mucinous/colloid, medullary, tubular, and inflammatory for IDC.  

Solid/comedo DCIS are where the ducts are filled with cells (solid) or filled except for a 

neurotic center (comedo). Comedo is one of the more invasive cell types, with an estimated 

about 40% to progress to invasive36. Cribriform DCIS as the name implies shows the pattern of 

spaces like stained glass window. The micropapillary or papillary DCIS also has an emptier 

center, with pultruding columns towards the center of the ducts. Mixed DCIS shows a mixture 

of these different cell types within the same patient.  

Infiltrating or invasive ductal carcinomas is the most common type of breast cancer, 

representing about 78% of breast cancer diagnoses37. Mucinous IDC is defined by how the 

cells seem to drift in laden mucin areas, while medullary have a spongy appearance that 

resembles the brain tissue. Mucinous and medullary breast cancer have about 90% survival 

over 10 years38. Tubular IDC are defined by the tube-like structures that appear as the tumor 

expands. While tubular breast cancer is very rare, occurring in only 1-4% of breast cancers, it 

has the best survival rate, almost 100% over 15 years39. Inflammatory IDC is defined by the 

closely associated infatuation of immune-cells surrounding and even intermixed with the tumor 

cells. Inflammatory breast cancer is also rare (1-5%), but has the worst survival at 65% for 5 

years and 35% for 10 years40. Inflammatory IDC is difficult to treat because discovery is usually 
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at stage 3 or 4 and it is often ER and PR negative and HER2 positive (and therefore resistant 

to many treatments). The recent anti-HER2 treatments appear to have improved the survival 

rate for patients with inflammatory breast cancers41. 

The difference in morphology of these types has been linked with risk and in some 

cases expression patterns. However, morphology alone is not enough to determine treatment 

without further staining for receptor status42, 43. 

1.1.3 Receptor Status 

Due to the differential in treatment and prognosis between DCIS and IDC, macroscopic 

assessment of DCIS is more stringent than for IDC, especially at MD Anderson Cancer Center 

where they cut through most of the tumor to prevent missing possible misdiagnosis. Once a 

sample is known to be invasive, the treatment plan in the United States (US) is determined by 

the grade/stage and the status of three receptors for each tumor: the estrogen receptor (ER), 

the progesterone receptor (PR; ER and PR together are known as the hormone receptors), and 

the human epidermal growth factor 2 (HER2)44, 45. The hormone receptor status determines 

which treatments are most effective and patients are generally put into one of three groups: 

those which are positive for either ER or PR overexpression (ER/PR positive), those which are 

positive for HER2 overexpression and/or amplification (HER2 positive), and those which are 

negative for alterations in any of the three markers (triple negative breast cancers, or TNBC)46. 

Receptor status is very important for treatment decisions and determining genomic alterations.  

The combination of grade and receptor status is strongly associated with divergent 

survival outcomes. ER and PR positive tumors usually expand very quickly but respond well to 

hormone therapy and chemotherapy. Therefore, ER/PR positive tumors have a better 

prognosis than TNBC tumors. Estrogen receptor (ER) positive patients make up the largest 

group of patients and have differential response to endocrine therapy47. Progesterone Receptor 

(PR) positive patients are rarely seen without also being ER positive. 
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HER2 tumors have a high expression of the oncogene HER2. HER2 is measured via 

fluorescent in situ hybridization (FISH) and is important because more copies of the HER2 

growth gene is linked to normal cells becoming malignant48. HER2 tumors are particularly 

aggressive and account for about a third breast tumor cases49, and in general have a lower 

survival, but this has been significantly improved with trastuzumab treatment going from 75% 

without trastuzumab to 84% with trastuzumab for 10 year survival50-52. HER2 targeted therapies 

have vastly improved the clinical outcomes of patients with HER2 amplifications53, 54, which has 

been one of the major reasons for the recent push to examine CNA in breast cancer, in the 

hopes of finding more clinical targets.  

The last group is triple negative breast cancer (TNBC) with a 5-year survival rate of 

77%55. Negative status of receptors is defined as protein expression under 1% based on IHC or 

5% prior to 201056. TNBCs have no hormonal or targeted therapies, leaving only chemotherapy 

and resection options for treatment. TNBC patients are more likely to have BRCA1 germline57, 

58 mutations, be of African ancestry with other cell cycle check point alterations59, and are more 

like to have extreme aneuploidy. 

Previous reviews discussed differences between low and high-grade DCIS in detail 60, 

61. Low-grade DCIS are more often ER+/PR+/HER2- with fewer CNA than high-grade 

patients62-64, 60. High-grade DCIS have more atypically shaped nuclei and is more often ER- and 

PR- 65, 60.  

1.1.4 Nuclear Grades 

Another important prognostic factor for ductal carcinoma is nuclear grade. Nuclear 

grade uses the size and shape of overpopulated cells within the normal ductal structure. The 

lower the grade, the smaller the nuclei. Within grade 1 the size and shape of the cells are about 

the same as normal breast epithelial cells, except the cells are filling up the duct. At grade 2, 

cells are moderately larger (2 to 2.5 times normal breast epithelial cells) and the shape is more 

irregular. Grade 3 cells are 2.5+ times larger than normal breast epithelial cells and are highly 
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pleomorphic66. Nuclear grade is closely linked with risk of breast cancer progression, but not all 

high-grade DCIS tumors progress to IDC.67, 68Higher grades reflect more advanced cancer with 

higher risk, with low grades generally linked to higher survival69. In low grades (1 and 2), the 

breast cancer cells bear a closer resemblance to normal breast tissue, where cancer cells are 

"well-differentiated". High grade tumors (grade 3), cancer cells are "poorly differentiated" and 

bear little resemblance to normal cells. The speed of growth appears linked to grade, with 

grade 1 growing more slowly and grade 3 growing more rapidly70.  

1.1.5 Stages 

Breast cancer stages are based on the extent of regions with tumor cells. Stages 0 to 1 

are limited to a very localized area. Usually DCIS is referred to as stage 0 breast cancer, 

meaning the tumor cells are confined to the ducts. Stage 1 is separated into 1A and 1B, where 

1A is less than 2 cm of tumor with no lymph nodes are involved, while 1B is also less than 2cm 

but with lymph-nodes involved. Beyond Stage 1, the stages are more complex, with the number 

of lymph-nodes involved and the size of the tumor being combined to provide different levels. 

Stages 2 and 3 are noted for having either many lymph-nodes involved or having larger than 2 

cm tumors. Tumors between 2-5cm are Stage 2, unless there are many lymph-nodes involved. 

Stage 3 consists of 5cm or larger tumors that have not yet metastasized. Stage 4 is metastatic 

breast cancer. In breast cancer the most common sites for metastases are the brain, bones, 

lungs, and liver. The main cause of death in breast cancer is metastasis. As expected, tumor 

size is one of the driving factors of survival for patients with IDC. Patients with IDC tumors with 

5cm or larger size had 50-60% survival over 20 years, while smaller tumors at 1cm or less 

resulted in about 90% survival over 20 years71. When one considers that larger margins are 

associated with less reoccurrence, suggesting that when margins are small or the tumor too 

large, breast cancer cells remain, thus resulting in better survival rates. 

For DCIS, more factors are examined than for IDC, such as presence or absence of 

necrosis, size of the DCIS lesion, and distance to surgical margins. Recurrence is often of 
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significant concern during cancer treatment. Since the majority of DCIS recurrences are 

localized to the spot of resection, recurrence is thought to be caused by unclean margins and 

residual disease72. About half of these recurrences involve invasive disease, downgrading the 

prognosis for the patient, but the exact relationship between the IDC and DCIS is 

undetermined73. Due to this observation, there is no consensus about what margin should be 

used to consider a DCIS tumor "completely excised," although a margin size of less than 1mm 

has the highest recurrence and residual disease74.  

Patients under the age of 40 and over the age of 80 have the worst prognosis75. For the 

under 40 age group, this is in large part linked to the increased likelihood of presenting with 

higher grade tumors, which are highly aggressive and usually negative for hormone receptors. 

Hence, these tumors do not respond to hormone therapies. For the over 80 age group, the 

treatments are enervating for elderly patients. The frailer a patient is at the start of therapy the 

less likely they are to recuperate from chemotherapy or surgeries necessary for treatment. 

1.1.6 DCIS Survival  

Long-term follow up studies of DCIS patients have shown a substantial difference in the 

progression of low-grade vs. high-grade DCIS with only 35% of low-grade DCIS patients 

progressing to IDC over 50 years, while 50% of high-grade DCIS progressed to IDC over 3 

years 76, 77. The grade of DCIS, as discussed in the previous section, is largely based on the 

size and shape of the nuclei, with larger, more polymorphic nuclei signaling higher grades. The 

grade is often associated with increased ploidy, or aneuploidy, meaning that there are 

increased copies of the genome, which follows the hallmarks of cancer (genome instability)21, 

22. Unlike some colon cancers78, the mutational progression of DCIS is still not established. 

Previous autopsy studies have found moderate levels of DCIS (Average: 8.9%, range 0-14% of 

multiple studies examined) in undiagnosed women, suggesting that DCIS by itself does not 

affect quality of life79. 
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1.2  IDC Genomics 

High-grade DCIS usually has many genome-wide copy number aberrations (CNAs), 

including frequent events in 1q+, 5p+, 8p-, 8q+, 11q-, 13q-, 14q-, and 17q+ and focal 

amplifications on 6q22, 8q22, 8q24, 11q13, 17q12, 17q22–24, and 20q13 80, 62, 81, 82, 64, 83, 60. 

Mutational markers of IDC include mutations in TP5384, PTEN 85 and PIK3CA 86, 84 and 

amplifications of chromosome 17 and 11q 87, 86, 84. While breast cancer has well-established 

genomic markers or even common mutations, most common alterations are specific by subtype 

because of the extreme amount of intratumor heterogeneity (ITH) in breast cancer. In the 2012 

The Cancer Genome Atlas (TCGA) Study on breast cancer, several common CNAs were 

observed by subgroup and are discussed in more detail in the TCGA and Intertumor 

Heterogeneity section. 

1.2.1 IDC Aneuploidy  

Aneuploidy is a result of improper chromosomal segregation during proliferation25. One 

daughter cell with (2n+x) chromosomes and the other with (2n-x) chromosomes25. When DNA 

content is abnormal, meaning above or below diploid, DNA abnormality has been associated 

with adverse effects such as recurrence and low survival rates88. The definition of high-grade 

DCIS increases the likelihood of aneuploidy because grade is determined by size and shape of 

nuclei, and an abnormal ploidy effects the size and shape of the nucleus89. Previous literature 

suggests that CNAs are early events in tumorigenesis, specifically in breast cancer90-96.  

Aneuploidy (the state of having an abnormal number of chromosomes) is commonly 

observed in breast cancer along with chromosomal instability (CIN) (the characteristic of being 

likely to change ploidy during cell division), and the most common CIN is the mis-segregation of 

17, both for whole chromosome aneuploidy97 and multiple aberrations98. Chromosome 17 is 

notable for harboring a number of genes, including the hormonal receptor HER2, as well as the 

well-known tumor suppressors genes TP53 and BRCA198. 
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BRCA2 mutated breast cancers are more often tetraploid (4 copies of the genome) than 

sporadic breast cancers99. While BRCA2 is associated with homologous recombination 

pathway for double-strand DNA repair, it also facilitates the formation of anaphase bridge 

mutations in BRCA2, which can cause mis-segregation of chromosomes100.  

The TCGA study split the breast cancer samples into different subtypes, specifically 

Luminal A that was mostly diploid, while the other 3 subtypes Luminal B, Basal-like, and HER2-

expressed were all highly aneuploid tumors. The most common alterations across all subtypes 

were gains in 1q and 8q, and loss in 8p101. One study found an early alteration commonly 

observed in DCIS, and in atypical ductal hyperplasia (ADH), is a loss of heterozygosity (LOH) 

in chromosome 11q13102. However, a later study found common LOHs in ADH were 16q and 

17p, while 11q13 was infrequent but when present was clonal103. The small size and possible 

sample of original study probably accounts for the discordance between these two results. LOH 

(or deletion of one allele) of 6q13 and 6q26-27 104-106 is also common in breast cancers.  

1.2.2 TCGA and Intertumor Heterogeneity  

Intertumor heterogeneity is the diversity and lack of common alterations across patients. 

The advent of personalized medicine is based on the idea that differences in genomic 

alterations between patients can determine specific treatments for individual patients. The 

TCGA study of breast cancer found few common mutations across the 825 patients 

analyzed101. There were 9 somatic mutations which occurred in over 10% of the patients. Some 

of these were mutations in well-known tumor genes like TP53 (36%), PIK3CA (34%), CDH1 

(14.7%)101. Other mutations were found in lesser-known genes like TNN (24.7% for breast 

cancer), MUC4 (20% for breast cancer, but also seen in lung and cervical cancers), MUC16 

(15% for breast cancer, but also seen in ovarian cancers), GATA3 (13.9% in breast cancer), 

MUC2 (11.6% for breast cancer, but also seen in ovarian and bladder cancer), and KMT2C 

(10% for breast cancer, but also seen in colon cancer)101.  
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While the TCGA study examined breast cancer samples regardless of their receptor 

status, receptor status correlates with specific mutations or alterations rather than histological 

subtype101. The TCGA paper shows high intertumor heterogeneity in DNA variants, mRNA 

expression, miRNA expression, DNA methylation status, as well as protein levels in invasive 

and metastatic breast cancer101. 

1.2.3 IDC Intratumor Heterogeneity  

Intratumor heterogeneity (ITH) is frequently reported in IDC 107, 108, 4, 109, 110, 17, 85 and in 

DCIS studies profiling DNA, RNA, and protein levels 15, 90, 111, 62, 112-118. ITH complicates 

diagnosis and treatment, but is beneficial for evolutionary studies since it provides a 

‘permanent record’ of mutations during tumor growth9. Assuming mutational complexity 

increases over time and using phylogenetic inference, several studies showed clonal lineages 

and evolutionary histories can be inferred from a single time-point tumor sample 16, 4, 17. This 

experimental approach is important for evolutionary studies of DCIS, where often only a single 

time point sample can be obtained 114, 119. 

Early studies of ITH used cytological and histopathological methods. These methods 

included FISH to measure DNA copy number of targeted genes or loci, and 

immunohistochemistry (IHC) to measure protein levels across tissue sections. Many FISH 

studies reported ITH in DNA copy number states of single tumor cells in the ducts of DCIS 

patients 120-125, 116, 126. Multiple studies have reported ITH in receptors such as HER2 in DCIS 121, 

127, 125, 116. Heterogeneity in protein levels and targeted genes have also been reported using 

cytological and histological methods 15, 128, 129, 4, 116. Allred et al. used IHC to stain specific 

proteins in DCIS and revealed spatial ITH in protein levels of TP53 and HER2 15. However, 

these methods were often qualitative and limited to single targeted genes or proteins. 

Next Generation Sequencing (NGS) methods provided quantitative measurements of 

thousands of mutations and CNAs in parallel. Three different experimental NGS approaches 

have been developed to resolve ITH: 1) deep-sequencing, 2) multi-region sequencing, and 3) 
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single cell DNA sequencing. Deep-sequencing involves sequencing bulk tumor at high 

coverage depths to cluster mutation frequencies and identify clonal subpopulations. This 

approach has been applied to study ITH and clonal evolution in IDC patients 130, 131, 110. Multi-

region sequencing involves spatially sampling different macroscopic regions of tumor mass and 

sequencing each region independently to resolve geographic heterogeneity 132, 85, 133. These 

methods enable the reconstruction of phylogenetic lineages to understand clonal evolution in 

breast cancer patients 85. SCS methods can measure genome-wide copy number profiles 7, 16, 

exome mutations134, 135, genomes 17, 136, or targeted gene panels 137 in single cells. SCS 

methods can fully resolve ITH by reporting genomic information on individual tumor cells, but 

are more susceptible to sampling bias138. By sequencing and comparing multiple tumor cells, 

several studies have delineated the clonal substructure and evolutionary lineages of IDC 16, 4, 17. 

However, these SCS approaches have not yet been applied to DCIS. 
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DCIS  DCIS-IDC IDC Type
0 10 0 Frozen Casasent 2018 29307488
0 3 1 FFPE Martelotto 2017 28165479
6 5 0 Frozen Kim 2015 25831047
0 1 0 Frozen Kroigard 2015 25730902
0 1 50 FFPE Yates 2015 26099045
3 12 0 FFPE Foschini 2013 23337025
6 0 6 FFPE Newburger 2013 23568837
1 0 5 FFPE Oikawa 2015 24402639
0 13 0 Frozen Hernandez 2012 22252965

20 25 24 FFPE Liao 2012 22887771
52 0 0 FFPE Hwang 2011 21496874
0 21 0 FFPE Johnson 2011 22052326

31 42 36 Frozen Muggerud 2010 20663721
6 15 FFPE Iakovlev 2008 18628458

10 0 18 Frozen Yao 2006 16618726

PMID

NGS

SCS

aCGH

Method First Author Year
Samples Analyzed

 
 
This table is adapted from Casasent et al. 20162 and used by permission. 
 
This table contains a list of genomic studies from SCS, next-generation sequencing, and 
microarray CGH profiling of DCIS breast cancers. The columns 
are primary method used in the paper, number of samples analyzed, type of tissue, first 
author, year of publication, and PubMed ID (PMID).  
 
The number of samples in each study is reported as DCIS-only, DCIS–IDC (synchronous, 
where both DCIS and IDC samples were assessed), and IDC-only samples.  
 
FFPE=formalin-fixed, paraffin-embedded. 

Table 1 aCGH and NGS DCIS Papers 
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1.2.4 Synchronous DCIS-IDC  

In synchronous DCIS-IDC the patient has both in situ and invasive carcinoma. Genomic 

biomarker studies mainly used gene expression microarrays or array copy genomic 

hybridization (aCGH) 87, 90, 120, 139, 140, 82, 126, 141. Many of these studies reported highly similar 

copy number profiles and gene expression signatures for synchronous DCIS-IDC regions, and 

analyzed both DCIS and IDC regions139, 142, 114, 84, 119. With the development of next-generation 

sequencing (NGS) technologies, studies have begun to apply higher resolution methods to 

study invasive-specific mutations and CNA in patients with synchronous DCIS-IDC 84, 143, 119, 144, 

85. Many of these studies have identified concordant and discordant mutations in synchronous 

DCIS-IDC patients114, 84, 119, 144, 85. However, these initial genomic studies faced several 

technical obstacles, including low tumor purity, the unavailability of fresh-frozen tissues, and 

ITH. Consequently, the genomic and molecular basis of invasion in DCIS breast cancers 

remains poorly understood. Table 1 aCGH and NGS DCIS Papers lists the papers that studied 

DCIS or Synchronous DCIS-IDC using aCGH or NGS methods. 

1.3 Single Cell Sequencing 

In the last decade, single cell sequencing (SCS) developed into a powerful genomics 

tool. In developmental biology, the ability to examine the transcriptome or genome of every cell 

within a specific organ can create a new understanding of organ-development and mosaicism. 

In cancer, SCS enables exploration of ITH previously inconceivable. 

1.3.1 SCS Beginnings 

The first single cell full genome DNA sequencing experiment was completed in 2011 by 

Navin et al4. This project not only managed to create the first whole genome sequencing 

(WGS) of single cells but also attempted to infer the clonal evolution of a tumor from the single 

cells. The Tang et al 2009145 whole single cell transcriptome paper is considered the 

beginnings of RNA-SCS while the 2011 Navin et al paper4 is considered the beginning of DNA-

SCS.  
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The SCS era allows examination of tumor heterogeneity, the mosaicism of tissues, full 

transcriptional heterogeneity of development, and the complexity of organs such as the brain. I 

will be focusing on DNA single cell sequencing (DNA-SCS), which we used in my project, and 

the many challenges for single cell DNA sequencing. 

1.3.2 SCS Challenges 

The major issues that affect single cell genome sequencing (DNA-SCS) data are 

related to the limited amounts of genetic material and technical errors introduced by whole 

genome amplification (WGA) methods including: nonuniform coverage, allelic dropout, false-

positive errors, false-negative errors, and cell type specific variations. To examine the effect of 

amplification methods on DNA-SCS, Biezuner et al146 compared seven different commercial 

kits and Huang et al 147 compared five different kits. These experiments covered the top three 

DNA-SCS amplification methods: degenerate oligonucleotide primed polymerase chain 

reaction (DOP-PCR), multiple strand displacement amplification polymerase chain reaction 

(MDA-PCR), and Multiple Annealing and Looping Based Amplification Cycles (MALBAC)146, 148, 

147. These studies showed that MDA and MALBAC had the lowest allelic dropout rates and 

appeared to be the best suited for DNA mutation (SNP and indel) analysis. With MDA methods 

producing the most mappable reads and the most coverage and the smallest number of false 

positive calls, but the least reproducibility between two cells especially in the case of copy 

number. After MDA, MALBAC protocols produced the decent coverage, with better 

reproducibility (according to Huang et al147), and with comparable allelic dropout rate to MDA, 

but a higher false positive rate and more unmapped regions. The last type of kit DOP-PCR is 

the type of kit we used. DOP-PCR results were highly reproducibility between cells but had did 

more poorly on the other statistics that were measured, however the reproducibility was the 

only statistic that measured how clean the copy number data was instead of the mutation 

data146, 147.  
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Another major issue for SCS is sampling. On the microscale, the increased information 

from SCS allows peeks into ITH. However, SCS of an entire tumor mass is cost prohibitive. 

Therefore, because the full population of the tumor is not sequenced, the result is an increase 

in sample bias, where small changes in samples can cause divergent results and therefore 

conclusions. Due to the expense of sequencing single cells, the first papers covered only a few 

dozen cells, but each year more and more cells are sequenced as part of SCS experiments. 

While it is now financially reasonable to sequence hundreds to thousands of cells per tumor 

mass, cost still prohibits sequencing the whole tumor mass. For the smaller tumors, most of 

this mass is used by pathologists for vital diagnostics. This is often true of pure DCIS tumors. 

Larger tumors are most often used for research and have vastly more cells than it is feasible to 

sequence.  

Sampling issues led to techniques capable of determining the number of tumor cells 

necessary for good coverage of the mutation spectrum. Standard population metrics, often 

used in ecology, have also been redesigned for SCS. However, the major conclusion has been 

that sampling counts are unique to each tumor, resulting in several ad hoc calculations that 

have become standard at the end of individual studies. While this may answer the question of 

sample size on a case-by-case basis, the issue of sampling bias remains an issue for SCS 

experiments. 

Even in the first DNA-SCS studies4, there were regional effects within a tumor measured 

on the macro level, in sections of about 1mm. Using microdissection, different sections of a 

tumor were flow sorted. The single cell profiles were mapped back to an approximate region. 

These methods demonstrated that tumors are not a homogenous mixture of cells and could 

have regional genomic differences4, 17. These results also suggested sampling bias could affect 

a study, which drove the search for a spatially aware SCS method. However, the majority of 

single cell isolation methods at the time used cell suspensions. Cell suspensions are created 

by separating or dissolving the extracellular matrix in order access the cells. For more details 

on the most common isolation techniques for SCS refer to the Wang and Navin 2015 Review10. 
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1.4 Laser Capture Microdissection Methods  

A major issue with current single cell techniques is loss of spatial information. Whether 

one is using flow sorting or nanowells, one of the first steps of traditional sample preparation is 

dissociation of the sample, disrupting the relationship between spatial coordinates and genetic 

or transcriptomic data. Laser capture microdissection (LCM) is one of the few methods that can 

maintain micron level spatial information. This section will discuss LCM and current sequencing 

techniques that use LCM.  

As early as 1996, LCM became a major tool in the biological sciences for separating 

different cell types. The first techniques used crude methods of cell protection to prevent DNA 

damage by covering desired cells and exposing the remainder of the sample to UV to destroy 

the DNA of the undesired cell types149. Later techniques used touch-based methods to transfer 

the cells of interest by melting a film on the slide, allowing the region of interest to be peeled off 

with the film150. 

1.4.1 LCM Sample Purity 

One of the major advantages to LCM is the increase in sample purity for the cell type of 

interest. Using bulk tissues containing normal tissue can cause inaccurate tumor profiles 

whether one is using next-generation sequencing or CGH89. The diversity of cell types within 

tumor samples has long been recognized. However, the ability to routinely separate cell 

populations was a substantial advancement for research, allowing scientists to focus on a cell 

subtype of interest150. While LCM techniques were predicted to provide an advancement in 

clinical applications such as increasing tumor purity during diagnostics, these have not yet 

emerged, partly due to the significant time and cost required for microdissection. 

While LCM offers a much more efficient method compared to manual ink-stained 

sections (UV selective radiation ablation)149 or manual microdissection, the current tools for 

LCM are expensive (between $110K and $250K for the instruments) and require large 

investments in training and regular maintenance. These limitations make LCM more time 
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intensive than clinical pathology reviews and LCM isolation is less systematic requiring 

intensive training and manual collection.  

1.4.2 LCM Type Selection 

The Zeiss PALM Microbeam system uses one type of laser to cut out around a region, 

cell, or nucleus and a second type of laser to catapult the cut-out into a capture cap. The Zeiss 

PALM Microbeam was selected as optimal for this project after comparison with other systems. 

The other systems in our limited initial testing produced limited, possibly contaminated, or no 

results. 

1.4.3 LCM Spatially Resolved Sequencing 

Preserving spatial information can help parse biologically interesting phenotypes and 

was first done with LCM-Seq14 in 2016 and Geo-Seq (short for geographical sequencing) in 

201613 and 201712.  

LCM-Seq was first used in a Nature Communications paper by Nichterwitz et al to 

isolate motor-neurons in mice14. The paper focused on the development of the LCM-Seq 

method, moving from a bulk purification method to a single cell method. The first step was to 

isolate clumps of cells ~120 cells and then to sequential lower the number of input cells from 

50, 30, 10, 5, 2, and finally 1 cell. While they were able to scale down to 1 cell, the total 

mapping and general data quality of the single cell RNA isolated was lower, just under 80% 

compared to 10 cells which had an equivalent mapping ratio to 120 cells. Since, cells were 

isolated from LCM slides, in theory topographical data could be collected. However, this paper 

did not utilize that aspect of LCM isolation, but instead used LCM to isolate rare cell types with 

known anatomic positions14.  

Geo-Seq was first used in a 2016 Developmental Cell paper by Peng et al to examine 

spatial transcriptomes in mouse embryos13. In 2017, Nature Protocols published a paper by 

Chen et al covering a method designed to elucidate both cellular transcriptomic heterogeneity 

and spatial variance of the transcriptome12. The method takes about 5 days for collection and 
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processing of samples and 1-2 weeks for analysis. This method was used on mouse embryos 

and worked for small cellular input of 10 cells or less. They used a "zipcode mapping protocol" 

to allowed the cell populations to be mapped back to an approximate location, and produce 4D 

data, with spatial (x,y,z) and genomic (a) components. However, all data shown was from cell 

clumps of 10 to 20 cells12, 13.  

A method to examine single cells from microdissected tissue was published in 20176. 

This method used standard microdissection instead of LCM and used H&E slides from an 

adjacent section to direct dissection of a DAPI stained tissue. Dissected cells were flow sorted 

so single cell genome data could be collected6. While this method allowed for some basic 

geographic data (to the nearest 1mm) to be collected, the biggest benefit was an increase in 

purity rather than precise spatially linked genomic data. However, this method is relatively high-

throughput6. 

Spatial information plays a major part in how cancer is treated. The difference between 

DCIS and IDC is determined solely by whether the abnormal cells or larger abnormally nuclei 

are inside the ductal structure (DCIS) or outside (IDC). Outside of breast cancer, other early 

cancers are often defined by the restriction of the cancer-like cells by a membrane. Outside of 

cancer, many questions relate to how adjacent cells diverge during development. For example, 

in neuroscience, the interaction between gila, astocytes, and neurons is currently at the 

forefront of research. While many of these questions are better answered by single cell RNA 

sequencing, the development of spatial single cell DNA sequencing methods is the first step 

toward this. 

1.5 Models of Genomic Lineage and Invasion  

Three proposed models of invasion during progression of DCIS to IDC: 1) independent 

evolution, 2) evolutionary bottlenecks and 3) multiclonal invasion (see Error! Reference 

source not found.). The independent evolution model postulates the presence of two different 

initiating cells (N1, N2) in normal breast tissue that separately evolve into DCIS and IDC 
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subpopulations. In contrast both direct lineage models (evolutionary bottlenecks and multiclonal 

invasion) postulate a single cell of origin. Specifically, direct lineage models presuppose a 

single normal breast cell (N1) that gives rise to both DCIS and IDC subpopulations. 

The two direct lineage models are separated by how or if selection of subclones occurs 

during invasion. The evolutionary bottleneck model postulates that a subset of clones within the 

duct escape. Consequently, the founder’s effect caused by the an invasive bottleneck would 

result in few individual cells and few subpopulations being present in the invasive regions. The 

results would be subclonal divergence and lower diversity in the invasive tumor than in the in 

situ region, also called the founder effect. The multiclonal invasion model postulates that all 

clones escape the duct. As a result, the invasive population would contain all subclones found 

in the original in situ population. Results that support the multiclonal invasion model would 

include the presence of all clones in both regions and similar clonal diversity between regions. 

While later diversity might occur, the in situ and invasive regions are seeded with the same set 

of clones, which would increase the likelihood of observing similar subclones and similar level 

of diversity in both regions. The escape described in the multiclonal invasion model could be a 

coordinated or stochastic process preceding the degradation of the ductal membrane.  
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This figure is adapted from Casasent et al. 2016 2 and used by permission.  
Evolutionary models of invasion in DCIS from Top to bottom:  
 
Independent evolution model shows the in situ and invasive subpopulations evolving from 
independent lineages that originated from two different normal cells (N1, N2) in the breast.  
 
Evolutionary bottleneck model shows the evolution of three clonal subpopulations from a 
single ancestral cell (N1), from which a single clone is selected during invasion and 
expands to form the invasive carcinoma.  
 
Multiclonal invasion model shows the evolution of three clonal subpopulations from a 
singlenormal cell (N1) in the breast. In this model, all three clones escape the duct and co-
migrate into the adjacent tissues to establish the invasive carcinoma. 

Figure 4 Models of Invasion 
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1.5.1 Independent Lineage Model 

Under the independent lineage model, DCIS and IDC independently evolve from two 

separate normal cells. Therefore, no somatic mutations or CNAs should occur in both cell 

lineages. The data supporting this model comes from histopathological sections, in which about 

20% of these cases have DCIS and IDC in different regions of the breast 151, and from a 

number of single marker studies showing discordance between synchronous in situ and 

invasive subpopulations15, 87. Topographically distant areas of synchronous DCIS-IDC cases 

can be classified as different grades and often display genetic and histopathological ITH which 

has been further stated as support for the independent lineage model 15, 152, 113, 139, 153, 72, 85. 

The emergence of multiple tumor lineages might be explained by cancer field effects 

giving rise to multiple tumor initiating cells. Cancer field effects have been reported in tumors 

with external mutagens, such as UV exposure in eye lid cancers 154 and cigarette smoke in lung 

adenomas 155, as well as in tumors such as breast cancer, with no known external mutagens156. 

Cancers without external mutagens but with germline mutations (e.g. BRCA1, BRCA2, TP53) 

have generated multifocal tumors that often share few to no somatic mutations157-159.  

Single targeted gene and protein studies often provide support for the independent 

lineage model, where the targeted gene or protein is discordant within a patient 139, 160. 

Discordance of PIK3CA mutations with matched IDC and DCIS was found with only 30% 

concordance between regions 160. Further support for the independent lineage model was 

generated by deep-sequencing of the mitochondrial D-loop in DCIS-IDC patients, where 61% 

of tumors were estimated to evolve from different clonal origins, supporting independent 

lineage139. The last set of support for the independent lineage model is from mathematical 

modeling of DCIS and IDC which also indicates independent lineages161. In summary, the 

experimental support for the independent lineages model is based mainly on single marker 

studies and mathematical models. These studies may not observe underlining genetic 

concordance due to profiling only selected mutations. 
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1.5.2 Dependent Genomic Lineage Model  

Direct lineage models postulate that a single initiating cell (N1) in normal breast tissue 

gives rise to both DCIS and IDC subpopulations. Support for direct lineage models of 

synchronous DCIS-IDC comes from genomic studies using aCGH 114, 162, 163, 86, 164-167 and NGS 

84, 119, 144, 85 which profile many markers across the whole genome. These studies report a high 

correlation in copy number profiles of in situ and invasive subpopulations in synchronous DCIS 

patients 120, 168, 169, 86, 84, 164, 126, 167, and many concordant point mutations 114, 84, 119, 170. A thirty-

eight study meta-analysis found 67% of synchronous DCIS-IDC studies strongly supported 

direct lineage171, while the other 33% could possibly support independent lineages, especially 

in the 20% of cases where DCIS and IDC tumors were found in disparate regions. 

Large genomic synchronous DCIS-IDC studies also report high numbers of discordant 

mutations or region-specific CNAs 172, 114, 162, 163, 86, 84, 119, 164, 165, 144, 166, 167, 85. However, these 

discordances could arise through later divergent evolution. These data could therefore be 

explained by both direct lineage models, evolutionary bottleneck through selection of minor 

clones with invasive phenotypes and multiclonal invasion through migration of multiple 

dominant clones. The limited ability of bulk genomic studies to resolve ITH and trace clonal 

lineages makes distinguishing between evolutionary bottleneck and multiclonal invasion 

models challenging. 

1.5.2.1 Evolutionary Bottleneck  

Population bottlenecks (evolutionary bottlenecks) are illustrated in natural species often 

via allopatric speciation in which a small population (the founding population) moves to a 

distant region and adapts to the new environment selecting for new traits 173. Population 

dynamics often refers to the original change as the founder effect. Evolutionary bottlenecks 

within tumors have been reported in studies in metastatic dissemination 174, 119, 85 and as a 

result of cancer therapy 175-178. The selection of minor clones may occur during invasion, 

resulting in a founder effect that suggests higher discordances or longer evolutionary distances 
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between regions. A few studies of synchronous DCIS-IDC have failed to detect mutations and 

CNAs prevalent in IDC that are absent in the DCIS region 84, 119, 144, 85.  

Concordant mutations are often referred to as ‘truncal’ mutations, a term taken from 

evolutionary biology, because ‘truncal’ mutations can be traced to the last common ancestor in 

the tumor. Truncal events, which are traceable throughout the lineage, were reported by Sidow 

and colleagues based on whole-genome-sequencing (WGS) of six breast cancer patients with 

matched longitudinal samples of atypical ductal hyperplasia (ADH), DCIS, and IDC that 

produced concordance early in the lineage, with late lineage discordant events consistent with 

the evolutionary bottleneck model 144, 179. A multi-region (DCIS and IDC) sequencing study 

performed lineage-tracing experiments in ER+/PR/HER2- synchronous DCIS patients and 

found two distinct PTEN mutations in IDC regions that were absent in DCIS regions, which was 

used to suggest that a minor clone without a PTEN mutation was selected during invasion 85.  

In another study, higher concordance of CNAs than point mutations were reported in a 

study of 6 patients with synchronous DCIS-IDC that strongly supports a direct lineage model 84. 

About 40% of the mutations were concordant with TP53 having the highest concordance, and 

FANCE, ATM, BCOR, PDGFRA, and PMS1 being the least concordant mutations84. Reis-Filho 

and colleagues used aCGH to profile 13 synchronous patients and found 77% of patients had 

highly similar genome-wide copy number profiles between regions 114. The remaining patients 

mostly showed additional amplifications in invasive subpopulations (1q41, 2q24.2, 6q22.31, 

7q11.21, 8q21.2 and 9p13.3), which is consistent with an evolutionary bottleneck 180.  

Further support for the evolutionary bottleneck version of the direct lineage model 

comes from reported concordance of mutations and CNAs in patients with synchronous DCIS-

IDC, in studies without evolutionary analysis. Microdissected DCIS and IDC regions processed 

with aCGH presented overall concordant CNAs with a few invasive-specific amplifications of 

oncogenes and deletions of tumor suppressors 114, 162, 163, 86, 164, 165, 181, 166, 167. Similarly, 

sequencing and genotyping analysis of synchronous DCIS-IDC regions for a majority of shared 
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events with a few invasive-specific events which is still consistent with an evolutionary 

bottleneck 87, 120, 182, 113, 114, 169, 163, 86, 84, 144, 85.  

Collectively, these data are consistent with an evolutionary bottleneck model, in which a 

clone is selected during invasion, leading to the expansion of a minor genotype in the invasive 

carcinoma. An alternative explanation for discordant data is invasive clones continuing to 

evolve new mutations and CNAs after tumor cells escape from the ducts. To distinguish 

between these possibilities, higher resolution genomic methods are required to resolve ITH and 

perform lineage reconstruction, and to determine if the invasive genotype was pre-existing in 

the ducts in a minor subclone. 

1.5.2.2 Multiclonal Invasion 

Multiclonal invasion is a direct lineage model in which multiple cells from different 

subclones escape the duct to establish the invasive carcinoma. In the multiclonal invasion 

model the migration of clones is often thought to be preceded by the breakdown of the 

basement membrane. In multiclonal invasion, or parallel invasion6, all clones escaped the ducts 

and are therefore are observed in both the ducts and invasive regions. 

Two scenarios comply with the multiclonal invasion. The first is the cooperative 

scenario, in which multiple DCIS clones coordinating through non-cell autonomous paracrine or 

juxtacrine interactions cooperatively escape the basement membrane (the ducts) to become 

invasive. In the cooperative scenario, multiple clones escape the duct and the cooperation 

could be between clones or with the tumor microenvironment. Support for the cooperative 

scenario was found in functional experiments where IDC showed non-cell autonomous 

interactions of clones which secreted growth factors and cytokines promoting tumor growth 183 

or in mouse models, where WNT signaling drove tumor progression 184.  

The second is the leader scenario. In the leader scenario, a "leader clone" breaks down 

the basement membrane. Then the leader clone and "follower clones", which would be 

incapable of escaping the membrane by themselves, together establish the invasive legion. 



30 

The leader clone scenario does not require direct cooperative interactions between clones. 

Evidence for this process is supported by histopathological images showing a complete 

breakdown of basement membrane and myoepethelial layers in some DCIS cases. Both 

scenarios contain similar proportions of clones and result in DCIS and IDC regions with similar 

mutations and variant allele frequencies (VAFs).  

Highly correlated copy number profiles between DCIS and IDG regions in aCGH studies 

provided genomic evidence for the multiclonal invasion model 114, 162, 163, 86, 164, 165, 181, 166, 167. 

Oikawa et al used aCGH and reported a similarly high 97% concordance 166. Hernandez et al 

found 10 of 13 patient's aCGH copy number profiles to be highly correlated. An average of 83% 

concordance was found by Johnson et al via aCGH for 23 patients with synchronous DCIS-

IDC, with many having extremely similar copy number profiles 86. Multiclonal invasion model is 

also supported by high concordance of DCIS and IDC mutations and subclonal mutation 

frequencies found in NGS studies 84, 119, 144. While the data is inferential and provides only 

indirect evidence, the data is consistent with a multiclonal invasion model. 

1.5.2.3 Clinical Implications of Invasion Models 

Proper diagnosis and therapy for DCIS patients hinges on the proper model of invasion. 

Under the independent lineage model DCIS and IDC are genetically unrelated. Treatments 

targeting DCIS genetics, which is unlikely to become invasive, are not particularly useful. 

However, both dependent lineage models (evolutionary bottleneck and multiclonal evolution) 

suggest genetics in common between DCIS and IDC. Truncal mutations from early in the tumor 

lineage and carried throughout the lineage can be targeted and used to eliminate both DCIS 

and IDC cells185, 186. TheTRACERx clinical trial is currently investigating just such an approach 

in lung cancer187. 

Under the evolutionary bottleneck version of the dependent lineage model, invasive 

clones could have specific mutations allowing invasive clones to be treated. For example, in a 

multi-region sequencing study of a synchronous DCIS-IDC patient, the authors identified loss-
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of-function mutations in the PTEN tumor suppressor in invasive subpopulations not present in 

ducts85. This invasive-specific PTEN mutation could potentially be targeted with PIK3CA, AKT 

or mTOR inhibitors to treat the cancer188. 

The multiclonal invasion version of the dependent lineage model suggests a unique 

method of invasion. If the cooperative scenario holds true, it could be possible to prevent 

further invasion by inhibiting cooperative interactions to therapeutically hinder invasion. This 

could be achieved by interfering with cooperative clonal interactions via drugs or antibodies 

targeting secreted factors or receptors that cells use in paracrine or juxtacrine interactions. 

Conversely, if the leader clone scenario is true, then identifying the leader clone will be required 

to target therapeutic intervention. However, such an approach requires a mechanistic 

knowledge of underlying cell interactions and signaling pathways used for cooperation, 

requiring detailed studies using in vitro or in vivo systems, such as xenografts. 

Direct lineage models also have important prognostic implications for measuring ITH 

using diversity indexes based on genome type 107, 16. These models suggest DCIS patients with 

high diversity indexes189, 190 (such as, Shannon191, 192 or Simpson’s Index193) would be more 

likely to progress to IDC due to the increased chance of an invasive clone evolving (specifically 

in the leader clone scenario) 116. Similarly, high diversity indexes were correlated with potential 

to metastasize or present with poor response to therapy107, 194, 127. Conversely, in a direct 

lineage model, a low genomic diversity would expect to predict a lower risk of invasion in DCIS 

patients. Future studies would be required to determine if high genomic diversity predicts 

progression.  
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1.6 Dissertation Summary 

In return for large input of hundreds or thousands of cells, NGS methods provided 

quantitative measurements of thousands of mutations and CNAs in parallel. However, for 

cases with a heterogeneous population, NGS methods created a new problem, how to 

deconvolute a set of unknown rare mutations. SCS provides some experimental resolution to 

this problem. 

This thesis focuses on two matters (1) creating a SCS method to retain spatial context 

and (2) using this method to examine intratumor evolution and heterogeneity in synchronous 

DCIS-IDC breast cancer. We hope that further studies will build on these methods to identify 

prognostic biomarkers by comparing, in situ only, synchronous, invasive only, and metastatic 

breast cancers.  

1.6.1 Spatially-Resolved Single Cell DNA Sequencing  

Since a major issue with the current single cell techniques is the loss of spatial 

information, I developed a true single cell method to examine the spatial, morphologic, and 

genomic data from single cells. While I was not the first to study this, my method provides more 

precise spatial information than the 20 cell clumps of the 2016 Geo-Seq method12, 13 or than 

regional microdissection of thousands of cells paired with flow sort by Martelotto et al in 20176. 

While these methods allowed for basic geographic information to be retained, they lose single 

cell morphology and precise location information to providing higher-throughput.  

The method I have developed is able to isolate single tumor cells from frozen tissue 

sections and preserve their precise spatial positions and morphology. The development of 

Topographical Single Cell Sequencing (TSCS) adds precise spatial mapping to morphological 

and genomic analysis1. 

TSCS combines laser-capture-microdissection, laser-catapulting, whole-genome-

amplification (WGA), and single cell DNA sequencing to generate spatially resolved single cell 

genomic data. Using whole-tissue and cutting slides, TSCS can provide an estimated Z-axis, 
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while collecting the X and Y locations and morphology via images and mapping the genome of 

each single cell isolated from a tumor. The full description of the method and data analysis for 

TSCS are provided in the Materials and Methods section.  

1.6.2 Intratumor Heterogenetic during Invasion in Breast Cancer 

The second issue my thesis covers is using TSCS to examine intratumor evolution and 

heterogeneity in synchronous DCIS-IDC breast cancer. Since breast cancer, like other cancers, 

is profiled by the loss of genetic control, specific changes in ploidy, proliferation, and apoptosis 

of cells within the breast have been documented. NGS studies have examined the genetic 

aspects of breast cancer across patients (intertumor heterogeneity) and within a tumor (ITH). 

ITH has been frequently reported in invasive and even in situ breast cancers, making 

breast cancer a good candidate to study cellular evolution. We used TSCS to investigate the 

three models of invasion discussed earlier: independent evolution and the evolutionary 

bottleneck and multiclonal invasion versions of direct lineage. Based on our data, we concluded 

the direct lineage model with a single initiating cell (N1) is the most probable. We were further 

able to delineate between the population bottleneck and multiclonal evolution versions of the 

direct lineage model. Due to the limited number of changes in the frequency of clones in each 

population, we concluded that the multiclonal invasion version of the direct lineage model is 

most probable. 

In multiclonal invasion, multiple clonal populations are migrating from the ducts into 

invasive regions. While my data is consistent with a multiclonal invasion version of direct 

lineage, much is being inferred based on the lack of significant change in most subpopulations. 

Further sampling is needed to completely distinguish between the population bottleneck and 

multiclonal invasion version of direct lineage model. Given the heterogeneity found in cancer, 

the multiclonal model could apply to some patients and the population bottleneck model to 

others. 
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2 Materials and Methods 

This section is based on the research paper "Multiclonal Invasion in Breast Tumors 

Identified by Topographic Single Cell Sequencing" published in the Cell in 2018, by Casasent 

et al1. Figures from this paper have been reused or modified under the journal's academic 

copyright license for student thesis usage. This section is expanded from paper and included 

details and tips about the TSCS protocol.  

In this section I cover the materials and methods required for my project to examine the 

intratumor heterogeneity (ITH) and evolution of subclones in synchronous ductal carcinoma. 

The study was approved by the IRB at the University of Texas MD Anderson Cancer Center.  

2.1 Sample Selection 

We used synchronous breast cancer samples, since they provide several advantages 

over ‘pure DCIS’ and recurrent IDC samples for our purposes. First, synchronous samples are 

from the same time point, while a ‘pure DCIS’ sample with an accompanying recurrent IDC 

sample are collected years apart, often after confounding treatment. 

In addition, the cohort size for a well powered longitudinal (pure or recurrent DCIS) study 

requires a larger number of samples than synchronous DCIS-IDC. Using the estimate of 

likelihood for low grade DCIS to progress to IDC (15% over 10 years)76, 195 and high grade 

(50% over 3 years)76, 195, 196, we estimate that for a low-grade study we would need 103 enrolled 

patients and for high grade 28 enrolled patients to have a 95% confidence of getting at least 10 

samples for the study. At MD Anderson, the recurrence rate of DCIS is reported to be 6%197, in 

this case we would need 260 enrolled patients to have a 95% confidence of getting at least 10 

samples for the study. We calculated these numbers using the negative binomial function in R 

selecting of selecting at least 10 samples within a defined probability (Figure 5 Estimates of 

Number of Samples Needs for Longitudinal Studies). Even with 260 patients enrolled, this 

would require an impractical 100% compliance of these patients over 10 years. 
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In addition to the difficulty of tumor collection, the results from longitudinal studies may be 

confounded by (1) intervening therapies, (2) continued evolution, and (3) changes in sampling 

area. The confounding factors could lead to coincidental mutations improperly associated with 

invasion. The value of using synchronous samples (temporally and spatially matched samples) 

to study invasion in breast cancer have been highlighted in several papers 114, 86, 119, 6.  

Therefore, we used treatment-naïve synchronous (DCIS-IDC) tissue samples to infer 

tumor evolution and progression during invasion.  

2.2 Human Samples Description 

We examined 10 treatment-naïve synchronous (DCIS-IDC) tissue samples with paired 

normal samples from adjacent breast tissue, obtained from the University of Texas MD 

Anderson Cancer Center Tissue Bank. Frozen tissue selection was based on the presence of 

both in situ and invasive regions, validated by a pathologist before processing of samples. We 

also required samples to have paired normal adjacent breast tissue, for normal control in 

exome regional sequencing. 

For all tumors, we scored ER, PR, and HER2 status scored separately for the in situ and 

invasive regions. Only one tumor DC17 had any difference observed in the staining of these 

receptors. Negative ER and PR status of <1% was determined by IHC following the 2010 

American Society of Clinical Oncology/College of American Pathologists Guideline 

Recommendations198. Negative HER2 amplification status was defined through FISH analysis 

using a CEP-17 centromere control probe (ratio of Her2/CEP17 < 2.2). Five of the ten samples 

were classified as TNBC based on negative staining for ER, PR, and HER2. Receptor status 

and clinical parameters such as age, stage, grade, and number of cells collected per region are 

in Table 2 Clinical Information.  

Our patient cohort consisted of 5 TNBC (ER-, PR-, HER2-) and 5 estrogen-receptor 

positive (ER+) breast cancer patients. Most of the patients had high grade tumors, apart from 
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DC12 and DC13, which were grade 1 and 2, respectively. On average, about 129 single cells 

per patient passed our filtration criteria and had genome-wide copy number clonality analyzed.  

In addition to single cell analysis of CNA, we collected laser-capture-microdissected 

clumps of thousands of tumor cells from the in situ and invasive regions. We then isolated DNA 

for exome analysis from the laser captured bulk regions to compare in situ, invasive, and 

matched normal mutations. The bulk region exome DNA was sequenced at high coverage 

depth (mean=162.8X, SEM=18.9) to detect somatic point mutations (SNPs). Matched normal 

tissues were sequenced at a slightly lower coverage (mean=144.1X, SEM=20.3) to identify and 

filter germline variants (Table 3 Exome Coverage). 
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This figure depicts the negative binomial to represent the probability of selecting at least 10 
samples for different expected probabilities of progression needed for a longitudinal study of 
different expected rates of progression. The x-axis represents the number of samples.  
The y-axis shows the cumulative distribution function (cdf) of the negative binomial 
distribution with the parameters specified, with values rescaled by 100 to be interpretable as 
percentages. The horizontal red line represents 95% confidence. The vertical blue line 
shows the selected number of samples closest to the 95% confidence. (A) Low grade 
(15%). (B) High-grade (50%). (C) Reported DCIS progression at University of Texas MD 
Anderson Cancer Center (6%).  

Figure 5 Estimates of Number of Samples Needs for Longitudinal Studies 
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Patient Age TNBC ER PR HER2 grade Stage Cells
DC4 57 Y -/- -/- -/- 3/3 IIB 57
DC6 36 N +/+ +/+ +/+ 3/3 IIB 114

DC12 64 N +/+ +/+ -/- 1/1 IV 102
DC13 66 N +/+ +/+ -/- 2/2 IIIC 104
DC14 47 N +/+ -/- -/- 3/3 IIA 148
DC16 77 Y -/- -/- -/- 3/3 IIA 204
DC17 66 N -/+ -/- -/- 3/3 IIIC 112
DC18 62 Y -/- -/- -/- 3/3 IIA 235
DC19 49 Y -/- -/- -/- 3/3 IIA 96
DC20 48 Y -/- -/- -/- 3/3 IIA 122

Synchronous DCIS-IDC Patient Cohort 

 
 
This table is adapted from Casasent et al. 2018 1 and used by permission.  
 
This table contains clinical information on the 10 patients with synchronous DCIS-IDC 
tumors that were analyzed by single cell and exome sequencing in this Thesis.  
 
Clinical parameters listed include patient age, triple-negative breast cancer status, estrogen, 
progesterone and HER2 receptor status, tumor grade and tumor stage.  
 
The receptor status and grade were scored independently for the DCIS and IDC regions 
and are displayed on the left (DCIS) and right-hand (IDC) side in these columns. The total 
number of single cells analyzed by TSCS is also indicated in the last column. DC17 is the 
only sample with a change in receptor status between in situ and invasive regions. This 
change in the ER receptor status was from less than 1% to close to 10% and, previous to 
2010, both would have been marked as negative. 

Table 2 Clinical Information 
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Sample Number
Depth Breadth Depth Breadth Depth Breadth

DC4 107 0.9599 116 0.9628 58 0.9626
DC6 76 0.9601 142 0.9553 124 0.9536

DC12 100 0.9587 187 0.9665 116 0.9597
DC13 153 0.9543 136 0.9538 140 0.9524
DC14 104 0.9571 46 0.9458 125 0.9526
DC16 87 0.9558 180 0.9607 89 0.9539
DC17 177 0.9552 211 0.9561 136 0.9501
DC18 144 0.9584 315 0.965 105 0.9577
DC19 280 0.9638 335 0.9635 298 0.9621
DC20 213 0.9608 287 0.9628 110 0.9528
Mean 144.1 0.95841 195.5 0.95923 130.1 0.95575

Normal In situ Invasive

Exome Sequencing Metrics 

 
 
This table is adapted from Casasent et al. 2018 1 and used by permission. 
 
This table shows the exome sequencing metrics for the 10 DCIS-IDC patients, in which 
laser-capture-microdissection was used to isolate in situ and invasive regions from frozen 
tissue sections. Matched normal breast tissue was sequenced in parallel.  
 
Coverage depth was calculated for the in situ regions (mean=195.5X, SEM=29.4), invasive 
regions (mean=130.1X, SEM=20.1) and normal tissues (mean=144X, SEM=20.3).  
 
Coverage breadth, or physical coverage, was also calculated from the targeted exon 
regions for each patient and tissue region.  
 
Coverage breadth is defined as the percentage of the targeted capture regions in which at 
least 1X coverage depth was achieved after sequencing. 
 

Table 3 Exome Coverage 
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2.3 Single Cell Copy Number Protocol 

The single cell copy number workflow takes about 5 days to generate data for about 48 

cells. One of the most time-consuming steps is single cell collection which usually takes 4-5 

hours for ~28 cells. A maximum of 48 single cells were collected by LCM in one sitting. When 

increasing the number of cells collected per sitting the percent of cells that passed quality 

control appeared to decrease, while processing 24-32 cells at one time provided consistent 

results. After collection, LCM collected cells were amplified using single cell WGA (6-8 hours). 

After WGA, quality control was used to filter out low quality samples. These steps were 

repeated until we had 48 to 96 cells. Then Illumina NGS libraries were prepared. The purified 

WGA single cell DNA was sonicated (~2.5 minutes per single cell, which is 2.5-3 hours for 48 

cells or 4.5-6 hours for 96 cells) followed by NEB Illumina NGS library preparation protocol, 

which takes about 5 hours. Figure 6 Timeline of TSCS Protocol provides the time line of this 

workflow.  

2.3.1 Single Cell Isolation 

The first step of any single cell protocol is the isolation of single cells. In this case, we 

started with fresh frozen tumor tissue. In this section I will detail the protocols for Slide 

Preparation, Tissue Staining, and Single Cell Isolation with Zeiss PALM Robo System.  

2.3.1.1 Slide Preparation and Staining  

Since we desired single cells with spatial information and morphology, individual vials 

were divided into sectors (<1mm cubes). The tissue sector was mounted on OCT Compound 

(Tissue-Tek, Cat# 25608-930) and allowed to equilibrate to the Thermo Scientific CryoStar 

(NX70) or Leica Cryostat (cm3050S) temperature. To reduce smearing of the fat tissue in 

breast samples, we cut tissue at -23oC to -27oC with blade temperature at least 2oC below the 

ambient temperature. Each sector was then divided into sections (slices of tissue). 



41 
 

 

 
 
This diagram depicts the workflow and time for TSCS for estimated 48 cells or one HiSeq 
2500 flow cell lane. The red asterik mark the areas of most time variation.  
 
 
 

Figure 6 Timeline of TSCS Protocol 
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During the 15 minutes needed for tissue to equilibrate to the cryostat temperature, we 

treated the LCM PEN-membrane slides (Carl Zeiss Microscopy, Cat# 415190-9041-001) for 15 

minutes with ultraviolet light (UV). UV treatment was recommended by the manufacture199, to 

prevent contamination and help tissue adhere to the slide membrane. Slides were cut to 

generate  

(1) a set of 1-2 slides with two or three 6-micron thick sections per slide for H&E visualization 

staining,  

(2) 1-3 LCM slides with 4-6 sections per slide at 12-14 microns thick,  

(3) an additional visualization slide was prepared after every 3 LCM slides or every 16-24 

tissue sections, and at the end of every set of sections we cut another visualization slide. 

Figure 7 3D Slide Stacking demonstrates the cutting order for 2 rounds of LCM slides.  

After cutting sections, slides were air dried at room temperature for about 30 seconds to 

increase adherence to the slide, and then slides were placed in the cryostat to keep 

temperature below -20oC until fixed. All PEN-membrane slides were fixed in 70-75% ethanol, 

instead of the 95% ethanol used on the glass visualization slides. Zeiss PALM DNA Handling 

Protocol 199 suggests using a ~70% ethanol concentration to prevent ethanol from damaging 

the membrane. All slides were stained using Harris’ Alum Hematoxylin (VWR Cat#638A-71) 

and Eosin Y (VWR Cat#588X-75). 

To save glass visualization slides for future use, slides were placed in the -80oC freezer 

in a sealed container prior to fixing. Glass and PEN-slides can be fixed and stored in the -20oC 

freezer until use (usually 1 week). If fixed and stained, slides were placed in the 4oC (PEN-

slides) or maintained at room-temperature (glass slides). 

Note: Do not place the PEN membrane slides into the -80oC freezer, since this causes 

bubbles in the membrane that interfere with LCM. 
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This diagram depicts how the Z-axis was estimated based on serial sectioning.  
 

Figure 7 3D Slide Stacking 
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2.3.1.2 Single Cell Isolation via Laser Capture Microdissection 

Some tips for LCM single cell capture efforts are: 

(1) the LCM system must be in a room with stable temperature and humidity; 

(2) the LCM system must be turned on for at least 1 hour before laser use; 

(3) the LCM system has a minor slant in the robo-mover; therefore, when utilizing the 12x8 cap 

strip collector, only the 1st three cap strips should be used; 

(4) finally, the LCM collector should be centered and the orientation of X, Y, and Z calibrated 

before each use. 

All tissues were scanned at 10X, which was used to identify single cells as in situ or 

invasive and facilitate selection via histology (size, shape, and location to nearest duct). In situ 

regions were marked with a blue flag and invasive regions were marked with a red flag at 10X 

magnification. To examine single cells, we used the 63X setting. For selection as grade 3, all 

tumor cells had to be 2x to 2.5x the size of a normal lymphocytes. Nuclei were selected to be 

oddly shaped, overly large, and least 1 micron (preferably >2 microns) from surrounding nuclei. 

All nuclei of interest were marked and labeled as in situ or invasive and recorded in the 

elements file and a separate Excel spreadsheet. Brightfield images at 63X were collected 

before and after capture of each single cell. 

PALM Robo wizard (Carl Zeiss) was used to optimize the UV cutting parameters. The 

optimal energy for laser-catapulting single cells was set between 20-25 delta to reduce DNA 

fragmentation and increase collection efficiency. Delta settings below 15 resulted in frequent 

cell transfer failures by laser catapulting (Figure 8 UV Cutting Energy).  

Details for each collection were recorded, such as if the lysis buffer was centered or to 

the side of the cap, the number of catapult attempts, the results of a visual inspection of the 

collections, and any other notes. A post collection image was collected to record results of the 

collection (missed or fragmented nucleus) or if other cells were damaged during capture.  
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This figure depicts the size distributions of DNA fragments from changing the UV catapult 
energy. (A) Box plots of the bp pair length as measured by the Bioanalyzer for catapult 
energies of 5, 10, 15, 25, 50 and 100. (B) ethidium bromide 1.5% gel, showing the change 
in fragmentation smears low (15), medium (25) and high (50) energy catapulting.  

Figure 8 UV Cutting Energy 
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After collection, the strip of caps for the 8-well Polymerase Chain Reaction (PCR) tubes 

were sealed and placed on ice with cap side down. If cell collection took longer than 3 hours, 

the first subset of sealed tubes were started on the thermocycler, and collection continued with 

a second subset. When collection was complete and all cells were on the thermocycler, a full 

image section and additional zonal element images were recorded for mapping cell locations.  

The objective was then changed from 63x to 10x and a full image section was taken by 

using the scan feature on the PALM system. Next, the show element option was selected and 

the visual area was moved to contain as many elements (collected cell markers) as possible, to 

make a zonal elemental image. Each of these zonal elemental images must be captured 

manually. The 10x full section scans and zonal element images were used in mapping to the 

image space across tissue sections. In addition, the element files were saved as PALM and 

text format. Scans were saved with standardized file names for record keeping. 

2.3.2 Single Cell Processing 

As described above, single cells were laser-catapulted into 8 well strips of 0.2 ml PCR 

tube caps containing 10μl of lysis solution from Sigma-Aldrich GenomePlex© WGA4 kit (cat# 

WGA4-50RXN) using CapCollector 12x8 attachment (Zeiss Ref# 415101-2000-911) for robotic 

automation with Zeiss PALM Microbeam RoboMover. After capture, the cells and lysis buffer 

were spun down at 12,000 rpm for 30 seconds. Single cell DNA was amplified using 

Degenerative-Oligonucleotide-Primer PCR (DOP-PCR from Sigma-Aldrich GenomePlex© 

WGA4 kit (cat# WGA4-50RXN)). The details of the Single Nucleus Sequencing (SNS) protocol 

were previously described in Nature Methods by Baslan et al7, 4.  
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We made six alterations to the SNS protocol: 

(1) We collected from LCM slides. 

(2) We collected less than 96 cells at any one given time. We usually collected 24-32 cells in 

one sitting. 

(3) We collected into the caps of 8 well strips of 0.2 ml PCR tube, not directly into plates. 

Because we captured into caps, we had to make sure to seal the caps to the tubes before 

spinning the lysis buffer and cells down.  

(4) We eliminated wells considered to have malfunctions during sample collection, either from 

LCM cut or catapulting based on visual examination during the procedure. This visual 

examination worked to minimize incomplete captures and over captures, such as doublets 

or extra-cellular contamination from neighboring cells. In addition, cells that required too 

many catapults or splattered during catapulting were eliminated.  

(5) In step 11-12 of the Nature Methods paper7, we did not mix a master mix for the library 

preparation buffer and enzyme. Instead we add 2uL of the buffer, spin down, flick the strip 

to mix, pulse spin down a second time, add 1uL of enzyme, pulse spin down, flick to mix, 

and pulse spin before placing on the thermocycler. This process tended to produce better 

results than premixing the enzyme but did lead to a little more library enzyme loss. Since 

the library enzyme was not the limiting reagent in the kits, the minor loss was not an issue. 

(6) Since we eliminated wells, did not use a 96 well plate and expected only around 70% of 

captures to succeed, we did not follow the 96 well purification protocol in the Natures 

Methods paper7 (items 19-30). Instead, we began with a quality control step for WGA DNA 

in which size distributions were determined through electrophoresis and only samples with 

fragment sizes >300bp were selected and purified (Genesee Cat # 11-303). Purified WGA 

DNA was measured on a Qubit 2.0 Fluorometer (Fisher Cat#Q32854) and samples 

containing > 200ng of DNA were selected for library construction and next-generation 

sequencing. 
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2.3.3 NGS Library Preparation  

Using the single cell amplified DOP-PCR products that passed quality control in the 

previous step we measured the concentration of the samples and used 200ng-500ng of DNA in 

87uL of water. DNA was sonicated to 250bp using the S220 acoustic sonicator (Covaris). After 

sonication we followed methods like those used by Goa et al 2016200 in which the DNA 

fragments were treated for end repair (New England BioLabs, E6050L). After repair, DNA was 

purified to remove the end-repair enzyme using DNA Clean and Concentrator-5 kit (Genesee, 

11-303 or 11-306). NGS libraries were made using the NEBNext DNA library prep enzymes 

(New England BioLabs), 3’ adenylation (E6053L), ligation (E6056L/M0202L) followed by PCR 

amplification (M0541L). These protocols were based on the manufacturer’s instructions. 

Our three alterations to the protocol from the version published in Gao et al 2016200 

were: 

(1) we increased the ligation time (20oC for 30 minutes) during library preparation, 

(2) we based the PCR amplification cycles on input DNA (8 cycles for 1ug, 9 cycles for 500ng, 

and 10 cycles for 200ng), and 

(3) we used P7 adaptors for each single-cell library used unique 6-bp and a common P5 

adaptor to allow sequencing. 

After ligation and before PCR amplification, size selection was used to remove over-

ligated DNA strands and primer-dimers using AMPure XP beads (Beckman Coulter, A63881), 

0.7X (removes large fragments) and 0.15X (removes small fragments). After PCR amplification, 

DNA was purified using AMPure XP beads (Beckman Coulter, A63881) at 1X. DNA 

concentrations were measure using the Qubit 2.0 fluorometer and concentration was used to 

pool 48 libraries to equimolar amounts. The pooled libraries were measured using KAPA 

Library Quantification kit (KAPA Biosystems, KK4835) and ABI PRISM real-time PCR machine 

(Applied Biosystems 7900HT). 

Multiplexed libraries were sequenced for 76 cycles using single-end or paired-end flow 

cell lanes on the HiSeq2000 or HiSeq4000 systems (Illumina, Inc.).  



49 

2.4 Single Cell Copy Number Data Analysis 

In this section I discuss the data processing steps and analysis performed on single cell 

copy number data. There will be some similarities between this section and that for exome 

sequencing. However, aside from initial data processing steps, the analysis of regional exome 

sequencing is divergent enough to warrant a separate section.  

2.4.1 Single Cell Copy Number Data Processing 

This section covers data processing for single cell copy number data.  

2.4.1.1 Genome Alignment 

Multiplexed single-cell FASTQ files corresponding to the single cell samples were 

deconvoluted using 1 mismatch of the 6pb barcodes. The deconvoluted FASTQ files were 

aligned to hg19 (NCBS build 36) using Bowtie 2 (2.1.0) alignment software201. The aligned 

reads were converted from SAM files to BAM files, then sorted using SAMtools (0.1.16). PCR 

duplicates were marked and removed using SAMtools202. The sequencing data was processed 

following the ‘variable binning’ pipeline 7, 203. After aligning reads, genomic regions were 

separated into ~220kb variable bins and the number of reads per bin was counted. The script 

used for ‘variable binning’ is directly from the Wang et al paper17.  

2.4.1.2 Circular Binary Segmentation (CBS) 

Unique normalized read counts were segmented using the circular binary segmentation 

(CBS) method from R Bioconductor ‘DNAcopy’ package204. The CBS algorithm was developed 

by Olshen et al in 2004205. CBS takes continuous or binary data and recursively splits each 

segment (in our case each chromosome) into either 2 or 3 sub-segments based on the 

maximum t-statistic, and then each sub-segment is compared between a permutated reference 

distribution and the sub-segment’s actual distribution to determine if it should be split. Whether 

or not to eliminate a split is decided by whether the two segment means are distinct enough. An 

alpha(α) of 0.0001 was selected for probability of a Type I Error, which produces very 
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hypersensitive segmentation. We used "undo.prune" of 0.05 to reduce the sensitivity of 

segmentation for splits where the proportion of sum of squares between splits increases by 

less than 0.05. This was followed by use of MergeLevels to join adjacent segments with non-

significant differences in segmented ratios to further reduce over segmentation. Default 

parameters were used for MergeLevels, which also removed erroneous chromosome 

breakpoints. This script was also used in the Gao et al paper16.  

2.4.2 Data Quality and Filtering 

Data was filtered to remove data with more than 100 break points or identified as noise. 

Density-based spatial clustering of applications (DBSCAN) uses the density of the data points 

in a user set space, to group together the most tightly packed points with their nearest 

neighbors. If points are outside of the resulting groups, they are marked as outliers. The R 

package for DBSCAN206-208 used ‘dbscan’ (v1.1-1)209 for the noise portion. We examined the k-

nearest neighbors plots (with k set from 2 to 15) to find the elbow and recorded this value for 

selecting the distance allowed from a point to the edge of the nearest cluster or "eps". Once the 

eps was selected, data was filtered to exclude all "noise points". Using the eps number, dbscan 

determined which single cell copy number segmented samples exhibited too much technical 

noise and filtered approximately 20% of the total datasets for each patient.  

2.4.3 Clustering 

This section covers our clustering performed on single cell copy number data. 

2.4.3.1 Determining K 

K-means clustering requires an optimal k to be set by the user to partition the data. In 

order to find the optimal ‘k’ (number of clusters between 1-15), we used the R-package ‘cluster’ 

and started with the clusGap function in that package (K.max=15, B = 100, d.power = 2, 

FUNcluster = kmeans). We ran the results from clusGap through maxSE 

(method="firstSEmax") to select the best number of clusters for k-means clustering. Our 
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subclones were defined using K-means clustering with multiple start sites with the number of 

clusters (k) selected by the smallest k which the f(k) is no more than 1 standard error away 

from the first local maximum, this forces the k to be lower and prevents over clustering210, 211.  

2.4.3.2 K-means Clustering 

After we determined the optimal number of clusters (k), we calculated K-means with k+1 

using the previously selected k to provide relationships within clusters. K-means clustering was 

done by splitting the data into the given number of clusters (k) with each data point being 

assigned to the nearest cluster using centroid distances. However, the original start sites for 

the clustering will cause the partitioning to be different even for the same dataset. Therefore, 

we calculated a k-means matrix using 500 original start sites for k+1. 

Next, we used ward.D2 clustering to generate the genetic trees based on the k-means 

matrix. The tree was cut into k clusters to define "subclones". The internal Pearson and 

Spearman correlation of the samples within each "subclone" was calculated. Most cells with 

technical noise were removed in the previous filtering steps; however, in a few cases, we 

identified additional cells with an internal correlation of Pearson and Spearman of less than 0.2, 

which were excluded from further analysis as "noisy profiles". There are a few possibilities why 

these profiles could be occurring: (1) technical noise from cutting too close to another nucleus, 

(2) technical noise from UV cutting or catapulting damaging the DNA during transfer, or (3) a 

biological rationale for this noise such as a mutator phenotype or biological dead-ends. 

2.4.4 Subclone Analysis 

A major part of this project was examination of subclones. Major questions concerned 

the differences between subclones genetically and spatially relative to other subclones. 

Subclones were defined using k-means as described above. Before further genetic analysis, 

we determined if we had collected enough single cells per tumor to identify rare clonal types.  
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2.4.4.1 Sample / Power Calculation 

Since the required number of cells depends on how many clones were discovered, we 

first sequenced 30-50 cells per region (DCIS and IDC). We analyzed these results and 

estimated the number of subclones per tumor using the k-means clustering described 

previously. To determine if we sequenced enough cells to discover the "major" subpopulations 

in both in situ and invasive regions, we performed a post hoc saturation analysis as described 

by Gao et al in 201616. 

Based on the results for subclones, we defined the total number of subclones and 

fractions of each region for each patient. We used these values to calculate a cumulative 

multinomial distribution (an expansion of the generalization of a binomial distribution from 2 

variables to many) probability of observing at least 2 tumor cells in each subpopulation, given 

the numbers of cells sequenced in our experiments. Note that if this is increased to a higher 

number, 3 cells for example, more cells would be required. 

The multinomial distribution method requires at least 2 subclones or subpopulations. 

Even in our "monoclonal" samples, we usually collected a few normal cells which were usable 

in this calculation as a second subclone. However, in one case, DC17, only tumor cells were 

collected, so DC17 was excluded from this analysis. To provide the best estimate of the 

number of tumor cells required, we calculated the cumulative distribution for both the in situ and 

invasive regions, and then also pooled the regions with a weighted average to obtain a total 

number of cells needed per patient with our current number of subclones. Dr. Ruli Gao 

provided significant assistance with this portion of the analysis.  

Figures providing summaries of the ad hoc saturation analysis for all tumor samples 

used in this project are provided in the individual tumor sections, except for the excluded DC17. 
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2.4.4.2 Calculating Diversity 

Within each tumor, the amount of subclonal diversity was defined to represent ITH, the 

number of subclones with the normal subclone cluster removed. The normal subclone cluster 

was defined by having a high internal Pearson correlation, but low Spearman correlation. 

These normal profiles were removed from subclone analysis, while the remaining k or k-1 

clones were considered tumor subclones.  

Then, we calculated the subclonal diversity index for each tumor by first determining the 

proportion (p) of cells that belong to each distinct subclone within a given tumor. We used the 

Shannon Index191, 192 (Dc = -∑i(pi×lnpi) ) to calculate diversity within the tumor. The Shannon 

diversity index uses larger values to signal higher subclonal diversity. The Shannon diversity 

index represents both numbers of clones and equality of clones191, 192. Therefore, the highest 

diversity measurements would be tumors that have both more clones and most equal 

proportions of each clone.  

2.4.4.3 Cancer Genes  

Cancer genes were annotated using the 413 genes compiled from multiple databases 

including the Cancer Gene Census 212, The Cancer Gene Atlas Project (TCGA), and the NCI 

cancer gene index (Sophic Systems Alliance Inc., Biomax Informatics A.G) used in previous 

publications16, 17. 

2.4.5 Topographical Analysis 

We collected topographical data during the collection of single cells. The spatial XY 

coordinates of each cell were defined by a projection of the stacked tissue section layers to 

project the XY coordinates into the same space. We mapped zonal elemental images to the 

10x section scans images for each respective section. When multiple tissue sections were 

used for collection, we projected X and Y coordinates to the same space. Projection was 

accomplished by mapping the tissue section scans onto an H&E tissue scan facsimile.  
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The H&E facsimile was selected from the section scans either (1) from LCM H&E tissue 

sections from which cells were collected, or (2) from the H&E visualization slide which was 

used to verify regional pathology. The H&E facsimile was the section with the largest tissue 

area to make sure all cells were mappable to the scan. The Z-axes was estimated based on 

the number of sequential sections cut. The Z-axes can also be estimated based on changes in 

known ducts between the H&E facsimile and the LCM section from where the cells were 

collected. In cases where tissue sections had different orientations (because the sections are 

often slightly rotated between each cut), we rotated the spatial coordinates and transposed the 

coordinate values to project them into the correct space. We call these projections "Image 

Maps".  

2.4.5.1 Image Maps 

Image Maps are the projection of the XY coordinates of cells based on subclones for all 

stacked tissue section from a tissue sector onto the H&E section facsimile. The appropriate XY 

coordinates were color coded according to clonal genotypes using the H&E section facsimile as 

the coordinate space. We facilitated tracking of the three-dimensional duct network by 

enumerating the duct and using false-color outlines. Image map figures are provided within 

each tumor section below. 

2.4.5.2 Tanglegrams 

Tanglegrams provide another method to visualize the relationship between location and 

genetic information. Tanglegrams were designed to visualize co-evolution between samples213. 

We used tanglegrams to compare the spatial coordinates to the subclones. We created spatial 

trees using Euclidean distance between cell coordinates and clustered with the R hclust 

function using "ward.D2" linkage. We occasionally had multiple vials for the same tumor. Cells 

of the same tumor from different sample vials were given an artificial distance to buffer samples 

in which the distance between the regions of the tissue sectors was unknown. The second tree 
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we created was the subclone tree, based on k-means clustering of copy number profiles with 

500 different start sites.  

Finally, the spatial and subclone trees were compared to examine the relationship 

between subclones and location using Tanglegram version 1.5.2 from the dendextend package 

in R213. Untangling the tanglegrams makes the relationship between space and subclone more 

discrete. We performed untangling by flipping nodes to minimize branch crossing. The 

minimization method first tried 100 random shuffles, selecting the one with the lowest 

crossings. From the initial shuffle, a local stepwise method was used to reduce crosses at each 

node. Aislyn Schalck contributed significantly to this analysis. Tanglegrams are provided within 

each tumor section below. 

2.4.5.3 Morphological Analysis Options 

As described earlier, in addition to capturing 10x tissue section scans, we also collected 

brightfield images at 63X magnification before and after laser-catapulting. The brightfield 

images assisted in confirming collection of single cells were complete and without adjacent 

material from neighboring cells. Additionally, we used these images to validate collection 

location from in situ, invasive, or stroma regions.  

2.5  Regional Exome Protocol  

The current Topographical Single Cell Sequencing (TSCS) method does not examine 

single cell mutations (single nucleotide variants (SNV) or Indels). Therefore, we used a more 

standard microdissection method to compare regional in situ, invasive, and normal DNA for 

exome mutations.  
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2.5.1 Exome Laser Capture Microdissection 

Regional exome capture was done on fixed H&E stained slides after single cell 

collection was completed. Using the same slides ensures the exome samples are as close to 

matched as possible with the single cell sample from these same regions. 

Before LCM, all tissue slides were scanned, with each region of interest marked as in 

situ, invasive, or stroma. Each region was selected using the UV cutting laser and captured 

using the UV catapult components of the PALM System (Carl Zeiss). Validation of collection 

from proper regions was done via review of the 6μm visualization H&E slide with a pathologist 

(Dr. Mary Edgerton). validating the in situ and invasive regions prior to LCM regional collection. 

Thousands of cells from both in situ and invasive regions were catapulted into 2 mL adhesive 

PCR tube caps (Item #: Zeiss 415190-9181-000 Wor 415190-9191-000).  

Since relatively large sections were being collected, the catapult energy could be higher 

and the focus spread across the collection region. We used 50-100 delta instead of the lower 

15-25 delta energy used for single cells. In addition, we increased the UV laser cut energy and 

spread to 72-81.  

2.5.2 Exome DNA Isolation 

Selected regions were captured into PCR caps and the DNA was isolated. We used 

QIAamp DNA Micro Kit (QIAGEN Cat# 56304). DNA was incubated overnight at 56oC to 

increase DNA yield.  

Since all the LCM collected tissue was from in situ or invasive regions, additional tissue 

was needed as a matched normal. A small 0.25mm3 to 0.5mm3 of fresh frozen adjacent normal 

tissue was macerated in preparation for DNA isolation. DNA was isolated using the DNeasy 

Blood & Tissue Kit (QIAGEN Cat# 69506).  

DNA concentrations were quantified by Qubit 2.0, while normal DNA was isolated using 

the QIAGEN DNeasy protocol (Cat # 69506).  
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2.5.3 Exome Capture  

Exome libraries were constructed for the in situ, invasive, and normal DNA. The DNA 

was sonicated into 200 bp fragments using the Covaris Sonicator. We manufactured Next-

Generation Sequencing (NGS) libraries from this sonicated DNA. The sonicated DNA was 

treated with NEBNext end repair (NEB, E6050L), which was removed using Zymo DNA Clean 

& Concentrator Column Kit (Genesee Cat # 11-303). Libraries were constructed by adding dA-

tailing module (NEB, E6053L) and quick ligation module (NEB, E6056L) with barcodes to 

multiplex libraries. Barcoded next-generation sequencing library amplification was via NEBNext 

HiFi 2x PCRmix (NEB, M0541L). Libraries were measured using Qubit 2.0 Fluorometer and 

measured by quantitative PCR using the KAPA Library Quantification Kit (KAPA Biosystems, 

KK4835) before pooling. The 3-8 barcoded samples were pooled in equimolar concentrations 

for exome capture. 

Exome capture was via Nimblegen’s SeqCap EZ Exome V2 kit (Roche, 05860482001), 

which according the company website was designed using GRCh37 (hg19) to capture more 

than 20K genes. The total capture covers about 44.1 Megabases.  

The Exome Captured pooled samples were measured by quantitative PCR using the 

KAPA Library Quantification Kit (KAPA Biosystems, KK4835) and diluted to 10nM before 

processing by the University of Texas MD Anderson Cancer Center Sequencing Core. Sample 

sequencing was performed on a 100 paired-end flowcell on the Illumina HiSeq4000 system. 

2.6 Exome Regional Data Analysis 

The regional exome data was provided to us as sequence reads in FASTQ files from 

the University of Texas MD Anderson Cancer Center Sequencing Core. Below are the details 

of the processing of the regional exome data from FASTQ files to adjusted variant calls.  

2.6.1 Exome Data Processing  

The FASTQ files for in situ, invasive, and normal samples were then aligned to the hg19 

using the Bowtie 2 alignment software201. To increase processing speed, we converted the 
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aligned data using Samtools (0.1.16)202 from SAM files to compressed BAM files. BAM files 

were sorted by coordinate from the hg19 alignment. This conversion allowed duplicates to be 

marked and removed by Picard214. 

2.6.2 Exome Regional Data Quality and Filtering 

One of the major issues for bioinformatics analysis is determination of sample or read 

quality. We required each sample to have 20 reads per SNV with at least 5 reads for a variant, 

which is fairly strict and intended to prevent false positives. We also filtered germline SNPs 

identified in the matched normal tissue samples and the tumor samples. Reads were detected 

using GATK. GATK was run with default parameters for depth (maximum read coverage = 

250x). We generated a multi-sample VCF file. Next, the variant quality score recalibration was 

performed using training sets for SNVs or indels. The output from GATK improves variant 

quality scores. 

2.6.3 Exome Regional Mutation Calls  

Resulting mutation calls required 5 variant reads present, with at least 20 read depth at 

each site of interest in all regions. The mutation calls were annotated using ANNOVAR 215. All 

mutations of interest were examined visually in IGV to check for mapping errors in the mutation 

sites.  

2.6.4 Exome Regional Amplicon Validation  

After defining the variants, we used targeted deep-amplicon sequencing to validate the 

regional specific mutations. We focused mostly on the invasive specific mutations, because 

invasion specific mutations might provide information on why a clone or clones could escape 

and survive in outside the ducts.  

2.6.4.1 Exome Regional Design Primers 

Primer design used Primer 3216, with five base pairs upstream and downstream from the 

SNP location used as a target. The amplicon size range was limited to 125-250bp. 
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2.6.4.2 Exome Regional Testing Primers  

Primers pair testing for the best primer set used four combinations of primers (F1+R1, 

F1+R2, F2+R1, F2+R2), the best temperature for the different pairs (a gradient from 62C to 72C), 

and the best yield with the start DNA of 1ug and a DNA smear within the 150-300bps. We 

confirmed the minimum start DNA (a dilution series 0.25ug-10ug of DNA) with the best primer 

set. For all tests, the DNA amplification used the different primer pairs with TaqMan for 35 

cycles. The products were run out on a gel and clearest band of around 200bps was chosen.  

2.6.4.3 Exome Regional Amplicon NSG Prep 

The amplicons from different regions (in situ and invasive) were pooled in equimolar 

amounts and sequencing libraries were constructed using NEBNext® DNA library Prep 

enzymes (NEB, #E6050L, E6053L, E6056L/M0202L, and M0541 for end-repair, 3' adenylation, 

ligation and PCR amplification). Following ligation, DNA underwent a negative and positive 

selection with Ampure XP beads (Beckman Coulter, #A63881), 0.7× and 0.15× respectively, 

prior to PCR amplification. Final library concentrations were measured using the Qubit 2.0 

Fluorometer. Samples were diluted to 10nM and sequenced on the MiSeq system (Illumina, 

150 paired-end) to obtain a target coverage depth of >100,000X. 

2.6.4.4 Exome Regional Deep SNV 

Statistical significance of observed variants was calculated using deepSNV version 

1.16.0, which detects variants assuming a beta-binomial model217. To estimate the over 

dispersion parameter of the model, data from the targeted sites plus flanking regions of 20bp 

on either side were used. DeepSNV was used to calculate p-values for the null hypothesis (that 

the targeted variant was equally frequent in primary tumor and paired normal) using separate 

one-tailed likelihood ratio tests for each strand orientation, and combining the p-values using 

Fisher’s method, comparing the variant read against the background caused by amplification 

errors and other technical noise and then against the reference variant.  
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3 Studying Synchronous DCIS using TSCS  

This section is based on the research paper "Multiclonal Invasion in Breast Tumors 

Identified by Topographic Single Cell Sequencing" published in the Cell in 2018, by Casasent 

et al1. Figures from this paper have been reused or modified under the journal's academic 

copyright license for student thesis usage. This section is expanded from the paper to go into 

more details about each tumor samples and presents much of the data which was only covered 

in the supplements of the paper.  

3.1 Introduction 

The genomic and evolutionary basis of invasion and progression from DCIS to IDC 

remains uncertain. Several technical challenges caused by using bulk tissue have made 

reconstructing genomic tumor progression difficult, including the extensive intratumor 

heterogeneity (ITH), the limited number of tumor cells in early cancers, and the large number of 

stromal cells.  

Two major evolutionary hypotheses have been proposed for cancer progression: the 

independent lineage hypothesis and the direct lineage hypothesis. The independent lineage 

model postulated that different initiating cells give rise to the in situ and invasive subpopulations 

separately. The direct lineage model postulates a single cell in situ gives rise to a cell or cells 

that invade the surrounding tissue. The classic direct lineage hypothesis of invasion suggests 

that an evolutionary bottleneck gives rise to the invasive tumor180. The evolutionary bottleneck 

model states that an in situ cell or a select few in situ cells, invade into the adjacent tissues.  

While single-cell DNA sequencing methods have emerged as powerful tools for 

resolving ITH 4, 135, 136, delineating stromal cell types218, 219, and detecting rare subpopulations220, 

221, these methods are limited by single-cell isolation methods which require cell suspensions10. 

These procedures inherently lose all spatial information, which is critical for studies of early 

stage cancers. To address this limitation, we developed Topographical Single Cell Sequencing 

(TSCS)1 an approach that combines laser catapulting222 and single-cell DNA sequencing to 
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measure genomic copy number profiles of single tumor cells while preserving their spatial 

information in tissue sections, as illustrated in Figure 9 TSCS Protocol.  

We hypothesized that invasive cells share a direct genomic lineage with one (or more) 

single cells in the ducts. To investigate this question, we applied TSCS, along with deep-exome 

sequencing, to trace clonal evolution during invasion in 10 high-grade frozen tumor samples 

from synchronous DCIS-IDC patients. Our results support a direct genomic lineage between 

the in situ and invasive tumor cell subpopulations and further show that most mutations and 

CNAs evolved within the ducts prior to invasion. These data suggest that multiple clones 

escaped from the ducts and migrated into the adjacent tissues to establish invasive 

carcinomas, leading us to postulate the multiclonal model of invasion. The model of multiclonal 

invasion, postulates that all clones invade the surrounding tissue to form the tumor mass. 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Topographic Single Cell Sequencing of DCIS Tissues  
 
(A) Whole-tissue scanning is performed on H&E stained synchronous DCIS tissues at low 
10× magnification.  
 
(B) UV laser microdissection of a single cell at 63× magnification before and after laser 
catapulting.  
 
(C) Laser-catapulting transfer of a single cell into a collection tube.  
 
(D) Automated robotic depositing of single cells into 8-well strip tubes with lysis buffer into a 
96-well manifold, followed by WGA using DOP-PCR.  
 
(E) Construction of barcoded single-cell libraries for multiplexed pooling and sparse whole-
genome sequencing on the Illumina platform.  
 
(F) Processing of bright-field images of single cells and spatial x and y coordinates.  
 
(G) Mapping of spatial coordinates and genomic data in tissue sections, showing examples 
of genomic copy number profiles from a normal cell, an in situ tumor cell, and an invasive 
tumor cell. 

Figure 9 TSCS Protocol 
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3.1.1 Rationale of Synchronous DCIS-IDC  

Patient samples with synchronous DCIS-IDC provide a golden opportunity to study the 

genomic and molecular basis of invasion without confounding effects of inter-patient 

heterogeneity. Synchronous DCIS-IDC samples are, by definition, breast cancer samples with 

both in situ and invasive regions. While using longitudinal pure DCIS samples that later 

progress to IDC might appear to have advantages over synchronous DCIS-IDC samples for 

studying clonal evolution during invasion, there are too many issues with confounding effects 

which would prevent clean analysis of genomic evolution during invasion to make longitudinal 

recurrent breast cancer samples practical. Longitudinal samples undergo selection from the 

following confounding effects (1) time, (2) space, and (3) therapy. Additionally, longitudinal 

samples are (4) less practical to collect.  

The first and most fundamental of these advantages is that synchronous DCIS-IDC 

samples are matched in time, while longitudinal recurrent breast cancer (DCIS to IDC) samples 

can be separated by a decade or even more, during which many random or passenger 

mutations may have accumulated. 

Second, longitudinal recurrent breast cancer samples are not collected from the same 

geographical regions. While they might be from the same breast, the distance from the original 

DCIS and the recurrent IDC tumor can only be measured in large approximations. This spatial 

distance could result in increased mutations simply because of geographical separation of 

clones rather than invasion. In synchronous DCIS-IDC, the tumor cells are directly adjacent in 

geographical space, which minimizes spatial effects.  

Third, synchronous DCIS-IDC samples will not be affected by the confounding effects of 

intervening therapy which can cause selection and result in therapy selection or resistance 

being confused with invasion. Cancer therapy including radiation, hormonal or chemotherapy, 

have been noted to cause mutations or selection in tumors. 

Fourth, longitudinal recurrent breast cancer samples are logistically very difficult to 

collect. At the University of Texas MD Anderson Cancer Center the recurrence rate of DCIS 
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cancer is only 6% and most patients are seen at different hospitals when they have recurrent 

disease. In addition, most of the pure DCIS is usually used by pathology, and the samples are 

usually fixed and not collected as fresh-frozen material, which is necessary for SCS studies. 

Since patient treatment is the first and most important concern with samples, pathologists at 

the University of Texas MD Anderson Cancer Center tend to section through the entirety of a 

sample considered DCIS-only to make sure that the tumor samples have no invasive regions 

present. This leaves no residual samples for research purposes197. 

Lastly, many previous studies have used synchronous IDC-DCIS to study invasion, and 

this has been widely accepted in the field to study invasion and overcome limitations 

associated with the analysis of longitudinal samples223, 139, 114, 86, 119, 6, 224. These justifications 

provide strong rationale for the biological and technical advantages of using synchronous 

DCIS-IDC samples over longitudinal samples to study clonal evolution during invasion.  

3.1.2 Rationale of need for TSCS  

Even in the first single cell studies regional ITH was observed on a macrolevel (1mm 

cube sectors). Current single-cell DNA sequencing methods require cell suspensions making 

microlevel investigation impossible because the inherent loss of microlevel spatial information. 

However, by pairing SCS with LCM and laser catapulting, single cells can be isolated passed 

on morphology and location. Topographical Single Cell Sequencing (TSCS) was developed to 

preserve location while measuring genomic copy number profiles of single tumor cells allows 

us to examine the genomes of in situ and invasive tumor cells.  
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3.2 Results  

In this section I will discuss the single cell copy number results for each tumor and the 

regional exome results. We examined synchronous DCIS-IDC samples, the receptor status and 

other clinical information was presented earlier in Table 2 Clinical Information. Here, we split 

the data into two groups, polyclonal tumors and monoclonal tumors, before examining these 

results in more detail. The number of clones in each sample was determined earlier using k-

means clustering, with the k being selected by the first standard error max as describe in the 

methods. Next, we will show the results for the regional exome data.  

This data was generated by TSCS. On all these data we provided the following: single 

cell heatmap with the subclones and regions marked, followed by the consensus heatmap and 

line plots, the saturation curve for the number of single cells per region, 2-dimensional cluster 

of the data using multidimensional scaling (MDS) and Image Maps to show the histology ducts 

and locations of each clones. For polyclonal tumors I show two extra plots, the change a 

frequency plots by TimeScape, and the spatial and clonal relationships by tanglegram. 

3.2.1 Copy Number Evolution During Invasion Polyclonal Tumors 

In this section I discuss each polyclonal tumor in detail. 

3.2.1.1 DC4 

We investigated copy number evolution during invasion in patient DC4, a TNBC grade 3 

sample. We collected the fewest number of cells from this tumor, because of lack of tumor 

tissue. This was also the first tumor we examined using TSCS. After filtering and analysis, we 

examined 57 total cells, 19 from in situ and 38 invasive from 2 tumor sectors (R1, R2). While 

this number appears very small, the saturation analysis showed only 50 cells were sufficient to 

detect all the subclones (see Figure 11 DC4 Saturation Curve). In DC4, we did observe some 

regional effects, since DC4 had only 3 aneuploid cells, all of which were clone B, while the 

other sector R2 had clones from both A, B, and normal cells (see Figure 14 DC4 Image Maps 

and Figure 15 DC4 Tanglegram).  
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Consensus copy number profiles (Figure 10 DC4 Copy Number Alteration Heatmap) 

showed that both clones shared a common amplification of chromosome 1q and 5p, as well as 

common deletions of 13 and 18q, suggesting a common ancestor between clones A and B. In 

clone A, we identified many unique focal amplifications in chromosome 8 (MTDH, MYC, and 

PTPRD) and 17p (ERBB2 or HER2) and larger deletions of 3p, 6q, 8p, and 17. However, clone 

A does have some variations. Within the clones there are changes in the focal deletion on 

chromosome 4 and 6q, and focal amplifications of 11q and 12q. 

Also, while amplification of 5p was a common alteration between clones A and B, it was 

not observed in all cells in clone A. In clone B, we identified many unique focal amplifications, 

such as chromosome 1 near the centromere (MCL1, SHC1), 8q, 9p, and 18p, as well as larger 

amplifications of 10p (GATA3), 12p (CDKN1B, KRAS), and 19q, in addition to the many 

deletions of chromosome 4, 5q, and 20. However clone B also had some variations, suggesting 

that we might be under clustering or under sampling. The variations in clone B were the 

deletions of chromosome 4 and 6q, and focal deletion 3q, and focal amplification on 12q.  

Based on our current clustering, this data showed that genomic copy number evolution 

occurred within the ducts and gave rise to 2 major tumor subpopulations. During invasion, the 

frequency of clone A increased from 40% to 55%, while the frequency of clone B decreased 

from 60% to 45% in the invasive tissues (See Figure 13 DC4 TimeScape).  

MDS (Figure 12 DC4 MDS) identified 3 distinct clusters that corresponded to the normal 

cells (N) and the 2 tumor clones (A, B). The MDS plot showed that each clonal genotype was 

composed of both in situ and invasive tumor cells, with no specific genotype associated with 

either region. Two or three of the B clones were closer to the normal population, suggesting a 

potential misclassification. Next, we mapped the clonal genotypes to their spatial coordinates 

on an image map for DC4 sectors (R1, R2), which showed that both clones were located within 

the ductal and invasive regions in R2. If we focus on sector R2, we can see that within the 

ducts clones A and B are very close together and even intermixed. While we see some 
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intermixture between clones A and B in the invasive regions, clone B is found further away from 

ducts (see Figure 14 DC4 Image Maps and Figure 15 DC4 Tanglegram). 

One point of interest about DC4 is that the sample is marked as TNBC. However, clone 

A has ERRB2 or HER2 amplification, which is not present in clone B, demonstrating 

heterogeneity in receptor status (Table 2 Clinical Information). 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ (blue) or invasive (red)) from which the cells were 
isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
 

Figure 10 DC4 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data. Expected number of cells, indicates the number of cells required to detect at 
least 3 cells with 0.95 probability from each subpopulation shown with red lines. Actual size 
refers to the number of cells that were sequenced from each patient.  
 

Figure 11 DC4 Saturation Curve 



70 
 

 
 
This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated, with 
clones indicated in different colors. Clone A (black), Clone B (sky-blue) and normal (green). 

Figure 12 DC4 MDS 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Clonal lineages of the major tumor subpopulations plotted with TimeScape with inferred 
common ancestors indicated in gray and clonal frequencies labeled.  

Figure 13 DC4 TimeScape 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Spatial image maps of tissue sections from two different tumor vials, with single cells 
marked as in situ or invasive. Tumor cells are color coded by their clonal genotypes or by 
diploid genomes, and ducts are annotated with different colors. 

Figure 14 DC4 Image Maps 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Genotype trees are located on the left side for each patient, with clonal subpopulations 
indicated by color. Spatial trees are located on the right side with different ducts indicated by 
colors and the invasive regions colored in gray. Mapping of cells coordinates and genotypes 
were performed by minimizing overlapping connections. 

Figure 15 DC4 Tanglegram 
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3.2.1.2 DC13 

We investigated copy number evolution during invasion in patient DC13, a grade 2 

ER/PR positive, HER2 negative sample, using TSCS to sequence 46 in situ cells and 58 

invasive cells from two tumor regions (R1 and R2) (See Figure 17 DC13 Saturation Curve). 

Hierarchical clustering of single cell copy number profiles identified one subpopulation of diploid 

cells (N) and two aneuploid tumor subpopulations (A, B) (Figure 16 DC13 Copy Number 

Alteration Heatmap). Within each subpopulation, the single cell copy number profiles showed 

high correlations (A= 0.89, B=0.60, Pearson correlations) representing stable clonal 

expansions. Consensus copy number profiles showed that both clones shared a common 

amplification of chromosome 1p (MDM4, ABL2), in addition to many subpopulation-specific 

CNAs. In clone A we identified many focal amplifications, including chromosome 3q (EVI1), 4p 

(CPEB2), 11q (CASP12), and 13q (PCDH17), as well as an amplification of chromosome 12q 

(CDK2, MDM2). In contrast, clone B harbored many large hemizygous chromosomal deletions 

including 3p (SETD2, FHIT), 4 (FGFR3, NEK1), 5q (PIK3R1, APC), 14q (AKT1), 15q (NTRK3), 

16q (CDH1), 17p (TP53, MAP2K4), 18 (SMAD4), and 22 (NF2).  

Clonal lineages, inferred from the major subpopulations, identified a common ancestor 

with an amplification of chromosome 1q that gave rise to the two tumor subpopulations in the 

ducts: one that had many focal amplifications of cancer genes including MDM2 and CDK2 

(clone A), and another that had many large hemizygous deletions, including CDH1, TP53, 

FHIT, and SMAD4 (clone B). This showed that genomic copy number evolution occurred within 

the ducts and gave rise to two major tumor subpopulations. During invasion, the frequency of 

clone B increased from 16% to 67%, while the frequency of clone A decreased from 84% to 

33% in the invasive tissues (Figure 19 DC13 TimeScape).  

MDS identified three distinct clusters that corresponded to the normal cells (N) and the 

two tumor clones (A, B). The MDS plot (Figure 18 DC13 MDS) showed that each clonal 

genotype was composed of both in situ and invasive tumor cells, with no specific genotype 

associated with either region. Next, we mapped the clonal genotypes to their spatial 
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coordinates in the two tissue sections (R1, R2), which showed that both clones were located in 

the ductal and invasive regions. This map also showed that in region 1 most of the normal 

diploid cells were localized to the invasive regions, which may reflect the difficulty in 

distinguishing stromal from tumor cells in these regions by histopathology (Figure 20 DC13 

Image Maps). Furthermore, these data showed that clone A was highly localized to the four 

ducts (d1 – d4) in region 2, while clone B was more prevalent in the invasive regions (Figure 21 

DC13 Tanglegram). Consistent with the invasive spatial localization, we found that clone B had 

deletions in several cancer genes involved in cell migration, including AKT1, APC, FGFR3, 

CDH1, and SMAD4. 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 

Figure 16 DC13 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 17 DC13 Saturation Curve 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated.  
Clone A (black), Clone B (sky-blue) and normal (green). 
 

Figure 18 DC13 MDS 
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This figure was adapted from Topographical Single Cell Sequencing 1 and used by 
permission. 
 
Clonal lineages of the major tumor subpopulations plotted with TimeScape with inferred 
common ancestors indicated in gray and clonal frequencies labeled. 
 

Figure 19 DC13 TimeScape 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Spatial maps of tissue sections from two different tumor vials, with single cells marked as in 
situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 

Figure 20 DC13 Image Maps 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Genotype trees are located on the left side for each patient, with clonal subpopulations 
indicated by color. Spatial trees are located on the right side with different ducts indicated 
by colors and the invasive regions colored in gray. Mapping of cells coordinates and 
genotypes were performed by minimizing overlapping connections. 

Figure 21 DC13 Tanglegram 
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3.2.1.3 DC14 

While DC14, grade 3 with ER positive, and PR and HER2 negative, was found to be a 

polyclonal tumor, the two clonal populations found (A, B) were highly correlated, suggesting 

they were from the same single clone of origin. In patient DC14, we examined, after filtering, 

148 total cells, 70 from in situ and 78 invasive from 3 tumor sectors (R1, R2, R3) (See Figure 

23 DC14 Saturation Curve). In clone A we identified a few unique amplifications or deletions. 

Clone A was very stable and suggested a very strong clonal expansion. Clone B while highly 

related to clone A, but had more variations within the single cell profiles. Specifically, in clone B 

we identified only identified two alterations that distinguished it from clone A: (1) less complete 

deletion of chromes 21 and a stronger deletion of chromosome 13 (Figure 22 DC14 Copy 

Number Alteration Heatmap). 

Our clustering showed that genomic copy number evolution occurred within the ducts 

and gave rise to 2 major tumor subpopulations. During invasion, the frequency of clone A and 

B stayed very stable, with clone A increasing slightly from 76% to 80%, and clone B decreasing 

slightly from 24% to 20% in the invasive tissues. These changes are very small, suggesting 

both clones can survive in in situ and invasive regions equally (Figure 25 DC14 TimeScape).  

MDS (Figure 24 DC14 MDS) identified 3 distinct clusters that corresponded to the 

normal cells (N) and the 2 tumor clones (A, B). The MDS plot showed that each clonal 

genotype was composed of both in situ and invasive tumor cells, with no specific genotype 

associated with either region. However, clone A closely localized in the MDS plot, suggesting 

high clonality, while the normal and clone B cells had more spread, suggesting more diversity 

or noise within these profiles.  

Next, we mapped the clonal genotypes to their spatial coordinates on an image map 

(Figure 26 DC14 Image Maps) for DC14 sectors (R1, R2, R3), with R1 and R2 showing in situ 

populations and R3 showing invasive populations. We see some intermixture of clones A and B 

in R2. However, R1 and R3 appear to be mostly made up of clone A (Figure 27 DC14 

Tanglegram).  



83 
 

 
 
This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
 

Figure 22 DC14 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 23 DC14 Saturation Curve 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated. 
Clone A (black), Clone B (sky-blue) and normal (green). 

Figure 24 DC14 MDS 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Clonal lineages of the major tumor subpopulations plotted with TimeScape with inferred 
common ancestors indicated in gray and clonal frequencies labeled. 
 

Figure 25 DC14 TimeScape 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Spatial maps of tissue sections from three different tumor vials, with single cells marked as 
in situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 

Figure 26 DC14 Image Maps 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Genotype trees are located on the left side for each patient, with clonal subpopulations 
indicated by color. Spatial trees are located on the right side with different ducts indicated 
by colors and the invasive regions colored in gray. Mapping of cells coordinates and 
genotypes were performed by minimizing overlapping connections. 

Figure 27 DC14 Tanglegram 
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3.2.1.4 DC16 

We see some pseudo-diploid cells in DC16, something that was also observed by Goa 

et al200. DC16 is a grade 3 TNBC tumor and had the high number of clones observed. While the 

clones shared many similar events, these events further shared the common zig-zag 

chromosome amplification/deletion often found in TNBC samples (Figure 28 DC16 Copy 

Number Alteration Heatmap). Due to the high number of copy number clones observed, when 

we first calculated our saturation indices, we had too few cells and collect about 100 more cells 

with about another 50 per region to prevent under-sampling. With the new cells and k-means 

re-clustered, we found 5 tumor populations and once again a suggestion for 280 more cells 

(Figure 29 DC16 Saturation Curve). However, we stopped collection of this tumor at 204 cells 

total, which was enough if we only require 2 cells for each subclone instead of 3. While this is 

less than ideal, the number of cells needed for this tumor was much higher than other tumors, 

suggesting much higher diversity. Therefore, all frequency changes within this tumor are very 

general, despite the large number of cells collected per region. As stated before, in tumor 204 

cells passed filtering, with 82 in situ cells and 122 invasive cells from 3 tumor sectors (R1, R2, 

R3).  

All 5 subclones (A, B, C, D, E) in D16 are highly related and shared several similar copy 

number events (Figure 28 DC16 Copy Number Alteration Heatmap). In addition, because of the 

number of populations that were observed, we were able to observe more of a branching 

structure in DC16. Clone B in DC16 had fewer strong events for the first common ancestor, 

with the clonal events of loss of chromosome 4, amplification of 6p and 13, several focal 

deletions on 15, deletion of 18q, amplification of 19, 21, and 22, and a deletion of the X 

Chromosome. Only deletion of 18q was shared by all subpopulations. This marked sequential 

changes in the cells suggested this tumor went through several clonal branching. The next 

major population was clone C, which appears to have had several branching off points into 

clones A, D, and E. 
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Within the normal population, we would like to suggest that there was an addition clonal 

structure, specifically the pseudo-diploid population marked by the loss of chromosome X, a 

loss that is stronger in this population. Loss of chromosome X was also found in the tumor 

subclones, suggesting that it might be an initiating step of CIN in this tumor. In the MDS plots, 

we saw two normal clones separated from the group of tumor cells, which strongly supported 

our suggestion of separating the normal clones into normal and pseudo-normal (Chromosome 

X loss). The tumor cells were not as easily separated in the MDS plots, suggesting either that 

we are seeing sequential accumulations of alterations or intermediates, or noise which is 

causing the number of clusters. MDS identified 3 distinct clusters that corresponded to the 

normal cells (2 normals NN and Np) and one cluster for the tumor clones (A, B, C, D, and E). 

While this lack of separation of the clonal population was marked, it suggests that these 

subclones are highly related, which is further supported by the correlation across subclones.  

However, the MDS plot (Figure 30 DC16 MDS) did show that each clonal genotype was 

composed of both in situ and invasive tumor cells and that these were intermixed suggesting in 

situ and invasive cells arose from the same cell and were all able to escape into the 

surrounding tissue. While most clones stayed relatively stable, we observed a strong change in 

subclone E frequency which was high in in situ and very low in invasive regions changing from 

37% to 3% (Figure 31 DC16 TimeScape). This dichotomy suggested that perhaps this clone 

either (1) arose after most other clones escaped or (2) was not able to escape or survive 

outside of the ducts. When we mapped the clones to the different sectors (R1, R2, R3), we 

observed that some of the sectors had more of one clone, suggesting regional effects. R2 was 

predominantly clone D. While we do observe intermixture of the clones in R3, many of the 

ducts are mostly made up of one clone type, suggesting a localized clonal expansion, with the 

exception of clone duct 3 in R3, which is very intermixed (See Figure 32 DC16 Image Mapsand 

Figure 33 DC16 Tanglegram). 

We observed shared amplifications of chromosomes 1, 6p, 14,19, and 21, as well as 

deletions of chromosomes 4, 15, and X between all clones. However, for each subclone, we 
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observed unique amplifications or deletions. For clone A, we found amplifications of 3p (EVI1 

and PIK3CA, shared with clones C, D, and E) and 13 (BRCA2, RB1 and ERCC5, shared with 

B, C, and D) with a deletion of a more complete deletion of all of chromosome 2 unique to A. 

We saw the most noise of any of the clones in B but saw a more complete deletion of 

chromosome 4 and strong deletion of 18 (MATI1 and BCL2, shared with C and E). Clone C had 

the deletion in the first part of 2q (ERCC3, PNS1, and CREB1, shared with E) and a specific 

focal deletion on 6q (MLT4). For clone D, we saw an amplification of 13q (ERCC5, shared with 

E). Lastly, clone E had the deletion of chromosome 5 (Figure 28 DC16 Copy Number Alteration 

Heatmap). To delineate clonal evolution during invasion, we inferred genomic lineages from 

these consensus plots and constructed a possible phylogeny where first clone B arose followed 

by clone C, from which clones A, B and E arose (Figure 31 DC16 TimeScape).  

Most notably each clone consisted of single cells from both the in situ and invasive 

cells. While there was a decrease in the frequency of clone E, we observed that all clones were 

present in all regions and most likely arose within the ducts prior to invasion and the clones 

shared so much similarity that it was difficult to separate them in the MDS plot.  
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated. 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
 

Figure 28 DC16 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 29 DC16 Saturation Curve 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated. 
 
Clone A (black), Clone B (sky-blue), Clone C (purple), Clone D (pink), Clone E (indigo) and 
normal (green). 
 

Figure 30 DC16 MDS 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Clonal lineages of the major tumor subpopulations plotted with TimeScape with inferred 
common ancestors indicated in gray and clonal frequencies labeled.  
 
Clone A (black), Clone B (sky-blue), Clone C (purple), Clone D (pink), and Clone E (indigo). 
 

Figure 31 DC16 TimeScape 



96 
 

 
 
This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Spatial maps of tissue sections from three different tumor sectors, with single cells marked 
as in situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 
 

Figure 32 DC16 Image Maps 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Genotype trees are located on the left side for each patient, with clonal subpopulations 
indicated by color. Spatial trees are located on the right side with different ducts indicated 
by colors and the invasive regions colored in gray. Mapping of cells coordinates and 
genotypes were performed by minimizing overlapping connections. 
Clone A (black), Clone B (sky-blue), Clone C (purple), Clone D (pink), and Clone E (indigo). 

Figure 33 DC16 Tanglegram 
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3.2.1.5 DC18 

We investigated copy number evolution during invasion in patient DC18, a grade 3 

TNBC, using TSCS to profile 85 in situ cells and 150 invasive cells from tissue sections from 

four different tumor regions (R1-R4) (Figure 35 DC18 Saturation Curve). We performed 1-

dimensional clustering, which revealed 1 major population of diploid cells (N) and 3 clonal 

aneuploid tumor subpopulations (A, B, C). Within each subpopulation (A, B, C), the copy 

number profiles were highly correlated (A=0.64, B=0.71, C=0.80, Pearson correlations), 

representing stable clonal expansions. Consensus profiles were calculated and compared from 

each tumor subpopulation, which identified shared amplifications on chromosome 2p (ALK), 8q 

(MYC), 14q (FOXA1), and 21q (RUNX1), in addition to many subpopulation-specific CNAs. 

Clone A had focal deletions in chromosome 4p (RHOH), 9p (CDKN2A), and Xq (COL4A5), as 

well as focal amplifications on chromosome 17p (MAP2K3, NF1, BCAS3), 12p (ALG10B and 

ERBB3), and chromosome Xq (AR). Clone B had deletions on chromosome 3p (FHIT), 13 

(RB1), and 8p (DBC2), as well as amplifications on chromosomes 2q (GALNT13), 11p (WT1), 

and Xp (PDK3). Clone C shared many CNA events with clone B, including an amplification on 

7p (EGFR) (See Figure 34 DC18 Copy Number Alteration Heatmap).  

To delineate clonal evolution during invasion, we inferred genomic lineages and plotted 

the data using TimeScape (Figure 37 DC18 TimeScape). This analysis identified a common 

ancestor that evolved in the ducts with amplifications of ALK, MYC, FOXA1, and RUNX1 that 

subsequently diverged to form clones A and C. Clone B was a common ancestor of clone C, 

but diverged and evolved additional CNAs in RB1, FHIT, and DBC2. This data showed that all 

3 subclones evolved in the ducts from a common ancestor prior to invasion, and subsequently 

migrated into the surrounding tissues where they underwent stable clonal expansions. These 

data did not detect any new CNAs acquired in the clones during invasion, but did reveal a 

decreased frequency of subclone A (40% to 5%) in the invasive regions. 

To understand the relationship between the clonal genotypes and their spatial positions, 

we performed multi-dimensional scaling (MDS), which identified 4 discrete clusters 
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corresponding to different subpopulations (1 normal cells and 3 tumor subpopulations; See 

Figure 36 DC18 MDS). Each subpopulation consisted of single cells isolated from both the in 

situ and invasive cells, with no clonal genotype specifically associated with the in situ or 

invasive regions. MDS showed that subpopulations C and B were adjacent in high-dimensional 

space, while subpopulation A was the most distant.  

The clonal genotypes were mapped to their spatial coordinates in the four tissue 

sections (R1-R4) to delineate their topography, which showed that all three tumor clones were 

localized to both the ductal and the invasive regions, with no single genotype mapping 

exclusively to one region (Figure 38 DC18 Image Maps and Figure 39 DC18 Tanglegram). 

However, clone A was more restricted to the ductal regions (R3), while clones B and C were 

more frequent in the invasive regions. Consistent with the spatial distributions, we found that 

clones B and C had an amplification of EGFR previously shown to be associated with cell 

migration225, while clone C had an additional deletion of FHIT known to suppress EMT and cell 

migration 226.  
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 

Figure 34 DC18 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 35 DC18 Saturation Curve 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated.  
Clone A (black), Clone B (sky-blue), Clone C (purple), and normal (green). 
 

Figure 36 DC18 MDS 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Clonal lineages of the major tumor subpopulations plotted with TimeScape with inferred 
common ancestors indicated in gray and clonal frequencies labeled.  
 
Clone A (black), Clone B (sky-blue), and Clone C (purple). 
 

Figure 37 DC18 TimeScape 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Spatial maps of tissue sections from four different tumor regions, with single cells marked 
as in situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 

Figure 38 DC18 Image Maps 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Genotype trees are located on the left side for each patient, with clonal subpopulations 
indicated by color. Spatial trees are located on the right side with different ducts indicated 
by colors and the invasive regions colored in gray. Mapping of cells coordinates and 
genotypes were performed by minimizing overlapping connections. Clone A (black), Clone 
B (sky-blue), and Clone C (purple). 
 

Figure 39 DC18 Tanglegram 
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3.2.1.6 DC20 

We found DC20, grade 3 TNBC, to be a polyclonal tumor. The three clonal populations 

(A, B, C) shared several events between all three clones, strongly suggesting the same single 

clone of origin (Figure 40 DC20 Copy Number Alteration Heatmap). Most notably, all clones 

shared a zig-zag chromosome amplification, a deletion pattern commonly noted in TNBC 

samples. More specifically, multiple CNAs occurred in almost every chromosome, with shared 

breakpoints at larger events on chromosomes 1, 7, 10, 12, 17,18, and 21, as well as focal 

share alterations on 2, 3, 6, 7, 11, and 13.  

The close relationship of these 3 populations is demonstrated in the MDS plot, which 

clearly shows the 2 "normal" cell populations and 1-2 tumor cell clones slightly overlapped, 

suggesting a common cell of origin (Figure 42 DC20 MDS). The normal cells in the case of 

DC20 appear to be either (1) very noisy, (2) intermediates, or (3) alterative cells of origin. The 

normal cells do not cluster well together and N1 shows strong amplifications of chromosome 1, 

7, 19, and X, while N2 shows deletions of chromosome 4, 10, 20, and X. Since these break 

points are not shared with the other clones, it suggests these chromosome alterations might 

have occurred but not expanded or that the profiles are noisy.  

We examined DC20 in three different sectors (R1, R2, and R3), and we saw strong 

intermixture of the different clones, suggesting these clones stayed intermixed throughout 

progression (Figure 44 DC20 Image Maps). The consensus copy number profiles between 

clone A, B, and C were highly correlated, and on the MDS plot it is difficult to separate clones A 

and C, while clone B appears to be more distinct. When examining the single cell copy number 

heatmap in detail, we can see that clones A and C appear more clonal, while B has more 

variation. However, even with clone A, we still distinct changes between deletions on 

chromosome 5 (APC), which is shared with clone C but not B, but is highly variant in clone A 

and B. This variance suggests that the deletion might in fact represent a different set of 

subclones. Clone A could also be broken up into 3 clones based on deletions in chromosome 

7. These deletions are not shared with clone C, which has an amplification at the same 
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position, or clone B, which is not changed in this position (Figure 40 DC20 Copy Number 

Alteration Heatmap). These results suggest that we might need to look at more sensitive 

clustering metrics to truly delineate clonal substructure. Lastly, when we examined subclone B, 

we saw several unique CNA not shared with any profile, suggesting either that these profiles 

are noisy or that these profiles represent several intermediates or dead-ends.  

If there are in fact more subclones than we observed, our current requirements for 

number of cells based on the saturation index is obsolete, and we would require many more 

cells. We found some clonal change between in situ and invasive frequency, the largest being 

the decreases of clone A from 69% to 31% and the reciprocal increases of clone B from 8% to 

26% and clone C 23% to 43% (Figure 43 DC20 TimeScape). This might suggest that clones B 

and C are more invasive or merely that clone A was not able to survival as well outside of the 

ducts. 

Next, we mapped the clonal genotypes to their spatial coordinates on an image map for 

DC20 sectors (R1, R2, R3), with R2 showing in situ populations and R1 and R3 showing both 

in situ and invasive populations. We see some intermixture of all clones both in the in situ and 

invasive sectors, but clone A is more highly localized to a region (R2) which had very few 

invasive cells collected, perhaps suggesting instead a regional bias caused by non-random 

sampling (Figure 44 DC20 Image Maps and Figure 45 DC20 Tanglegram). In R2, very few 

invasive cells were collected due to two issues: (1) most of the cells surrounding the ducts 

appeared to be smaller normal cells and (2) the tumor cells of notice were tightly clustered (less 

than 1 micron distance between nuclei), making isolating a single cell not practical.  
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated. 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
Note that the second pseudo-normal population also shows a deletion of the X 
chromosome as seem in DC16. 

Figure 40 DC20 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 41 DC20 Saturation Curve 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated.  
 
Clone A (black), Clone B (sky-blue), Clone C (purple), and normal (green). Note that the 
separation of the 2 normal clusters is caused by the deletion of chromosome X.  
 

Figure 42 DC20 MDS 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Clonal lineages of the major tumor subpopulations plotted with TimeScape with inferred 
common ancestors indicated in gray and clonal frequencies labeled.  
 
Clone A (black), Clone B (sky-blue), and Clone C (purple). 
 

Figure 43 DC20 TimeScape 
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This figure was adapted from Casasent et al. 2018 1 and used by permission. 
 
Spatial maps of tissue sections from three different tumor sectors, with single cells marked 
as in situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 

Figure 44 DC20 Image Maps 



113 
 

 
This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Genotype trees are located on the left side for each patient, with clonal subpopulations 
indicated by color. Spatial trees are located on the right side with different ducts indicated 
by colors and the invasive regions colored in gray. Mapping of cells coordinates and 
genotypes were performed by minimizing overlapping connections. Clone A (black), Clone 
B (sky-blue), and  Clone C (purple). 
 

Figure 45 DC20 Tanglegram 
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3.2.2 Copy Number Evolution During Invasion Monoclonal Tumors  

We observed 4 tumors that appeared to be monoclonal. These monoclonal results 

could represent a clonal expansion or under-sampling of highly diverse or noisy tumors. 

Monoclonal tumor sections will not have polyclonal-specific images. 

3.2.2.1 DC6 

DC6 is a high-grade tumor (ER+, PR+, HER2+) from a very young patient. This tumor 

showed strong expansion of the ducts and separated into normal and tumor cells, with only 1 

subclone being selected by k-means clustering, suggesting a possible strong clonal expansion 

of this clone within the ducts (Figure 49 DC6 Image Maps).  

We noted clone A had a number of strong focal amplifications at 1-centromere(MCL1, 

SHC1), 6-centremere (FOXO3), 7p(JAZF1), 11q (PAK1), and 20q(AURKA), with lesser focal 

deletions of 8q (CSMD1, PPP2R2A, and FGFR1) and 17p (MAP2K4 and ERBB2/HER2) (See 

Figure 46 DC6 Copy Number Alteration Heatmap). Perhaps the most abnormal feature of this 

tumor was focal deletion of ERBB2/HER2, while the tumor classification was HER2+. 

Therefore, while we were expecting an alteration around the HER2 locus, we expected an 

amplification not a deletion (Table 2 Clinical Information). 

The second peculiar feature of this tumor was, within the normal cell appears to be 

several clonal CNA, suggesting we might be measuring some additional subpopulations, 

possibly detectable if we changed our means of selecting our k for k-means clustering (Figure 

46 DC6 Copy Number Alteration Heatmap), suggesting consideration of a more discrete or 

sensitive clustering algorithm. However, the cells are still intermixed, with both in situ and 

invasive cells being in both the pseudo-normal clone (Np) and the invasive clone across all four 

sectors sampled, supporting the multiple clonal invasion model (Figure 48 DC6 MDS and 

Figure 49 DC6 Image Maps). In addition, even with this result, the single clone of origin 

hypothesis is still supported because of the shared alterations on 1q, 6p, 7q, and 8 with the 

tumor subclones that we examined (Figure 46 DC6 Copy Number Alteration Heatmap).  
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
 
 

Figure 46 DC6 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 47 DC6 Saturation Curve 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated. 
Clone A (black) and normal (green). 
 

Figure 48 DC6 MDS 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Spatial maps of tissue sections from four different tumor sectors, with single cells marked as 
in situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 
 

Figure 49 DC6 Image Maps 
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3.2.2.2 DC12 

DC12 separated into normal and tumor cells. This tumor was perhaps the most difficult 

to dissect because it was grade 1. In the future, I strongly suggest that TSCS not be used on 

grade 1 tumors, unless another staining protocol, such as IHC, could be used to delineate 

normal cells from tumor cells. Grade 1 tumors have very small, more regularly shaped nuclei, 

making selection of tumor cells more difficult than in higher grade tumors (Figure 53 DC12 

Image Maps). 

Here we observed 1 clonal population (A) and one normal or noise population (N). I 

refer the normal population as possibly "noise" because while there are alterations, these 

alterations do not appear to be clonal events (Figure 50 DC12 Copy Number Alteration 

Heatmap). In addition, this tumor had a limited number of total cells that passed filtering: 33 in 

situ cells and 36 invasive cells, for a total of 69 cells (Figure 51 DC12 Saturation Curve). Most 

of the cells were removed during filtering, suggesting lower quality sample, possibly due to 

DNA degradation during freeze thaw cycles. 

Even within clone A, there appeared to be 2 subclones AN (which was more normal like) 

and AT (which was more aneuploid) (Figure 50 DC12 Copy Number Alteration Heatmap and 

Figure 52 DC12 MDS). The AN subclone appeared to very close to the pseudo-normal cells 

observed in DC16, with a strong deletion of chromosome X and few other common alterations 

across cells. While AT did not share this deletion of chromosome X, it instead appeared to have 

an amplification of X. In addition to the amplification of chromosome X, AT had a number of 

clonal amplification in 1q (MCL1, SHC1, and AKT3), 5, 6, 12, 16p (PLAG10), and 18, as well as 

deletions in 13, 16q(WWOX), 19, and 21. However, most of the alteration were very large 

whole chromosome amplifications or deletions, which fits with the overall copy number profiles 

observed in ER+, PR+ tumors like DC12 (Figure 50 DC12 Copy Number Alteration Heatmap). 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
 

Figure 50 DC12 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 51 DC12 Saturation Curve 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated. 
Clone A (black) and normal (green). 
 

Figure 52 DC12 MDS 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Spatial maps of tissue sections from four different tumor vials, with single cells marked as in 
situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 

Figure 53 DC12 Image Maps 
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3.2.2.3 DC17 

DC17 is an odd case. In DC17, we had a change in the receptor status between the in 

situ and invasive regions. The in situ regions were TNBC, while the invasion region was ER 

positive. This type of change in receptor status was previously considered evidence for the 

independent lineage model. However, this tumor, while following the zig-zag pattern for TNBC, 

contained a clonal amplification of ESR1. The focal amplification of ESR1 was a little strange in 

this TNBC tumor. This amplification occurred in both the in situ and invasive cells and might 

suggest a phenotype change turning the expression of ESR1 on and off in the invasive cells 

(See Figure 54 DC17 Copy Number Alteration Heatmap and Table 2 Clinical Information).  

In the DC17 sample, we were unable to separate the normal cells from the invasive 

cells based on our k-means clustering algorithm. When examining the profiles, very few of cells 

appeared to have a normal like profile in DC17 (Figure 54 DC17 Copy Number Alteration 

Heatmap). Clone A was the only clone observed by k-means clustering and appears to be 

highly variable. While chromosome breakpoints did not appear be as stable in this clone, the 

overall pattern of amplifications and deletions was consistent, suggesting the tumor might have 

been frozen and thawed too many times (Figure 54 DC17 Copy Number Alteration Heatmap). 

The supposition was also supported because the quality of the DNA appears to be lower, 

another side-effect of too many freeze-thaw cycles. 

We see consistent amplifications on chromosome 3q, 6 (ESR1), 8q (PTPRD), and 13, 

as well as deletions on 2q(LRP1B), 4, 5p, 7q (CSMDC),10p, 11p, 12p and Xp (Figure 54 DC17 

Copy Number Alteration Heatmap). However, while these alterations appeared to be present in 

most of the cells, the breakpoints were not consistent and neither were the strength of the 

amplifications and deletions, resulting in these cells possibly erroneously being classified as 

one clone. Because only 1 clone was observed and no normal cells, we were unable to provide 

a saturation curve because the calculation requires at least two clones. 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
 

Figure 54 DC17 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated. 
 

Figure 55 DC17 MDS 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Spatial maps of tissue sections from three different tumor vials, with single cells marked as 
in situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 
 

Figure 56 DC17 Image Maps 
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3.2.2.4 DC19 

DC19, a grade 3 TNBC sample, was classified as monoclonal but could be separated 

into normal and tumor cells. Like DC17, the chromosome breakpoints and strength of 

amplifications and deletions are inconsistent, which possibly resulted in the tumor classification 

of only 2 clones, normal and clone A (Figure 57 DC19 Copy Number Alteration Heatmap). With 

tumor clone A, visually there appeared to be a least 4 pseudo-subclones (AN, A1, A2, A3, going 

from top to bottom of the single cell heatmap). These pseudo-subclones are visually distinct but 

have not been distinguished mathematically. Pseudo-subclone AN is the noisiest of these 

profiles, with very few consistent amplification and deletions, suggesting noise, possibly from 

the tumor being frozen and thawed too many times or the necrosis we observed in the center of 

the ducts (Figure 60 DC19 Image Maps). Pseudo-subclone A1, was distinguished by the 

deletion of chromosome 4 and X, as well as the amplifications of chromosome 5, 7, and 8. 

Pseudo-subclone A2 is almost opposite of A1, having a deletion in 5q and amplification in X. 

Lastly, Pseudo-subclone A3 has the amplification of 2p, 6, 7, 8, and 9 (Figure 57 DC19 Copy 

Number Alteration Heatmap). 

The inconsistency in DC19 resulted in a flat profile, except for amplifications on 1-

centermere (MCL1 and SHC1), 2p, 5p(MYO10 and ANKH), 16q (WWOX), and 18 (SMAD4), as 

well as focal deletions on 8p (PPP2R2A) and X. We visually observed the pseudo-subclone 

and the major clone in DC19 were intermixed between in situ and invasive regions. The 

inconsistency suggests one of the following: (1) the tumor might have been frozen and thawed 

too many times, (2) the necrosis or apoptosis of the cells resulted in no-single cell DNA being 

collected, or (3) the tumor is highly diversity. 



129 
 

 
This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Clustered heatmap of single-cell copy number profiles with headers indicating the major 
subpopulations and tissue regions (in situ or invasive) from which the cells were isolated.  
 
Lower panels show consensus profiles of the major clonal subpopulations, with known 
cancer gene annotations for common CNAs listed above and divergent CNAs listed below. 
 
 

Figure 57 DC19 Copy Number Alteration Heatmap 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Saturation Analysis of Single-Cell Sampling Numbers. 
 
Post hoc saturation analysis to determine whether sufficient numbers of cells were sampled 
to detect the major tumor subpopulations in the in situ and invasive regions. Accumulative 
multinomial distributions were used to calculate the probability of observing at least 3 tumor 
cells from each subpopulation based on their empirical frequencies in the single cell copy 
number data (methods).  
 
Expected number of cells, indicates the number of cells required to detect at least 3 cells 
with 0.95 probability from each subpopulation shown with red lines. Actual size refers to the 
number of cells that were sequenced from each patient. 
 

Figure 58 DC19 Saturation Curve 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
MDS plot of single-cell copy number profiles with in situ or invasive regions indicated. 
Clone A (black) and normal (green). 
 

Figure 59 DC19 MDS 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Spatial maps of tissue sections from two different tumor regions, with single cells marked as 
in situ or invasive. Tumor cells are color coded by their clonal genotypes or by diploid 
genomes, and ducts are annotated with different colors. 
 

Figure 60 DC19 Image Maps 
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3.2.3 Copy Number Evolution Summary  

We applied TSCS to a total of 10 synchronous DCIS-IDC patients to study copy number 

evolution during invasion (Figure 61 Copy Number Summary). Whole-tissue scanning of H&E 

tissue sections from each patient was performed to identify in situ and invasive regions for 

single cell isolation. In total, 425 in situ and 503 invasive cells were sequenced from the 10 

patients, as well as 365 stromal diploid cells. The data was analyzed to delineate clonal 

substructure and copy number evolution during invasion. Clustering of single cell CNA profiles 

showed most patients harbored 1-5 major tumor subpopulations and these subpopulations 

were located in both in situ and invasive regions. 

We found four tumors to be monoclonal (DC6,12,17,19). However, this could be due to 

inconsistencies in breakpoints resulting in under-clustering. Six tumors were polyclonal (DC4, 

13,14, 16,18, 20), harboring multiple clonal subclones in both the in situ and invasive regions 

(Copy Number Evolution During Invasion Polyclonal Tumors). Shannon Diversity indexes 

calculated from the single cell CNA profiles showed the amount of clonal diversity did not show 

major changes during invasion in most patients (Figure 61 Copy Number Summary). These 

data showed the amount of genomic diversity correlated with the number of subpopulations 

detected in the in situ or invasive regions and was inconsistent with a population bottleneck, in 

which a decreased in clonal diversity is expected (due to the selection of a specific clonal 

genotype). MDS analysis of all 10 DCIS patients identified 1-6 major clusters in each patient, 

including the normal cells (N) and 1-5 major tumor subpopulations (A-E), often separated in 

high-dimensional space (see MDS plots for individual tumors). Moreover, the MDS plots 

showed that within each genotype cluster, tumor cells were localized to both in situ and 

invasive regions. 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Copy Number Substructure and Clonal Evolution in 10 DCIS Patients 
(A) Bar plots of clonal frequencies calculated from single-cell copy number profiles in the in 
situ (labeled D) or invasive (labeled I) regions. (B) Shannon diversity indexes calculated 
from single-cell copy number profiles from the in situ and invasive regions of each patient 
with confidence intervals 

Figure 61 Copy Number Summary 
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Clonal lineages were inferred in the 6 polyclonal DCIS patients and plotted with 

TimeScape227 (see TimeScape figures for individual tumors). These data showed in all patients, 

the subpopulations shared a common evolutionary origin with shared truncal CNAs, suggesting 

the tumors evolved from a single cell in the duct. These data are inconsistent with an 

independent lineage model, in which different initiating cells give rise to the in situ and invasive 

subpopulations separately. 

In every patient, we found that the same clonal subpopulations present in the ducts and 

invasive regions. However, we did observe shifts in clonal frequencies in some patients (DC13, 

DC16, DC18), suggesting some genotypes may be more invasive than others. For example, in 

DC13, clone B increased from 16% to 67% during invasion, while in DC16, clone C increased 

from 19% to 49%. This change suggests genome evolution initiated from a single cell in the 

ducts and gave rise to one or more clonal subpopulations that migrated into the adjacent 

tissues to establish the invasive tumor mass. 

3.2.4 Spatial Topography and Clonal Copy Number Genotypes 

To understand the distribution of clonal genotypes and their spatial organization in the 

polyclonal tumors, we constructed tanglegrams213. We calculated genetic distance trees from 

single cell copy number profiles and mapped to spatial trees (X, Y coordinates) with minimal 

overlapping connections (see Tanglegrams for individual tumors). In patient DC13, clone A 

(81.5%) localized mainly to the ducts, with only a few cells (N=7) in the invasive regions, while 

clone B showed a higher frequency in the invasive regions. In patient DC14, the two major 

clones (A, B) mapped to all three ducts and the invasive regions; however, clone B was 

restricted more to ducts 2 and 3. In patient DC16, we identified 5 clonal subpopulations, in 

which clones A, B, and C mapped more frequently to the invasive regions, while clones D and 

E were found mainly in the ductal regions (ducts 1, 2, and 5). In patient DC18, we identified 3 

clonal subpopulations, in which clones B and C each mapped to 8 of the 10 ducts, while clone 

A localized mainly to two ducts (d1 and d2). In other cases (DC20 and DC4), we found the 
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clones equally distributed to the in situ and invasive regions. These data show while all clones 

were detected in both the in situ and invasive regions, specific subclones were more restricted 

to the ducts, while others were more prevalent in the invasive regions, suggesting a more 

invasive or migratory phenotype. 

3.2.5 Regional Exome  

In this Section I discuss results for the Regional Exome Sequencing for our 10 

Synchronous DCIS-IDC. 

3.2.5.1 Mutational Evolution During Invasion  

To investigate mutational evolution during invasion, we used LCM to microdissect 

thousands of tumor cells from the in situ and invasive regions for deep-exome sequencing 

(mean=162.8X, SEM=18.9, Figure 62 Regional Microdissection). Matched normal breast tissue 

(mean=144.1X, SEM=20.3) was sequenced in parallel to distinguish germline variants from 

somatic mutations. From this data we detected point mutations showing the total number of 

exonic mutations (mean=23, SEM=3.3) were highly consistent between the in situ and invasive 

regions (t-test, p=0.868) (Figure 63 Regional Exome Oncomap). To identify specific discordant 

mutations, we constructed oncomaps using nonsynonymous mutations (Figure 63 Regional 

Exome Oncomap). Most nonsynonymous mutations (mean 87.4%) were concordant in the 

ducts and invasive regions, including mutations in known breast cancer genes such as TP53, 

PIK3CA, NCOA2, ABL2, PDE4DIP, AHNAK, and RUNX1, suggesting they were acquired in the 

ducts prior to invasion. However, a few mutations were in situ-specific (N=12) or invasive-

specific (N=11) in 4 patients (DC12, DC13, DC17, DC18) and were not recurrent among the 

patients (Table 4 Regional Invasive-Specific Mutations). 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Exome sequencing of laser-capture microdissected in situ (top) and invasive (bottom) 
regions. 
 

Figure 62 Regional Microdissection 
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This figure was adapted from Casasent et al. 20181 and used by permission.  
 
Oncomap of nonsynonymous mutations in the in situ and invasive regions from each 
patient. The presence or absence of mutations has been updated based on the results from 
amplicon deep-sequencing validation data. Known breast cancer genes are indicated in 
bold, while mutations that were validated by deep-amplicon sequencing are in italics. 
 

Figure 63 Regional Exome Oncomap 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
This figure shows the results for amplicon-targeted deep sequencing chosen by exome 
capture analysis for region specific mutations. The results for in situ-specific (top) mutations 
and invasive-specific (bottom) mutations, show that after deep sequencing many of these 
region-specific alterations were not region specific but shared. 

Figure 64 Regional Amplicon Validation 
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Patient Gene Chr Position Ref Var SITU_FREQ INV_FREQ POLYPHEN SIFT
DC12 CRY1 chr12 107395083 C T 0.01 0.52 0.912 0
DC12 DRD1 chr5 174869715 G A 0.00 0.47 0.981 0
DC13 TECRL chr4 65274856 G A 0.00 0.27 0.735468 0.66
DC17 FAP chr2 163070565 C G 0.00 0.22 1 0.09
DC17 SCN4A chr17 62025343 G C 0.00 0.08 NA 0
DC17 PCDHA5 chr5 140201856 C G 0.00 0.08 0.523167 0.02
DC18 AKAP6 chr14 33242950 C G 0.01 0.46 0.867 0
DC18 SORBS2 chr4 186541289 T A 0.01 0.71 0.705202 0
DC18 FANCA chr16 89815132 A T 0.00 0.38 0.955 0.42
DC18 CEP192 chr18 13071040 T A 0.00 0.38 0.924 NA
DC18 TRIM47 chr17 73872438 C A 0.00 0.62 0.983 0.02

Gene Annotations for Invasive-Specific Mutations

 
 
This table was adapted from Casasent et al. 20181 and used by permission.  
 
This table lists the invasive-specific nonsynonymous mutations that were identified 
by exome sequencing of laser-capture-microdissected tissue regions.  
 
The mutations listed were detected in the invasive regions and were not detected in 
the in situ region, after filtering by matched normal germline variants.  
 
The table lists the following columns in order: patient identifiers, gene names, 
chromosome and position, reference nucleotide, variant nucleotide, in situ mutation 
frequencies (SITU_FQ) normalized by tumor purity, invasive mutation frequencies 
(INV_FQ) normalized by tumor purity, polyphen2 damaging impact scores (POLY), 
and SIFT functional impact prediction scores. 

Table 4 Regional Invasive-Specific Mutations 
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Patient Gene Chr Position Ref Var Type A C G T
in situ 72 9 52208 123

Invasive 1666 1 10190 45
Normal 75 4 14579 35
in situ 503 128175 11 245

Invasive 59 11798 4 2161
Normal 76 10319 1 38
in situ 9770 171 4214428 1993

Invasive 62 0 464 0
Normal 0 1 556 0
in situ 276279 541 1033 569662

Invasive 14452 26 93 47125
Normal 114 13 99 59998
in situ 2815 19 90 89006

Invasive 25 0 4 121
Normal 1 0 9 5430
in situ 480489 780 925921 754

Invasive 7491 48 81899 148
Normal 113 43 128978 37
in situ 575 929093 81 191

Invasive 111 28932 2373 31
Normal 126 86789 28 18
in situ 63 194 404521 567

Invasive 37 12095 145897 442
Normal 12 246 100712 80
in situ 32 14378 16 1244

Invasive 7 11738 13 20
Normal 1 2693 3 9
in situ 39 20 81322 3933

Invasive 76 24 231953 15359
Normal 54 23 185477 502
in situ 18229 58 117956 423

Invasive 2372 48 212951 538
Normal 191 4 16598 28
in situ 1736 22 17703 49

Invasive 405 145 234196 403
Normal 95 133 246785 240
in situ 11 3258 19190 92

Invasive 2 32 14489 49
Normal 9 334 77171 74
in situ 7 413 139 65000

Invasive 4 10052 66 39499
Normal 8 83 44 23264
in situ 28146 38 6 1012

Invasive 139769 544 141 60075
Normal 171278 606 48 536
in situ 43564 104 21 1320

Invasive 18089 96 16 7499
Normal 16286 109 17 174
in situ 442 125801 47 88

Invasive 38570 108833 42 73
Normal 337 48816 15 28
in situ 817 549025 111 8784

Invasive 2187 1148556 896 468608
Normal 80 21492 23 3765
in situ 32 10 99 42162

Invasive 2986 7 24 9309
Normal 54 33 230 21864
in situ 215 242691 297 30

Invasive 483 238533 43940 52
Normal 72 76655 331 8
in situ 1 335 0 0

Invasive 1 469 0 3
Normal 162 82716 4 30
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This table was adapted from Casasent et al. 20181 and used by permission.  
This table shows the results of targeted amplicon deep sequencing selected region-specific 
mutations detected by exome sequencing. The table columns include patient number, gene 
name, chromosome number, chromosome position, reference base, variant base, region, 
read counts for A, C, G, and T. 

Table 5 Regional Deep SNVs Genomics and Reads 
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Patient Gene SITU_MF INV_MF NORM_MF P-value DN P-value IN Validated
DC12 DRD1 0.00 0.14 0.01 2.7211E-02 1.7892E-03 INV ONLY
DC12 CRY1 0.00 0.15 0.00 Not Significant 1.3216E-03 INV ONLY
DC13 TECRL 0.00 0.12 0.00 1.9430E-18 3.2333E-03 INV ONLY
DC13 MYO18A 0.33 0.23 0.00 1.9430E-18 2.0994E-04 Pre-existing
DC13 ZBTB14 0.03 0.17 0.00 2.1105E-06 5.1415E-12 Pre-existing
DC13 MYO18B 0.34 0.08 0.00 3.3535E-21 4.2214E-04 Pre-existing
DC17 PCDHA5 0.00 0.08 0.00 2.0250E-02 1.4055E-04 INV ONLY
DC17 SCN4A 0.00 0.08 0.00 2.4231E-05 1.4316E-03 INV ONLY
DC17 ARHGAP36 0.08 0.00 0.00 1.0944E-04 Not Significant DCIS ONLY
DC17 ABCC11 0.05 0.06 0.00 1.1563E-11 1.4828E-03 Pre-existing
DC17 MBL2 0.13 0.01 0.01 3.3084E-08 Not Significant DCIS ONLY
DC17 ARID1B 0.09 0.00 0.00 7.6277E-76 Not Significant DCIS ONLY
DC17 C9orf24 0.14 0.00 0.00 6.8761E-18 5.2801E-02 DCIS ONLY
DC18 NCOA2 0.01 0.20 0.00 Not Significant 1.4828E-03 Pre-existing
DC18 MMP8 0.03 0.30 0.00 2.3582E-13 1.8028E-05 Pre-existing
DC18 RNF182 0.03 0.29 0.01 1.5575E-02 3.9687E-04 Pre-existing
DC18 LAMTOR1 0.00 0.26 0.01 Not Significant 2.3879E-04 INV ONLY
DC18 LTBP2 0.02 0.29 0.15 2.1247E-28 Not Significant Pre-existing
DC18 SORBS2 0.00 0.24 0.00 Not Significant 6.4445E-44 INV ONLY
DC18 AKAP6 0.00 0.16 0.00 2.3346E-02 4.6470E-04 INV ONLY
DC18 HDAC4 0.00 0.01 0.00 Not Significant Not Significant False Postive

  

 
 
This table was adapted from Casasent et al. 20181 and used by permission. 
 
This tables shows the results of targeted amplicon deep sequencing for a subset of the in 
situ-specific and invasive-specific mutations detected by exome sequencing.  
 
DeepSNV was used to determine the statistical significance of each mutation relative to the 
site-specific background error rate in matched normal tissues. 
 
The table columns include patient number, gene name, in situ mutation frequencies 
(SITU_MF), invasive mutation frequencies (INV_MF), p-value for DeepSNV of in situ to 
normal comparison (p-value DN), p-value for DeepSNV invasive to normal comparison (p-
value), and finally the validation results. 

Table 6 Regional DeepSNVs Result Details 
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The invasive-specific mutations may have occurred at low frequencies in the ducts prior 

to invasion (below the exome sensitivity level) or alternatively after invasion, during the 

expansion of the invasive tumor mass. Another possibility is they were sampled from different 

geographical regions; however, this is unlikely in synchronous DCIS-IDC tissue since cells 

were collected from adjacent regions in the same tissue sections. To determine if the invasive-

specific mutations were acquired in the ducts or after invasion, we performed targeted deep-

amplicon sequencing at high coverage depth (mean=453,446X) for a subset of the in situ-

specific and invasive-specific mutations (Figure 64 Regional Amplicon Validation). In parallel, 

we performed targeted deep-amplicon sequencing of matched normal breast tissues to 

establish site-specific background error rates and identified significant mutations using 

DeepSNV228 (Table 5 Regional Deep SNVs Genomics and Reads and Table 6 Regional 

DeepSNVs Result Details).  

The amplicon data at higher coverage depth (226,000X) showed many of the in situ-

specific mutations were present at low frequencies in the invasive regions. However, most of 

the invasive-specific mutations (8/12) were found to be exclusive to the invasive tissues as 

shown in Table 4 Regional Invasive-Specific Mutations. These mutations are unlikely to play an 

important role in invasion, since they were acquired after the tumor cells escaped the basement 

membrane, during the expansion of the invasive carcinoma. However, in one patient (DC18), 

we identified a few mutations (NCOA2, MMP8, RNF182, LTBP2) that were pre-existing at low 

frequencies and increased in frequency during invasion (shown in pink in Figure 65 Regional 

Frequency Changes and Table 7 Regional Pre-Existing Mutations). These mutations included 

MMP8, a matrix metallopeptidase that plays a role in breaking down the extracellular matrix229, 

and LTBP2 that interacts with TGF-beta to regulate cell adhesion230. 
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Mutation Frequencies and Clonal Dynamics during Invasion.  
 
Purity-adjusted mutation frequencies and clonal subpopulations and frequencies inferred 
from exome data.  
(A) Patients with minor changes in mutation and clonal frequencies.  
(B) Patients with large mutation or clonal frequency changes during invasion.  
 
The left panels show purity-adjusted nonsynonymous mutation frequencies for the in situ 
and invasive regions. Lines in gray indicate mutations with minor frequency changes, while 
lines in pink show large frequency changes (>0.5) between the in situ and invasive regions. 
Mutations in dark gray indicate driver mutations, while mutations in blue are in situ and red 
are invasive specific. Right panels indicate clonal subpopulations and frequencies inferred 
by PyClone2 and CITUP, with lines indicating different clonal subpopulations 
 

Figure 65 Regional Frequency Changes 
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Patient Gene Chr Position Ref Var SITU_FREQINV_FREQ POLY SIFT
DC04 MEGF9 chr9 123476336 C A 0.19 1.00 NA 0
DC12 NPY4R chr10 47087501 C T 0.48 1.00 0.332 0.16
DC14 AHDC1 chr1 27874569 G A 0.33 1.00 0.983 0
DC18 KIAA0195 chr17 73489016 C A 0.07 0.85 0.732 0.02
DC18 NCOA2 chr8 71075008 T C 0.05 0.60 NA 0.05
DC18 RNF182 chr6 13977826 A T 0.21 0.86 0.996 NA
DC18 LTBP2 chr14 75019600 C T 0.11 0.85 0.603 0
DC18 LAMTOR1 chr11 71809862 C A 0.03 0.77 0.334 0.03
DC18 MMP8 chr11 102589262 A T 0.25 0.88 0.732 0

     

 
 
This table was adapted from Casasent et al. 20181 and used by permission. 
 
This table lists nonsynonymous mutations with increased frequencies (>0.5) in the exome 
data of the laser-microdissected in situ and invasive regions.  
 
The table columns list patient identifiers, gene names, chromosome and position, reference 
nucleotide, variant nucleotide, nucleotide position in gene, amino acid (AA) positions, 
amplicon deep-sequencing validation status, in situ mutation frequency adjusted by tumor 
purity (SITU_FQ), invasive mutation frequency adjusted by tumor purity (INV_FQ), 
polyphen2 damaging impact scores (POLY), and SIFT functional impact prediction scores. 

Table 7 Regional Pre-Existing Mutations 
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We further investigated concordant mutations for large changes in mutation frequencies 

by constructing tumor-purity normalized line plots (Figure 65 Regional Frequency Changes). 

This analysis showed only minor changes in mutation frequencies during invasion in five 

patients, while the other five patients had at least one mutation with a large (>0.5) frequency 

change. From these data, we identified 7 mutations that underwent large (>0.5) mutation 

frequency changes during invasion, including MEGF9 in DC4 (19% to 100%), NPY4R in DC12 

(48% to 100%), AHDC1 in DC14 (33% to 100%), and 4 mutations in DC18 (Table 7 Regional 

Pre-Existing Mutations). However, most patients (DC4, DC12, DC14) had only a single 

concordant mutation that underwent a large frequency shift during invasion. 

To infer clonal dynamics during invasion, we applied PyClone2 231 and CITUP 232 to 

cluster mutation frequencies and estimate clonal subpopulations after purity and copy number 

normalization (Figure 65 Regional Frequency Changes). This analysis identified 2-5 major 

subpopulations in each patient, which was higher than the number of subpopulations detected 

by single cell copy number profiling. We found several tumors to be monoclonal by single cell 

copy number profiling (DC6, DC12, DC17, and DC19) but showed 2-5 subpopulations based 

on inferred mutation clusters. This data suggested an ongoing mutational evolution in the ducts 

after copy number evolution, leading to further subclonal diversification prior to invasion into 

adjacent tissues. While some of the clonal frequencies shifted during invasion (Figure 65 

Regional Frequency Changes), the total number of subpopulations estimated from exome 

mutations remained consistent in most patients.  
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3.3 Study Limitations 

This study has a few notable limitations. First, the cohort size was limited to 10 patients, 

providing only a small snap shot of synchronous DCIS-IDC patients. In addition, the cohort 

receptor status was mixed. Since, we did not have just one receptor status, like TNBC, 

expanding our conclusions was difficult because the variation observed between tumors could 

be caused by receptor status, which has been observed to provide significantly divergent 

clinical outcomes41. Also, we studied only synchronous DCIS-IDC, which has already 

progressed to invasive carcinoma, preventing us from examining ITH as a method to discover 

useful prognostic markers. These issues with our cohort and cohort size can be addressed by 

examining more DCIS-IDC and DCIS-only tumors using TSCS. Thus, we cannot exclude the 

possibility some early breast cancer patients follow alternate evolutionary models, particularly 

in low-grade tumors. 

Second, we profiled a limited number of cells in each patient, which may lead to 

sampling bias. We profiled approximately 50 cells per region and 100 cells per patient. While 

we did calculate posterior saturation curves16, these curves are based on the number of 

subclones detected, and our subclone method is based on the number of cells we profiled, 

providing a self-referential infinite loop. Our posterior saturation curves suggest we sampled 

sufficient cells to detect the subclones defined for each patient (see Saturation Curves for 

individual tumors). For future analyses, we suggest a different method for defining subclones 

be used, to prevent the infinite loop of interdependent conditional variables. By using 

chromosomal events, with each unique event set defining a subclone, the number of subclones 

defined should not be determined by a clustering algorithms dependence on number of cells to 

define clusters. While this method might significantly increase the number of subclones 

defined, and therefore require more clustering, it should be more reproducible than the k-

means methods of clustering. 

Third, our study was limited to DNA alterations, copy number in single cells, and 

regional mutation analysis of synchronous DICS-IDC. Other follow up studies could investigate 
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the regional transcriptome (using Geo-Seq12, 13 or improved FISSEQ5 protocols like barcode in 

situ targeted sequencing BaristaSeq233), epigenetic modifications (for which no single cell 

spatially resolved methods are currently available), and even spatially resolved global protein 

(Imaging Mass Cytometry234, 235) expression of single cells in synchronous-DCIS. 

Fourth, we examined copy number profiles of single tumor cells and did not examine 

mutation or expression profiles of the surrounding stromal cell types. Stroma have been shown 

to assist in the invasion and migration of tumor cells in vivo and could also modulate the ability 

of tumor cells to invade surrounding tissues236, 237. These represent important future directions 

addressable with single cell RNA, epigenomic profiling, and protein expression methods. 
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3.4 Conclusions 

In this study we developed a spatially-resolved single cell DNA sequencing method and 

applied it to study genome evolution during invasion in 10 synchronous DICS-IDC breast 

cancer patients. We created a new method combining Single Cell Laser Capture 

Microdissection with Single Cell DOP-PCR  and Single Cell Sequencing to preserve spatial 

information when investigating single cell heterogeneity. We called this method TSCS and used 

it to examine the differences in single cell copy number heterogeneity in synchronous breast 

cancer. Our results from TSCS data from synchronous DCIS-IDC strongly supports three major 

biological conclusions: (1) the subclones observed all arose from a single cell of origin, (2) that 

all the clones were able to escape the ducts (multiclonal invasion), and (3) that these copy 

number clones were created in bursts of CIN within the ducts prior to invasion.  

3.4.1 Using Topographical Single Cell Sequencing (TSCS) 

Our first conclusion is Single Cell Laser Capture Microdissection with Single Cell DOP-

PCR and Single Cell Sequencing provided quality single cell copy number data. The Zeiss 

Robo PALM LCM system enabled selection of single cells within about 1-micron of another cell 

and used a touchless approach to transfer cells. TSCS generated high-resolution single cell 

copy number profiles with spatial X-Y coordinates by mapping back to the original tissue scan. 

For multiple slides per tumor, we estimated the Z-axis based on the number of sections 

between slides. The single cell genomic data was mapped to the spatial coordinates to 

delineate the topographic organization of different clonal genotypes in the tissue sections. This 

method allowed us to examine single cell genomics, copy number clones, and spatial 

information.  

Our current protocol should be expandable to other types of data such as DNA 

mutations and RNA. Using this method, while time consuming, can produce very detailed maps 

of changes in aneuploidy within a tumor, which gives us more information about changes in 

aneuploidy than FISH (which can only examine a few alterations at a time) while still retaining 
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the spatial information. While Fluorescent in situ sequencing (FISSEQ5, 238) can provide very 

detailed spatial and RNA data, it has not been expanded to DNA. TSCS, on the other hand, 

provides very detailed spatial and DNA copy number data. Therefore, TSCS is a powerful tool 

to define the differences in subclonal intermixture within a tumor and suggests a model of 

clonal progression based on this data. 

In Navin and Hick’s review "Tracing the Tumor Lineage" from 2010, the authors 

suggested 5 different models of tumor progression, differentiated by combing the information 

from a phylogenetic tree and tumor subclones spatial relationships9. Our technique provides a 

way to examine both copy number (used to build phylogenies) and to examine the spatial 

relationship of these phylogenies. In addition to being able to distinguish between these 

different models of progression, we propose that TSCS and other spatially-resolved single cell 

methods will be able to differentiate ployclonal models of invasion, such as bottlenecks and 

multiclonal invasion. 

3.4.2 Single Cell of Origin 

The first major biological conclusions from our TSCS data is that synchronous DCIS-

IDC subclones arose from the same cell, a single common ancestor, fitting the single cell of 

origin hypothesis. Since single cells shared almost all copy number events, we propose all our 

cases arose from common ancestors. Only one case, DC13, identified a very limited set of 

shared copy number events. We proposed the DC13 subclones diverged very early, producing 

two major clones with few shared copy number events. Although, for DC13, we must 

acknowledge the possibility of two distinct cells of origin. However, the two subclones were 

closely related to each other and highly correlated. Therefore, we conclude that we observed a 

single clone of origin because highly similar copy number profiles are more likely to occur from 

one single cell of origin rather than convergent evolution. 
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3.4.3 Multiclonal Invasion  

The next major biological conclusion is that we have multiple clones and all clones were 

present in the ducts and the invasive tumor. From this data, we suggested a model of invasion 

where all clones escape and survive outside the ducts called multiclonal invasion. Multiclonal 

invasion is distinguished from evolutionary bottleneck because all the clones escape into the 

surrounding tissue. Our model is consistent with studies using flow sorting and single cell copy 

number profiling in a single DCIS patient, which also reported evidence that multiple clones 

crossed the basement membrane 6. 

Our model challenges previous work which posited DCIS invasion occurred via a 

population bottleneck114, 239, 170 or through independent cell lineages139. In our data, we show 

the same subclones were present in both the in situ and invasive regions in all 10 patients, with 

no additional CNA events acquired during invasion and few invasive-specific mutations found 

though regional exome capture. These data suggested a single clone was not selected during 

invasion through an evolutionary bottleneck. Furthermore, our data does not support an 

independent lineage model160, 161, since we identified a large number of shared truncal 

mutations and CNAs in all tumor cells, suggesting a field effect did not give rise to two clones 

that formed the in situ and invasive regions independently. 

The multiclonal invasion model suggested selection of clones observed in metastasis 

occurs later, possibly during dissemination into the blood stream240. This model suggests that 

differences between the in situ and invasive regions are likely caused by larger spatial effects, 

but on a more local level there are few differences between paired in situ and invasive regions. 

It is possible the further from the ducts cells migrate, the more selection occurs, either from 

changes in the microenvironment or a more stochastic bottleneck due to regional separation. If 

the first case is true, finding a genetic marker to define these super-adaptor clones could help 

cancer treatment, because it addresses the more deadly or aggressive clones. Separating 

super-adaptors, highly migratory, or highly invasive clones is like the difficult effort and analysis 

required to separate driver and passenger mutations. However, if instead the model of invasion 
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and progression is more stochastic, like the localize multiclonal invasion we observed, 

treatments for all clones is necessary, because any of them could eventually invade.  

3.4.4 Intraductal Punctuated Evolution 

There are two well-known models of punctuated evolution: the branching expansions 

model241, 242 and the big bang model243, 244. Both models could explain the observed punctuated 

copy number or mutation profiles observed in cancer. The branching model postulates that 

bursts of alteration occur during the initial stages of tumor development followed by expansion 

of a few clones241, 242. On the other hand, the big bang model suggests a major event occurred 

early in tumor progression and created many diverse clones, while only a select few of these 

clones may survive and continue to gradually accumulate additional mutations, the initial clones 

will be very distinct 243, 244. Our data fits the branching expansions model for all tumors, except 

for DC13, which appears to have extreme divergence between clones and therefore might fit 

the big bang model better.  

Previous single cell genomic studies of IDC cancers from the Navin lab16, 4, 17 suggested a 

model of punctuated evolution, which also matches the branching expansions model. These 

papers examined IDC and found in single cell copy number, bursts of genomic alterations 

instead of a gradual accumulation. Therefore, the Gao et al16 paper suggested copy number 

evolution was occurring in a sudden burst of genomic instability, followed by clonal expansion. 

The distinct copy number clones observed suggested intermediate copy number states were 

selected against, not present, or present for a short time.  

While earlier papers used gated diploid and aneuploid tumor peaks134, 8, 17 and could have 

missed intermediates based on sorting, the Gao et al paper16 examined both ungated and 

gated single cell tumor copy number profiles16. We observed 5-7% of "intermediate" copy 

number profiles, suggesting intermediates were present. Gao et al suggested these 

intermediates did not enhance fitness, and were outcompeted by both predecessors and 

descendants, resulting in the tumor mass consisting of what appears to be punctuated copy 
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number clones, because of a series of discrete clonal expansions. Oddly, in the Gao et al 

paper, the somatic mutations observed in single cells appeared to show a more gradual 

accumulation instead of discrete clones16. 

However, a series of discrete clonal expansions can still explain the gradual 

accumulation of mutations. If the somatic mutations are passenger mutations which do not 

affect the fitness of the clones, then the mutations could be carried between two copy number 

clones if a direct descendant was part of a later clonal expansion. It is even possible for a driver 

mutation, one that initiates tumorigenesis, invasion, or tumor progression, to also be observed 

as a gradual accumulation of mutations, because the direct descendants of this mutation would 

expand. This is especially true if the driver mutation is related to genome dysregulation, such 

as chromosome segregation, which could cause sudden bursts of chromosomal alterations of 

which only some would be viable.  

The model of single cell of origin where a burst of genome instability (copy number) 

expands, explains the clonal relationships, low number of intermediates, and both diverse and 

monoclonal tumors. Although the mechanisms of punctuated copy number evolution need 

additional research, we speculate that telomere crisis 112 is a plausible model1, 16. While it is 

possible for a tumor to undergo many bursts of genome instability, it is not required. For 

example, monoclonal tumors can be observed and still fit the punctuated copy number model. 

Monoclonal tumor could arise from (1) only 1 burst of CIN at the time of surgery, (2) the first 

clone to be the most fit, (3) one clone greatly out competing the others, or (4) more clones 

existing but not observed because (a) they were too small in number or (b) there was a strong 

regional effect or (c) our method selected against them. TSCS would select against cells or 

clones that have (1) smaller nuclei – possibly due to more genome packaging or less 

aneuploidy or (2) cells/clones that adhere closely together or closely with other cells1. Our study 

did not gate cells, increasing the possibility for us to observe intermediates as per Gao et al's 

ungated populations16. While we did not specifically see intermediates, we did see our 

populations were usually closely related, suggesting succession of discrete clonal expansions.  
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Due to the spatial information from TSCS, we can go a step further and suggest 

punctuated evolution most likely occurs within the ducts prior to invasion. We propose this 

because we observed the same number of clones and often similar frequencies of clones in 

both the in situ and invasive regions, suggesting clonal instability and clonal expansion 

occurred in the ducts prior to invasion. An alternative model of invasion that could account for 

all clones observed in both in situ and invasive regions is self-seeding245, 246. However, while 

self-seeding has been observed in model organisms in metastatic cases, where tumor cells are 

shedding into the blood stream 27, it has not been observed in localized invasion, especially into 

nutrient low places like ducts, which often have necrotic centers due to lack of nutrients 

(specifically oxygen)247. 

While, we proposed a series of discrete clonal expansions, there are a few bioinformatic 

technical reasons we could have missed observing intermediates including (1) we could be 

filtering our intermediates as noise, (2) k-means clustering grouped intermediates in a discrete 

number of k clusters making them appear more discrete, or (3) the CBS205 parameters could be 

over smoothing the data.  

For each of these statements, we ask if this is logical and probable. Filtering 

intermediates is unlikely because we observed intermediate copy number profiles in the form of 

pseudodiploid cells, specifically in DC6 which included the loss of the X chromosome in 

otherwise diploid cells. Loss during clustering could happen if we did not observe 3 cells with 

similar profiles, but this is unlikely because the intermediates should be very similar to other 

clusters and hence be unaffected by filtering via dbscan, which requires correlation within a 

cluster or number of break points.  

While k-means clustering could group together intermediates with a clonal expansion, 

or even a mutator phenotype9, when we examine the consensus profiles as means, we 

observed consistent discrete differences between the clusters, causing a mutator phenotype to 

be discountable, since it would create a number of unshared events with many similar profiles.  
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This figure was adapted from Casasent et al. 20181 and used by permission. 
 
Example of TSCS Copy Number Profiles from DC6.  
 
Genomic copy number profiles corresponding to single cells in brightfield images that were 
isolated from tissue sections by laser-catapulting. 
 

Figure 66 Segmentation Data 
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A clustering algorithm without sufficient sensitivity could cluster two or more clones 

together and therefore under-sample the tumor; however, I point specifically to DC18 where 

clones B and C are closely related but distinct, suggesting our clustering algorithm is sensitive 

enough, since DC18 clones B and C share almost all chromosomal alterations. 

The last reason we could be missing intermediates is that CBS is over smoothing the 

data. While our TSCS data is noisier than data generated by FACS, since we used the same 

parameters, it is highly unlikely we are missing intermediates based on under-segmentation. In 

addition, when we examine raw bin data overlaid with segmentation, we do not see over 

smoothing (Figure 66 Segmentation Data). Over smoothing would result in the segmentation 

line (blue) appearing uncentered over the area of the bins and continuing through areas where 

the bins (grey) have moved up or down.  

Of all possible reasons for missing intermediates, missing them based on under-

clustering appears the most likely. It is possible we are sampling the intermediates and miss 

classifying them because we are not ordering them clearly enough to see the sequential 

progression. Alternatively, we could be missing intermediates due to sampling bias because it 

is not feasible to sample every cell within the tumor and therefore are stating that the data 

supports sequential clonal progression because we do not observe each stage. Instead we 

observed cells with many of the same alterations and another set with some of the same 

shared mutations, many of them unique single CNAs.  

As for sampling, our calculations for sample size are based on the assumption that we 

are calculating the number of clones correctly, which produces a logical loop. If we are 

undercalculating the number of clones, then we are also under calculating the number of cells 

needed to evaluate the heterogeneity and evolution within a tumor and need to increase the 

number of clones used in our ad hoc saturation model, which would in turn increase number of 

cells required. 

However, the total number of clonal subpopulations we identified is similar to previous 

reports in IDC 16, 8, 110, 85 and is consistent with a punctuated model of copy number evolution16, 
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in which short bursts of genome instability give rise to multiple clones that stably expand to 

form the tumor mass 16, 4, suggesting that we are not underestimating the major subclones, 

even if we are missing rare intermediates. Unlike the previous studies which could not resolve 

where the punctuated bursts of genomic instability occurred, we were able to demonstrate that 

these events most likely took place inside the ducts prior to invasion. 

In addition to our single cell copy number data, our regional exome data also suggest 

most somatic mutations, including driver mutations in TP53 and PIK3CA, were acquired in the 

ducts prior to invasion, at the earliest stages of tumor progression. While it might be possible 

for the differences we observed between the in situ and invasion region to be driving invasion, 

we find this unlikely because (1) most of the mutations were not found to be invasive specific, 

(even if the mutation first appeared to be invasive specific, amplicon validation indicated the 

majority of invasion specific mutations appeared in the ducts prior to invasion) and (2) if a 

mutation occurs and is driving invasion, we would expect this mutation to arise in one clone 

and cause a bottleneck of invasive subclones, with the subclone containing the driver mutation 

being more frequent in the invasive regions. 

Since we do not see a bottleneck of copy number clones, it is highly improbable 

mutation is driving invasion since it would need to occur multiple different times in separate 

subclones. Instead if the driver mutation exists, it is likely this mutation is allowing a clone to 

break through the basal membrane and other clones are following it out, making it difficult to 

separate the more aggressive subclones. Sampling for much larger distances from the ducts 

might make it possible to observe a bottleneck, but it would still be difficult to determine if this 

bottleneck is occurring because the clones are migrating or if it is a stochastic bottleneck. To 

examine this alternate bottleneck question, it would be necessary to observe the migration 

patterns of the different clones. While there is some modeling work that tries to examine this, it 

is still difficult to address this question using current resources.  
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4 Discussion and Future Directions 

This section is based on the research paper "Multiclonal Invasion in Breast Tumors 

Identified by Topographic Single Cell Sequencing" published in the Cell in 2018, by Casasent 

et al1 and the review paper "Genome evolution in ductal carcinoma in situ: invasion of the 

clones" published in the Journal of Pathology in 2017, by Casasent, Edgerton, and Navin2. This 

section expands from the discussion of the future of TSCS and other single cells technologies. 

Portions of this section are adapted from the Casasent et al 20162. Figures and text from this 

Casasent et al 20162 have been reused or modified under the journal's academic copyright 

license with permission from John Wiley & Sons, Ltd for Pathological Society of Great Britain 

and Ireland.   

Here, I discuss the implications of this work. I explain what the TSCS protocol brings in 

terms of advancement to science and to what protocols it can be applied. I will also discuss the 

importance of the multiclonal evolution in terms of basic research and clinical implications. 

4.1 Single Cells and Topographical Information 

Being able to examine the morphology, location, and genetics of single cells allows 

more direct association of the relationships of genotypes and phenotypes. While other 

techniques have examined a specific genetic change in situ (for example, FISH248, 249 and 

specific-to-allele PCR–FISH (STAR-FISH)108), these are usually limited to 1 to 5 genetic 

markers. In contrast, TSCS allows the examination of single cell full genome CNA with 

morphology and location. The first method to examine full genome RNA with micron level 

spatial resolution is fluorescent in situ sequencing (FISSEQ5), which is limited to RNA and 

encounters issues across different cell types and even different subcellular regions, making 

FISSEQ data noisy and somewhat unreliable5. However, there have been multiple 

improvements to FISSEQ, including BaristaSeq, which increased the barcode length of unique 

cells and changed the chemistry from SOLiD to Illumina, increasing the output by about 30%233. 
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Combining spatial and morphologic information with genomic or transcriptomic 

information is important to allow observation of changes occurring within an organism. In 

synchronous DCIS, these observations revealed the clones were intermixing and, while there 

might be gradient changes across a larger region, two or more distinct clones were often found 

side by side, raising questions of possible symbiotic relationships between the clones. 

TSCS is currently limited to working with copy number profiles and has a tedious 

collection process. In TSCS, each cell is collected one at a time, allowing recording of the 

precise location of every cell, but reducing the throughput. Future directions to improve this 

technique should include increasing throughput and expanding to single cell DNA mutations 

and RNA expression. 

4.1.1 Technical Barrier: Scalability 

Previous studies by Martelotto et al showed an ability to hand-microdissect thick FFPE 

tissue sections and to use 4',6-diamidino-2-phenylindole (DAPI) staining and flow sorting to 

separate aneuploid cells from the dissected in situ and invasive regions6. This method provides 

higher throughput compared to TSCS but loses spatial resolution. However, the loss of spatial 

resolution might be an adequate tradeoff for a higher throughput technique depending on the 

scientific question. In addition, the Martelotto et al technique required pairing with sorting 

methods, which will only work for cases where good nuclear markers can separate the cells of 

interest.  

To improve the throughput of our method, we examined pairing different stains with 

DAPI, so that microdissection can be used on small regions of tumor. We tested hemotoxalin, 

eosin, "hemotoxalin and eosin" (the standard H&E used for previous methods in our lab), 

methylene blue, methylene green, and cresyl violet. After staining, we manually removed tissue 

from the slide and flow sorted the results similar to Martelotto et al6. We found hemotoxalin, 

eosin, H&E, and cresyl violet all seemed to inhibit DAPI results for flow sorting. Ploidy peaks 

appeared less disrupted in the methylene blue and green stains. However, more data is 
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needed. Methylene blue and green paired with the direct tagmentation method (described in 

Haowei Du’s Master’s thesis) should allow us to collect and amplify 384 cells from one 

collection step and produce libraries with fewer steps, and thus increase the throughput of this 

process.  

Our next step is to apply methylene blue and methylene green on LCM samples for in 

situ and invasive regions. However, even with these changes we know that we will lose the 

very specific and exact spatial resolution we currently have with TSCS, since locations will 

become groups of cells instead of individual cells. The Navin lab plans to examine consecutive 

sections to flow sort sufficient cells from specific ducts. Because sorting is dependent on ploidy, 

it is necessary to evaluate the ploidy of the tumor before any microdissection occurs, to 

increase the likelihood that sorting will work. 

We have done some calculations of the requirements for using consecutive sections. 

Based on our estimates, we expect to require 105 cells after filtering for a good flow sort 

(so we require at least 1.5x105 before filtering based on an estimated 30% loss doing nano-

pore filtering). We estimate cells to be 12 microns in diameter (about 2x the size of a 

lymphocyte) and expect, based on pathology, cells would not be tightly packed, making up 

about 75% of the selected area. We calculated the volume for each cell as 16 cubic microns. 

Using this estimate, if we are cutting 50-micron thick layers, we estimate we would get about 

three 16-micron layers, and for each 16-micron thick layer, we expect several potentially usable 

tumor sectors. Therefore, we expect to use 1mm cubes (1000 microns), to cut into 16-micron 

cubes, giving 62 16-micron cubes. We expect to see 3,844 cells in a 16-micron 1mm layer and 

11,532 from a 50-micron section. Therefore, we would need at least 13 sections of 50 microns 

thick which are at least 1mm square, after microdissection for each region of interest.  

Since the ducts and invasive regions will only make up so much space in each section, 

we expect to need even more sections. However, it is possible to record the size of the areas 

being microdissected, and I suggest adding these regions for the in situ and invasive regions 
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separately when determining if sufficient cells have been collected. The result of this will be 

very broad spatial information of regions within 0.65 mm to 1mm cubic regions. 

We expect a duct to be mappable through multiple sections and, for invasive regions, 

mappable either using the duct networks to break up the regions or by breaking the section into 

quadrants. While this would increase the number of 50-micon layers required, it allows more 

complete tracing of clones and ducts, with enough power to examine the changes in frequency 

of subclones between ducts or invasive regions, allowing examination of regional effects more 

thoroughly. 

While some scalability is possible, much of the unique precise location information of 

TSCS will be lost if we pair LCM with a flow sorting method, since the only spatial information 

left will be very broad 0.65mm or larger cubic regions.  

4.1.2 Technical Barrier: DNA Mutations 

A major advantage sought in LCM methods is one in which nuclei are damaged less. 

When we first started this project, I tested 3 different LCM machines: Arcturus, Lecia and Zeiss. 

The Arcturus system is a touch-based UV and Infrared (IR) laser system. When we 

tested it, we were able to isolate single cells and amplify using both DOP-PCR and MDA-PCR 

methods. We think the two reasons both methods worked were (1) the IR is gentler on the DNA 

and does not cause double stranded breaks and (2) the touch-based system might be 

unintentionally capturing more than one cell. 

The Lecia system by comparison uses a UV laser and gravity to isolate microdissected 

sections. In the Lecia system, the cell or region of interest is separated from the mass by UV 

laser and the stage is vibrated slightly to cause the membrane with the cell(s) of interest to 

detach and fall into the tubes or caps. In theory, this system should work very well for isolation 

of single cells; however, when the cells fall, they have so much air resistance that they usually 

float more than fall. This causes them to not always fall directly into the tubes or caps below. 

We only tested this system once and it appeared that none of the captured cells were able to 
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be amplified. We think this was because (1) the system was out on a bench and therefore 

affected by drafts and (2) the system had been unused for some time and might not have been 

correctly aligned. Since we only tested this once, we cannot determine for sure what issues 

kept the collection from working. 

The last system was the Zeiss PALM system, used for this project. The Zeiss system 

uses one UV laser to do fine cuts and a different setting of the same laser to catapult the cells 

into a cap above the system. This set up reduces the chances of contamination (one of the 

major issues with the Arcturus system), but it can cause fragmentation of the DNA. To reduce 

the chances of fragmentation, we tested the lowest energy useable to consistently cut and 

catapult the selected cells. 

One of the major issues with mutation data from microdissected single cells is that 

MDA-PCR relies on long DNA strands. If the DNA is too short, then the displacement does not 

work to amplify the strand. The Zeiss system appears to cause the DNA to fragment more than 

the Arcturus system. However, since contamination is such an issue with the Arcturus system, 

we tried varying the energy levels of the UV laser when catapulting the cells with the Zeiss 

system. However, even with lower energy settings, the nuclei seem to be slightly damaged and 

produce shorter fragments than those captured by the Arcturus System. 

An interesting next step would be to test collecting and flow sorting a group of cells as 

described in the consecutive sections discussion. This should allow filtering damaged cells and 

allow more cells to be collected at one time from adjacent tumor sections therefore increasing 

throughput. The Navin lab is currently working on a method to provide spatially resolved single 

cell DNA mutation sequencing with higher throughput and retaining general location 

information. 

Another major issue with collection of single cells from tissues for mutation analysis is 

related to fixation methods to prevent degradation. Previous experiments in the Navin lab have 

demonstrated the MDA-PCR reaction to be severely inhibited by even the tiniest bit of fixatives 
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such as ethanol or methanol. This is an unresolved issue for spatially resolved SCS with 

mutation calling. 

Current technology for spatially resolved single cell mutation calling is specific-to-allele 

PCR–FISH (STAR-FISH)108. STAR-FISH uses competitive probes to measure point mutations 

in thousands of single cells directly in tissue sections by in situ hybridization. STAR-FISH has 

been used to examine single cell alterations in Her2 breast cancer when treated with 

trastuzumab. Currently STAR-FISH is limited by the number of mutations examined at one 

time, usually 2-3, with increases being limited by fluorophore combinations, a far cry from 

spatially resolved whole transcriptome methods like FISSEQ5, which uses fluorophore labeled 

nucleotides for spatially resolved sequencing, but is restricted to RNA.  

4.1.3 Technical Barrier: TSCS and RNA 

One of the next major steps is to expand from DNA to RNA with a TSCS-like method. 

Understanding the RNA expression can provide significant information about tumor functions, 

cell-cell interactions, and phenotypic heterogeneity, making RNA examination desirable. 

Encouragingly, Geo-Seq12 was able to combined LCM with single cell RNA sequencing to 

compare single cell and bulk transcriptome profiles of motor neurons and dopamine neurons, 

suggesting technical feasibility for RNA profiling14. However, one of the major issues with this is 

timing. RNA unprotected by ribosomes degrades very quickly. Therefore, to examine RNA 

expression, it is necessary to keep the samples as cold as possible for as long as possible to 

prevent the degradation. 

We have not tried to use single cell collection of RNA from LCM slides. However, one of 

the major issues is the time required for collection and staining. The collection via Zeiss LCM 

machine occurs at room temperature. To collect ~24 cells using the TSCS method, the slide 

would be at room temperature for over 4 hours. Methods to increase throughput will extend 

time spent at room temperature and might increase RNA degradation. For example, the LCM 

collection of enough regions to flow sort requires about ~5 days of LCM collection, with the 
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LCM running for 8 or more hours at a time, meaning that the slides would be at room 

temperature for at least 40 hours.  

While there are methods like Fluorescent in situ sequencing (FISSEQ)5 and Geo-Seq12 

that work on single cell or small cellular clumps, these methods have drawbacks. 

Perhaps the most spatially resolved high throughput sequencing method currently is 

FISSEQ5. FISSEQ allows one to examine the full transcriptome of single cells in situ, allowing 

spatial visualizations of gene expression. In theory, FISSEQ allows visualization of not just the 

RNA but where the RNA is within a cell by sequencing the RNA directly from microscope 

images. Random hexamer-primer reverse transcriptase is used to transform cellular RNA into 

short cDNAs, which have an additional sequence adapter to allow the RNAs to be converted 

into loops, and then amplified in situ using rolling circle amplification. To generate a stable 

matrix, the amplicons are crosslinked for NGS, allowing the amplicons to be like a cluster in 

NGS, while retaining the RNA molecules original location. A major issue is a lack of 

consistency across different cellular subunits and across different cell types. However, this 

technology has the possibility of producing highly-spatially resolved RNA transcriptomes. While 

improvements to the FISSEQ protocol for RNA spatial sequencing are underway (such as 

BaristaSeq233), it would require a major effort to alter a FISSEQ-like protocol to examine 

spatially resolved whole genome DNA alterations.  

Geo-Seq12 by comparison is a medium range spatially resolved method of RNA 

sequencing. The Geo-Seq papers suggest the possibility of SCS using Geo-Seq12, 13; however, 

most of the data currently available is from clumps of 10 to 20 cells. To map the cells back to 

their location, each clump is given a "zip code" identity. This zip code is used to track the 

expression of any gene within the clump in an illustrative way, including corn plots to show 

location and expression levels. Expanding this method to select single cells will be dependent 

on the LCM technology used. Geo-Seq design occurred on the Leica system but should be 

transferable to the Zeiss system. 
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Just as with TSCS, the distance between two or more cells will have a large impact on 

the need for single cells or clumps of cells. Both Geo-Seq12, 13 and TSCS methods encounter 

technical issues such as UV lasers damaging DNA and RNA prior to amplification or cells cut in 

half during tissue sectioning via cryomicrotome leading to a substantial loss of DNA or RNA. 

While it would be interesting to expand the TSCS method to RNA, it is probably more practical 

to use a FISSEQ5 method and to improve the sequencing consistency across cell types for 

RNA.  

4.1.4 Technical Barrier: TSCS and Genome and Transcriptome Protocols  

The most major and perhaps important improvement to the TSCS protocol would be 

concurrent Genome and Transcriptome (G&T) protocols250, something currently not feasible in 

FISSEQ5, which is limited to RNA. A G&T TSCS protocol would allow examination of 

morphology, spatial location, DNA-mutation or copy number, and RNA transcriptome. While 

G&T methods for SCS do exist, they are not commonly used because they are more difficult 

and time consuming and produce slightly lower quality data250. Pairing of G&T single cell 

protocols with TSCS would be a large advancement and allow connections between genomics 

and transcriptomics as well as genomics to morphology of a single cell. Since the genome and 

transcriptome data from SCS-G&T are from the same cell, the data intergradation is more 

streamlined than for bulk multiple platform studies like TCGA101. In these bulk multiple platform 

studies, DNA and RNA isolation was from separate regions and direct relationships between 

genetics and expression was inhibited by the purity of the sample, allowing for only association 

between genetics and expression to be observed. 

I think that the best "next step" for TSCS protocol improvements is to expand to G&T 

methods, which provide a unified analysis of the genome, transcriptome, location, and 

morphology of a single cell. Implementation in tissue sections would be extremely technically 

challenging and would likely require over collection of cells, double or more, in order to have 

enough cells to pass the quality control steps.  
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4.1.5 Technical Barrier: Spatial Genomics and Clinical Tools  

Spatial genomics is currently a hot topic in science, and the effects of ITH could be 

crucial to personalized medicine. In the case of invasion and progression of cancer, we often 

want to consider if the finding (1) could affect treatment for a specific subset of patients and (2) 

if so how our findings translate into a clinical test. 

4.1.5.1 Clinical Impact of Single Cells of Origin  

Our findings indicate in situ and invasive tumors arose from the same cell of origin, 

suggesting that finding common targetable mutations could allow a single treatment for both in 

situ and invasive regions. The single cell of origin hypothesis provides fundamental support that 

treating common mutations is probably the best way to eliminate the tumor, by targeting the 

foundation or truncal mutations instead of rare subclone specific mutations. 

4.1.5.2 Clinical Impact of Multiple Clonal Invasion 

Multiclonal invasion goes a step further than the single cell of origin or direct lineage 

hypothesis. Multiclonal invasion allows a single tumor cell to initiate tumorigenesis, but integral 

to multiclonal invasion is the concept that all subclones can escape the duct during invasion. 

The clinical impact of this will depend on how invasion occurred. 

The two scenarios we discussed earlier had different implications for clinical research 

and treatment. 

If the clones cooperate to escape the ducts, then inhibiting cooperative interactions 

could be a clinical target. The cooperative scenarios use different mechanisms, each suggests 

a different prospective on how to prevent invasion. For example, if secreted factors caused the 

breakdown of the basal membrane, using antibodies or drugs that can interfere with the 

secretion is a possible treatment. Alternatively, in a leader clone scenario, it becomes 

necessary to either understand which clone is the "leader clone" to provide targeted 

intervention or to target alterations that occur in all clones. However, to gain such knowledge 

about each patient tumor would require mechanistic knowledge currently unavailable and 
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would probably be patient specific. This would require detailed studies using in vitro or in vivo 

systems, such as xenografts, for each patient which is impractical, expensive, and too time-

consuming to usefully direct therapy.  

Further understanding of the mechanisms of multiclonal invasion are needed and 

require the use of further functional studies using in vivo systems. 

4.1.5.3 Clinical Impact of Punctuated Evolution 

There are two well-known models of punctuated evolution: the branching expansions 

251, 16 and the big bang models244. Our data supports the model of punctuated evolution via 

branching expansions for polyclonal tumors and clonal sweeps for monoclonal tumors. 

Branching expansions tumors and clonal sweep tumors should have a set of common 

alterations which should be examined to treatment targetability. If targetable alterations are not 

found in these truncal alterations then these tumors should be treated similarly to big-bang 

tumors. Big bang tumors have a critical event that leads to tumor progression and multiple 

diverse clones, which should share very few mutations, and therefore require broader-based 

treatment such as radiation or chemotherapy. 

4.1.5.4 Clinical Impact of Intratumor Heterogeneity  

Many papers have postulated that increased clonal diversity or ITH will be linked to 

resistance and progression of tumors252-254. Current studies have shown that, similar to 

bacteria255, resistant clones are more likely to be present before treatment and arise from the 

original clonal subpopulations due to the selective pressures of treatment256. This model of 

progression favors a stochastic or neutral model of evolution, where more unique alterations 

correlate with a higher probability of invasion. High diversity indexes correlated with potential to 

metastasize or with poor response to therapy 107, 194, 127. However, ITH measurements such as 

using diversity indexes 107, 16 have not yet been proven to be good prognostic markers.  

If this is the case, a low genomic diversity is expected to correlate with a lower risk of 

invasion in DCIS patients. While overall diversity might be correlated with progression, it is also 
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possible for there to be mutational diversity, which is greater than that observed by copy 

number markers. These mutations might be responsible for resistance and progression and 

add another layer of genetic diversity. This mutational diversity could be hidden within what 

appears to be a homogeneous tumor200, 257, if diversity is calculated based on copy number 

subclones. This genetic mutational diversity might be enough to preserve tumor cells under the 

pressure of an anaerobic environment or chemotherapy, resulting in the eradication of non-

resistant clones and an expansion of the "hidden" but resistant clones.  

4.1.5.5 Technical Barrier of Clinical Tools  

When creating clinical tools, some aspects to consider are robustness of results, speed, 

expense, and analysis complexity. Currently, SCS methods are not robust. SCS methods are 

strongly affected by sampling bias and require significantly more time for meticulous data 

analysis in addition to the expensive of sequencing multiple cells. This makes translating SCS 

to the clinical environment impractical at the current time. This is especially true of TSCS which 

requires multiple days for collection. Methods like TSCS, while a powerful tool for research, are 

currently impractical for translational work.  

However, there is some promise for clinical tools in the future, with the advent of powerful 

new multiplexing single cell methods like 10xGenomics, which allows for the evaluation of 

10,000 or more single cells at a time258. Topographical whole genome RNA methods like 

FISSEQ5 are limited in consistency and robustness, but ReadCor is working to expand FISSEQ 

and possibly make evaluating single cell spatial RNA data in the clinic possible.  

4.2 Future Research Directions   

TSCS and other spatially resolved SCS methods have many uses in the biological 

sciences. A natural extension is to examine other early cancer CNA, mutations, and RNA 

expression. 
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4.2.1 ITH in Pure DCIS and Earlier Cancers 

In this thesis I primarily discuss the single cell CNA observed in DCIS-IDC. However, a 

natural extension of this research is examining even earlier stages of breast cancer for patterns 

of progression on the single cell level. It is possible to use TSCS on earlier stages of breast 

cancers like ADH and pure DCIS, because TSCS requires far less tissue and cells than other 

isolation methods like flow sorting. 

A hypothesis frequently heard is that more diverse tumors are more likely to progress. 

TSCS is well suited to examining breast cancers or other aneuploidy driven cancers. Two basic 

experiments with TSCS to examine possible relationships between CNA diversity and cancer 

progression are described below. 

First is directly comparing clonal CNA diversity of pure DCIS and DCIS-IDC. This would 

be best with tumors which matched grade and receptor statuses to reduce possible 

confounding factors. By comparing the clonal CNA diversity of pure DCIS and DCIS-IDC, we 

can appraise clonal diversity at the two-time points to determine if clonal diversity is a driving 

factor in progression. If clonal diversity is a driving factor, we expect the DCIS-IDC tumors to 

have higher clonal diversity than the pure DCIS tumors. However, a limit on this experiment 

could be a lack of pairing of samples (pure DCIS and DCIS-IDC) and the confounding 

possibility that "pure" DCIS might progress to DCIS-IDC at some point. The first issue cannot 

be address without a longitudinal study to would allow pairing of samples. The second issue is 

addressed by making sure pure DCIS has not progressed within a specific timeframe, for 

example 5 years for high grade DCIS. Therefore, if CNA clonal diversity was a key feature of 

progression differences between pure DCIS and DCIS-IDC should be observed.  

Second is to examine the progression of pure DCIS to DCIS-IDC. While this might be 

considered impractical due to the large number of samples needed to get 10 DCIS-IDC 

samples (Figure 5 Estimates of Number of Samples Needs for Longitudinal Studies), this is the 

most direct experiment. By examining a large cohort of pure DCIS patients, determining their 

CNA diversity, following these patients for 15+ years, and then comparing CNA diversity 
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between patients that progressed and those that did not, this experiment would answer the 

question of any relationship between diversity and progression the most directly. However, as 

discussed above in 2.1 Sample Selection, longitudinal studies are considered impractical due 

to the large number of patients required. 

Alternatively, TSCS can easily be utilized to investigate similar questions about the 

nature of cancer progression in other early cancers. These early stage progression studies best 

suited for TSCS would require the early cancers to have well-defined histopathologies. TSCS 

works best when visualizing the difference between tumor and normal cells is easier. Future 

directions to using TSCS in early cancer, as we discussed in our review paper2 can be in canter 

types like colorectal adenomas, lobular carcinoma in situ (LCIS), prostatic intraepithelial 

neoplasias (PIN), and pancreatic intraepithelial neoplasias (PanINs).  

4.2.2 Examining Spatial and DNA Mutations 

For DNA mutations, we can examine the possible progression of gradual accumulations 

of mutations, as seen in colon cancer257, 78. SCS theoretically can separate driver mutations 

from passenger mutations based on the frequency of mutations within single cells. With 

spatially resolved SCS, we can take this a step further, and examine mutation differences 

between the in situ and invasive regions of other cancers.  

With a TSCS-like method, one can look at the shape and placement of the single cell to 

select a cell for sequencing. Therefore, one can examine morphology changes associated with 

subclones or mutations. While, this type of method would reduce the number of cells captured 

per region, it does allow more spatial and morphologic data to be collected for each cell. 

Therefore, there will be a trade off in increasing the throughput or increasing the spatial and 

morphology information. 

However, it seems feasible that one would prefer to use a high throughput spatially 

resolved single cell method that would allow one to sort the diploid and aneuploid cells, 

estimate the frequency of different mutations, and then use a different type of method, like 
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STAR-FISH108, to examine morphology and spatial intermixtures of clones. The most notable 

limitations of STAR-FISH are the requirement of prior knowledge of the mutation of interest and 

the limited number of genes measured in a single section. 

Other possible uses for this technique include other cancer research, developmental 

science, neuroscience, and exploring mosaicism. In other cancer research, we often encounter 

one type of cancer cell morphology adjacent to another (such as with the morphology of 

micropapillary breast cancer). Using TSCS, we can take a closer look at the genetic alterations 

of copy number changes between distinct neighboring cancer morphologies. Methods like 

FISSEQ5 could provide fast, morphologic, spatial, and transcriptomic data, but it cannot provide 

the mutational data so important to cancer analysis and mosaicism.  

4.2.3 Profiling Geographic Heterogeneity  

We developed TSCS to examine geographic ITH and to specifically examine ITH in 

synchronous cancers where in situ and invasive regions are closely paired to understand 

invasion better. Diverse expression of proteins15, RNA expression, DNA mutations108, 8, 17 and 

CNA16, 17 have been observed in breast cancer multiple times. With single cell DNA 

sequencing, regional heterogeneity and the spatial relationships of ITH became an important 

avenue of research, providing insight to tumor evolution and invasion. 

However, the importance of geographic heterogeneity goes beyond cancer. Spatial 

copy number heterogeneity has been observed in neurons and other brain tissue, suggesting 

DNA copy number and mutations might play an important role in organ development. Another 

developmental question concerns background mosaicism in any given tissue. Understanding 

mosaicism is important for both development and cancer, providing empirical evaluations of the 

levels of background mutations to help provide better estimates about the accumulation of 

mutations during development and aging. 

TSCS and other spatially-resolved SCS methods obviously hold great potential for new 

avenues of investigation in early stage cancers. For more advanced cancers with large invasive 
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components or where metastasis spread throughout the body, micron-level resolution of spatial 

genomics is less important than in early stage cancers. By studying the spatially resolved 

genomics in early cancer, we can examine tumor initiation and invasion, giving us more insight 

into genomic alterations needed for each cancer to progress. By first studying early cancers 

with well-defined histopathologies, such as colorectal adenomas, LCIS, PIN, and PanINs, we 

can examine the spatial effects of ITH. 

In these early cancers, spatial resolution can provide new insights into the context, 

organization, and migration of tumor clones as they escape the basement membranes and 

invade the surrounding tissues. Spatially resolved profiling methods of DNA, RNA and proteins 

can examine why some premalignant cancers remain indolent for the lifetime of the patient, 

while others progress to invasive disease and ultimately cause morbidity in patients. 

These concepts cross many fields, as witness by the development of use of Geo-Seq 

first in developmental biology, while LCM-Seq and FISSEQ were both developed for neurology. 

4.3 Closing Remarks 

My closing remarks address issues related specifically to synchronous DCIS-IDC and 

the technology involved with making spatially resolved SCS possible. 

4.3.1 Synchronous DCIS-IDC  

Collectively, genomic studies of synchronous DCIS-IDC patients suggest an 

independent lineage model is uncommon, since most synchronous DCIS patients share many 

concordant CNAs and mutations. Instead genomic data support a direct lineage model and 

indicate evolution of both DCIS and IDC subpopulations from a common origin. Up until now, 

the concordance and discordance of mutations in DCIS and IDC regions of synchronous 

patients have provided circumstantial evidence for distinguishing between the different direct 

lineage hypothesis114, 163, 86, 84, 119, 165, 144, 166, 85, evolutionary bottleneck and multiclonal invasion. 

Without SCS methods, it has been difficult to distinguish between evolutionary 

bottleneck and multiclonal invasion models of the direct lineage hypothesis. Our spatially 
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resolved SCS data provided insight into the progression of DCIS to IDC and demonstrated that 

all clones escaped the ducts and expanded to invasive regions. This data strongly suggests a 

model of multiclonal invasion. While more data is necessary to confirm multiclonal invasion, 

recently developed spatially resolved DNA, RNA, and protein technologies should help 

overcome technical obstacles such as tumor purity. These methods are likely to have important 

applications for studying direct models of invasion, to determine if invasive subclones have any 

distinguishing mutations108. 

4.3.2 Technology  

Technology development often occurs because current technologies are unable to 

provide the resolution of detail needed to fully examine an issue of interest. Several of the 

innovative technologies I have highlighted here were developed for other research questions 

but have the potential to provide new insights into cancer invasion. While STAR-FISH108 and 

Solid-phase Imaging Mass Cytometry (IMC) 235 were developed for cancer; Geo-Seq was 

developed to examine RNA transcription changes during development12, 13 and LCM-Seq14 and 

FISSEQ was developed to examine RNA transcription changes in the brain5.  

Multiple improvements to FISSEQ have been developed to increase the throughput and 

improve output per cell. For example BaristaSeq233, which was developed in baby hamster 

kidney (BHK) cells, was developed to barcode single cells increase data quality and resolution. 

In the BaristaSeq, however, they suggest that this technique could be used to map neuronal 

projections or lineages.  

All have the potential to enhance our studies of spatially resolved genomes and 

transcriptomes. 
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