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Abstract

We present a Minimal Event Distance Aneuploidy Lineage Tree (MEDALT) algorithm
that infers the evolution history of a cell population based on single-cell copy number
(SCCN) profiles, and a statistical routine named lineage speciation analysis (LSA),
whichty facilitates discovery of fitness-associated alterations and genes from SCCN
lineage trees. MEDALT appears more accurate than phylogenetics approaches in
reconstructing copy number lineage. From data from 20 triple-negative breast cancer
patients, our approaches effectively prioritize genes that are essential for breast cancer
cell fitness and predict patient survival, including those implicating convergent
evolution.
The source code of our study is available at https://github.com/KChen-lab/MEDALT.

Keywords: Single-cell, scDNA-seq, scRNA-seq, Copy number alteration, Tumor
evolution, Lineage tracing, Driver discovery

Background
Aneuploidy, the phenomenon that genomes acquire or lose chromosomal fragments, has

been causally implicated in a wide variety of human diseases such as neuropsychiatric dis-

orders and cancer [1–3]. Genetic and phenotypic plasticity resulting from aneuploidy

evolution causes treatment resistances and disease recurrences [4–6], which fundamen-

tally challenges current medicine. Recent studies have shown that not only disease tissues,

but also pathologically normal tissues may contain a high degree of somatic mosaicisms

(e.g., peripheral blood [7] and esophagus [8]). Therefore, defining which copy number al-

terations (CNAs) cause pathogenesis and which are part of normal variations becomes in-

creasingly important in genome medicine, especially for cancer [9, 10].

Various efforts have been made to obtain comprehensive knowledge of CNAs respon-

sible for cancer diagnostics, prognostics, and targeted therapeutics. Systematic CNA ana-

lysis in over 10,000 primary tumor samples in the cancer genome atlas (TCGA) and 2500

samples in the International Cancer Genome Consortium (ICGC) revealed distinct CNA

landscapes in different cancer types [11–13]. Comparison of CNAs among autologous tu-

mors obtained at different stage from different histology revealed that CNAs are critical
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for tumor evolution across time and space. However, studies based on bulk tissue samples

cannot fully depict the history of tumor evolution, which occurs in single-cell resolution

[14], and thus have limited power to discover the associated genetic drivers.

Recent advances in single-cell DNA sequencing (e.g., tagmentation-based ap-

proach [15] and single-cell CNV solution by the 10x Genomics) have enabled

large-scale acquisition of single-cell copy number (SCCN) profiles in tens of thou-

sands of cells at around 100-kb resolution (~ 0.1X sequencing coverage per cell)

[16–19]. Other platforms such as single-cell RNA-sequencing [20, 21] and single-

cell ATAC-sequencing [22] have also been utilized for SCCN profiling. A set of

bioinformatic tools have been developed to call SCCN profiles, taking into consid-

eration various confounding factors [23–25].

These SCCN profiles not only present a rich pool of genetic perturbations that are in-

visible at tissue level, but also potentiate reconstruction of cellular lineage, based on

which the impact of an allele on cellular fitness can be measured. Thus, statistical ap-

proaches that integrate cellular lineage tracing with population genetic analysis [26] can

enable discovery of novel disease genes and mechanisms of disease progression.

So far, studies performing retrospective lineage tracing from single-cell data have

largely been utilizing phylogenetics approaches designed to model species evolution,

which is quite different from cellular evolution in terms of duration, scale, genetics, and

dynamics [27, 28]. Many existing phylogenetics approaches assume that genomic sites

evolve independently and follow the so-called infinite site assumption (ISA) [29]. But in

the context of aneuploidy, a genome site can often be altered repeatedly by different

CNAs, due partly to constraints on genome and chromatin structures, properties of

DNA replication/repairing [30], and functional selection. To apply conventional max-

imum parsimony approaches on SCCN data, one has to over-segment genomic regions

and represent copy numbers as characters in disjoint intervals, which ill-represents the

properties of DNAs and distorts evolution propensity across copy number states. Other

conventional methods using Euclidean, Hamming, or correlational distances also ill-

represent the segmental, non-linear nature of CNA evolution [31], leading to inaccurate

inference of tree topology and branch lengths.

A few new phylogenetics approaches have been developed to tackle these limita-

tions by introducing a new distance metric called Minimal Event Distance (MED),

which postulates the minimal number and the series of single-copy gains or losses

that are required to evolve one genome to another. Particularly, the MEDICC [32]

algorithm infers a copy number phylogenetic tree from the allelic copy number

profiles of a set of samples. However, the problem is NP-hard [33]. Even the sim-

plified solutions could be applied to only tens of genomes and are not scalable to

current single-cell datasets consisting of thousands of cells. Zeira et al. [34] pro-

posed a linear-time solution to the problem based on an integer linear program-

ming (ILP) formulation, but no tool was released.

Having the new distance and efficient tree inference algorithms was a good step for-

ward, but it remains unclear how to identify functional variants, given a cell phylogenetic

tree. Intuitively, functional variants affecting cellular fitness should lead to altered variant

allele frequencies in the descendant populations, as implicated by previous multiregional

tumor phylogenetics studies [10, 35]. However, mathematical procedures [28, 31] have

not been developed to quantify the impact of a genomic alteration over a phylogenetic
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tree, taking into account sparsity in cell population sampling, multiplicity in subset parti-

tioning, and propensity of the alteration at a particular genomic location, etc. [36]

Results
Overview of the methods

To address these challenges, we propose a new computational framework that performs

lineage tracing from SCCN data and detects significant focal (gene resolution) and

broad (chromosomal-arm resolution) CNAs associated with lineage expansion (Fig. 1).

The SCCN profiles are represented as an integer-valued matrix using previously pub-

lished approaches [16, 18], in which each row represents a cell and each column a

chromosomal region. We then deduce the minimal number and the series of single-

copy gains or losses (i.e., minimal event distance) that are required to evolve the gen-

ome of one cell to the next (Additional file 1: Fig. S1a) using an efficient greedy algo-

rithm which is similar and has the same asymptotic bound as Zeira et al. [34] (see the

“Methods” section and Additional file 1: Table S1).

Fig. 1 Algorithm flowchart and evaluation. a Algorithm for constructing a MEDALT. b Identification of non-
random fitness-associated CNAs in an individual sample. c Identifying non-random fitness-associated CNAs in a
cohort of samples. d Identifying parallel/convergent evolution CNAs in an individual sample. e AUC of FAA
identification based on 100 synthetic datasets without noise. MP, maximal parsimony tree. NJ, neighbor-joining
tree. ML, maximum likelihood tree
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We then infer a directed minimal spanning tree, named Minimal Event Distance An-

euploidy Lineage Tree (MEDALT, Fig. 1a), using an adapted version of the Edmond’s

algorithm that scales polynomially with respect to the number of cells (see the

“Methods” section and Additional file 1: Table S2). In a MEDALT, each node repre-

sents a cell, each edge represents a kinship between two cells, arrows point towards

younger cells, and the root represents a normal diploid cell.

MEDALT allows a genomic region to be repetitively altered by multiple single-copy

gains or losses. It provides a parsimonious interpretation, the minimal number of

single-copy gains or losses that may have led to the evolution of the entire cell

population.

An important constraint is that chromosomal fragments cannot be recovered if com-

pletely lost. To reflect that property, the MEDs originating from cells containing homo-

zygous copy number loss are set to infinity.

Since MEDALT describes copy number evolution by segments instead of sites, we ex-

pect that it will enable more accurate cellular lineage tracing than do conventional phy-

logenetics methods (Additional file 1: Fig. S1b; see the “Methods” section).

We further establish a statistical routine, named Lineage Speciation Analysis (LSA),

to prioritize CNAs and genes that are non-randomly associated with lineage expansion

and thereby have potential functional impact.

To perform LSA, we first iteratively partition cells into lineages (subsets) based on the

topology of the lineage tree. For each CNA region in each candidate lineage, we calculate

a cumulative fold level (CFL) as the summation of the copy number levels in constituent

cells (Fig. 1b and Additional file 1: Fig. S1c). We then assess the statistical significance of

the observed CFL with respect to a background distribution established from random lin-

eages of similar sizes (the same or the closest size) obtained from a permutation process

(see the “Methods” section; Fig. 1b and Additional file 1: Fig. S1d). The permutation

process randomly assigns SCCN profiles by chromosomes into different cells 1000 times

and reconstruct a lineage tree from each permutated dataset using the same lineage tra-

cing algorithm. For each lineage from the real data, at least 1000 lineages of similar size

(the same or the next closest size) from the permutated trees are selected, since multiple

lineages of similar size may exist in each permutated tree. It is important to account for

background variations induced by factors unrelated to cellular fitness such as high CNA

prevalence at fragile sites or repeats that are non-functional, as shown in previous studies

[36, 37] and to account for bias of lineage tracing algorithms. We used three additional

statistical approaches as controls, which estimate background distributions without recon-

structing trees from permutated SCCN data (see the “Methods” section). LSA clearly out-

performed other approaches for identifying CNAs that are non-randomly associated with

lineage expansion (Additional file 1: Fig. S1e). The efficiency of the MEDALT algorithm,

which is linear with respect to the number of cells and genome size (Additional file 1: Fig.

S2), makes it possible to perform a large number of permutations in order to obtain a rea-

sonably accurate background distribution. The statistically significant CNAs and genes so

identified may not be causal themselves, but are associated with (e.g., co-occur) with

causal fitness-impacting alterations. Thus, LSA distills the massive genome-wide SCCN

data into a compact molecular blueprint, consisting of CNAs/genes occurring non-

randomly at important moment during the course of the evolution with significant impact

on the fitness of the descendant cells.
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LSA can also be applied at cohort level to analyze single-cell data obtained from mul-

tiple patient samples. In that setting, the method creates meta-lineages combining cells

from different patients and prioritizes events non-randomly occurring across back-

ground lineages established over the entire cohort (Fig. 1c, Additional file 1: Fig. S1f

and see the “Methods” section). Genes that are altered nonrandomly in multiple pa-

tients will likely have higher scores than those altered in a single patient.

Additionally, LSA can be applied to prioritize CNAs associated with parallel/conver-

gent evolution [38] (abbr. PLSA) by estimating the chance of a CNA occurring nonran-

domly in two or more parallel lineages, as a consequence of positive selection (Fig. 1d,

Additional file 1: Fig. S1g and see the “Methods” section). This opens a new way for

gene discovery that was substantially underpowered in bulk sample studies.

In silico evaluation

To evaluate our approaches, we simulated copy number evolution in single cells using

a Markov process parameterized by cell fitness parameters (Additional file 1: Fig. S3a

and b; see the “Methods” section) [39]. Spiked in randomly were fitness-associated al-

terations (FAAs), which indicate fitness change in a cell triggering subsequent lineage

expansion. Synthetic SCCN profiles were created mimicking various CNA mechanisms

such as genome doubling, breakage-fusion-bridge (BFB), tandem duplication, terminal

deletion, and unbalanced translocation [30]. We created 100 simulated datasets, each

containing around 200 cells. Besides obtaining MEDALTs, we also obtained phylogen-

etic trees using conventional maximum likelihood (ML), maximum parsimony (MP),

and neighbor joining (NJ) approaches (see the “Methods” section). In addition, we ran

GISTIC [37] (see the “Methods” section), a method developed to prioritize CNAs in tis-

sue samples by treating the cells as unrelated samples.

We then performed FAA detection in each dataset by performing LSA on individual

trees inferred by various methods. We compared the detection performances using area

under receiver operating characteristic curves (AUC; see the “Methods” section). Over-

all, the MEDALT approach achieved substantially better detection performance than

the other methods (Fig. 1e). The benefits appeared robust over a range of cell numbers,

when we repeated the benchmarking on subsets of the cells via random down-

sampling, until the number of cells dropped below 60. It appeared that at least 30% of

the cells were required to recapitulate the major population structure in this simulation

irrespective of the algorithms (Fig. 1e).

We further dissected the contribution of each of the 3 steps in our approach, i.e.,

MED, MEDALT, and LSA, to the final performance of FAA detection. Compared to

MED, the MEDALT and LSA steps had more contribution to the final performance

(Additional file 1: Fig. S3c). Therefore, although MED can be affected by noise in the

SCCN data, the net effects appeared limited (Additional file 1: Fig. S3d).

Detecting fitness-associated CNAs in disease cohorts

We applied our methods on the single-cell DNA-sequencing data acquired from 20

triple-negative breast cancer patients (TNBCs, Additional file 1: Table S3) [16, 18].

SCCN profiles were downloaded from the original paper which were generated using a

variable binning method followed by circular binary segmentation (CBS) [40]
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(Additional file 1: Fig. S4; see the “Methods” section). We obtained both MEDALTs

and phylogenetic trees for each sample and ran LSA to identify non-random alterations

at both sample and cohort levels.

We then compared the accuracy of the trees in inferring cellular timing using

data from 4 patients with longitudinal pre-, mid-, and post-treatment (neoadjuvant

chemotherapy) samples. We found that MEDALTs ordered cells much more con-

sistently with their biopsy timing than did the phylogenetic trees (Additional file 1:

Fig. S5), with pre-treatment cells appearing near the root and post-treatment cells

near the leaves.

Consistent with previously studies [16, 18], most of the TNBC samples appeared to

have developed through branched evolution via multiple parallel lineages. Interestingly,

the MEDALTs indicated that these parallel lineages may have distinct mutation rates

(Fig. 2a and b, Additional file 1: Fig. S6), which may be attributable to variable degree

of DNA damage repair (DDR) loss (Fig. 2b; see the “Methods” section) [41]. Indeed,

when we performed gene set enrichment analysis on genes identified by LSA, we found

that the lineages of higher CNA rates have more DDR genes affected by the CNAs than

the lineages of lower CNA rates (Additional file 1: Fig. S7).

We identified fitness-associated CNAs at chromosomal and gene resolution using

cohort-level LSA (p value < 0.001; see the “Methods” section). For benchmarking, we

also performed the same LSA on the MP trees. We also ran GISTIC [37] on the

pseudo-bulk copy number profiles generated by averaging the SCCN profiles across the

cells in each sample (see the “Methods” section).

Overall, the MEDALT plus LSA approach identified 30 broad CNAs, 80% of which

have been functionally associated with breast cancer development and treatment out-

come in the literature (Additional file 1: Table S4). The accuracy was at least 13%

higher than the results derived by the other methods (Fig. 2c; see the “Methods” sec-

tion). We independently performed the LSA at gene resolution, focusing on 448 genes

from 11 oncogenic pathways including Notch, PI3K, Hippo, RTK/RAS, MYC, cell cycle,

p53, Nrf2, Wnt, TGFB, and DDR defined in TCGA Pan-can atlas research [41, 42].

Our approach identified 197 genes, including 109 amplified and 88 deleted genes (Add-

itional file 2). In contrast, the MP plus LSA approach identified 130 genes, 82 of which

were amplified and 48 deleted. GISTIC identified 60 genes, 33 of which were amplified

and 27 deleted.

By examining the CRISPR knockout screen data in 29 breast cancer cell lines in the

DepMap database [43], we found that the 109 amplified genes identified by the MEDA

LT plus LSA approach had significantly lower gene knockoff effect scores than those of

the 82 amplified genes detected based on the MP trees (one-side Wilcoxon rank-sum

test, p = 2.75 × 10−9) and of the 33 genes detected by GISTIC (one-side Wilcoxon rank-

sum test, p = 6.65 × 10−17) (Fig. 2d). The scores were also significantly lower than those

of oncogenes (one-side Wilcoxon rank-sum test, p = 1.12 × 10−15) and tumor suppres-

sors (one-side Wilcoxon rank-sum test, p = 2.81 × 10−16) reported in the oncoKB [44]

and intOGen [45] databases, which are not specific to TNBC, and sets of randomly se-

lected genes of identical size (one-side Wilcoxon rank-sum test, p = 8.97 × 10−21). Not

significant were the scoring differences among the sets of deleted genes, due likely to

challenges in calling deletions from noisy low-coverage data and in quantifying deleteri-

ous effects in lineages of limited cell numbers.
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Among the 197 genes MEDALT nominated, some are not reported in the oncoKB

[44], COSMIC [46], and intOGen [45] databases (Additional file 3) but supported by

functional genomics data in large-scale cancer patient studies (Additional file 1: Fig.

S8a). For example, loss of RBBP8 indicated worse prognosis among the breast cancer

patients in TCGA and those in the METABRIC [47] (Fig. 2e to g). RBBP8 is a poten-

tially interesting target as it interacts with BRCA1 and modulates its function in tran-

scriptional regulation, DNA repair, and/or cell cycle checkpoint control [48]. In

addition, loss of PPP4R1 indicated worse prognosis in TCGA and the METABRIC as

well (Additional file 1: Fig. S8b to d).

In addition, we identified 107 genes that were likely positively selected (PLSA p value

< 0.001, Additional file 4) by convergent evolution in 7 of the 20 patients (Fig. 3a), by

performing PLSA on the MEDALTs derived from individual patients. Among these, 65

genes were amplified. By repeating the same PLSA on the MP trees, we identified 355

genes, 252 of which were amplified. The set of 65 genes identified from the MEDALTs

had significantly lower gene knockout effect scores (thus more essential) than those of

the set of 252 genes identified from the MP trees (one-side Wilcoxon rank-sum test, p

value = 4.07 × 10−9), of known oncogenes (one-side Wilcoxon rank-sum test, p = 2.81 ×

10−16) and sets of randomly selected genes (one-side Wilcoxon rank-sum test, p =

9.01 × 10−21), based on the CRISPR screens of the 29 breast cancer cell lines in the

DepMap [43] (Fig. 3b). No significant scoring differences were found between the de-

leted genes identified from the MEDALTs and those identified from the MP trees,

Fig. 2 Application on scDNA-seq data from TNBCs. a The MEDALT Inferred from patient t1. The widths of the
edges are drawn proportional to the MEDs. Colors (yellow, blue and green) highlight the 3 main branches. b
The relationship between CNA numbers (Y-axis) and the depth on the tree (or distance to the root, X-axis). The
barplot shows the fraction of DDR genes among the genes with copy number losses in the 3 lineages. c ROC
curve for identifying functionally important, broad CNAs in the literature (Table S4). d The gene knockout effect
scores of the gene sets (cohort LSA test p value < 0.001) identified based on the MEDALTs, MP trees, and GISTIC
in 29 breast cancer cell lines. Included as controls are 100 sets of 197 randomly selected genes, 234 oncogenes,
and 269 tumor suppressors (TS) in oncoKB and intOGen. The overall survival (OS) (e) and the progression-free
survival (PFS) (f) of RBBP8 loss in TCGA breast cancer patients. g OS of RBBP8 loss in the METABRIC
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although both sets appeared more essential than the sets of known tumor suppressors

and randomly selected genes.

Among the 107 genes identified by PLSA, 42% were known cancer genes, a fraction

higher than what we obtained from the cohort-level single-lineage LSA (38%, Add-

itional file 1: Fig. S8e). Loss of FAAP24 appeared in two distinct lineages in patient

KTN102 and was associated with worse progression-free survival (PFS) in TCGA breast

cancer data (Fig. 3c and d). Loss of BRCA1 was also found in two parallel lineages,

which were depleted of cells from the post-treatment sample (Fig. 3c). That observation

may be explained by the fact that BRCAness tumors often respond to neoadjuvant

chemotherapy [49, 50].

Applications on single-cell RNA sequencing data

Our approaches are likely beneficial to characterizing SCCN data derived from single-

cell RNA sequencing (scRNA-seq) experiments. To examine that possibility, we col-

lected data obtained from paired primary and metastasis (or relapse) samples of a var-

iety of cancer patients, including 6 head and neck squamous cell carcinoma (HNSCC)

[20], 8 multiple myeloma (MM), 2 oral squamous cell carcinomas (OSCC) [51], and 4

ovarian cancer patients (OV) [52] (Additional file 1: Table S5).

We obtained SCCN profiles from the scRNA-seq data using the inferCNV program

[53], which derives CNAs by exploring expression intensity of genes across position of

tumor genome in comparison to a set of normal cells. We calculated average copy

number levels in non-overlapping genomic 30-gene windows to infer MEDALT (see

Fig. 3 Convergent evolution in TNBCs. a Genes associated with convergent evolution in the 20 TNBC patients.
Labeled at the top are known cancer genes. AMP, copy number amplification; DEL, copy number deletions;
MIX, genes with amplifications and deletions. b The gene knockoff effect scores of gene set identified from the
MEDALTs and the MP trees by PLSA (p value < 0.001). Included as controls are 100 sets of 107 randomly
selected genes, 234 oncogenes and 269 tumor suppressors (TS) in oncoKB and intOGen. c The MEDALT of
patient KTN102. Orange boxes highlight lineages under potential convergent evolution. d Progression-free
survival of breast cancer patients with and without FAAP24 loss in TCGA
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the “Methods” section). We then obtained a MEDALT for each patient, including cells

in both the primary and the metastasis samples. For comparison, we also performed

analysis for each patient using Monocle v3.0 [54], which was designed to reconstruct

the transcriptomic (and phenotypic) trajectory of a developing cell population. Since

the cells in the primary samples were most likely born before the cells in the metastasis

(or relapse) samples, they should be arranged closer to the root of the lineage trees. In-

deed, in the MEDALTs, the cells from the primary samples were placed significantly

(one-side Wilcoxon rank-sum test, p = 0.0098) closer to the root than the cells from

the metastasis (or relapse) samples (Fig. 4a). In contrast, the pseudotime estimated by

Monocle did not significantly (one-side Wilcoxon rank-sum test, p = 0.51) delineate the

two types of cells (Fig. 4b). Meanwhile, cells in the MEDALT lineages had more

homogenous SCCN profiles than those in the Monocle clusters (Fig. 4c and Additional

file 1: Fig. S9; see the “Methods” section). The result from this experiment indicated

that our approaches are potentially more accurate in characterizing genome evolution

from cancer scRNA profiles than approaches that are designed for transcriptomic tra-

jectory reconstruction. This may not be entirely surprising as DNA copy number data

have demonstrated useful for cancer cell chronology inference [12] while RNA data are

known subject to complex transcriptional regulation.

We performed cohort-level LSA for gene set estimated from inferCNV on the MEDA

LTs and identified 75 fitness-associated genes (Additional file 5, p value < 0.001), which

included 45 amplified and 30 deleted genes from the 20 patients. In contrast, Monocle

identified 3412 differentially expressed genes between the cell clusters.

We found that the amplified genes identified by our approach are significantly more

essential than those identified by Monocle (one-side Wilcoxon rank-sum test, p =

2.35 × 10−186; Fig. 4d), based on the CRISPR screens of 524 cancer cell lines in the Dep-

Map [43].

Discussions
Advances in single-cell technologies present new challenges and opportunities for mak-

ing biological discovery. Single-cell studies often involve large numbers of cells, which

Fig. 4 Application on scRNA-seq data from cancer patients. a Average distance to root of the cells in the primary
samples (X-axis) and those in the metastasis/relapse samples (Y-axis) estimated from the MEDALTs. b Average
pseudotime of the cells in the primary samples (X-axis) and those in the paired metastasis/relapse samples (Y-axis)
estimated by Monocle. c Pearson’s correlation coefficients between the SCCN profiles of the cells in the same lineages
dissected from the MEDALTs (Y-axis) versus those in the same cell states clustered by Monocle (X-axis). Each dot in a,
b, and c represents a cancer patient. All the p values were estimated by one-side Wilcoxon rank-sum test. d Average
DepMap gene-knockoff effect scores of the gene set identified by MEDALT and those by Monocle from the 20
patients. Also included as controls are 100 sets of 75 random genes, 234 oncogenes, and 269 tumor suppressors (TS)
in oncoKB and intOGen
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are powerful at characterizing cellular heterogeneity, but small numbers of biological

samples, which are underpowered for discovering common disease genes. It has been

shown by recent genome-wide association analysis that it is possible to enable new dis-

covery by performing association analysis at cell-type resolutions [55]. For cancer and

genetic diseases driven by somatic mutations, being able to obtain genetic footprint at

various time and conditions can enable discovery of genes responsible for disease pro-

gression and resistance to therapy.

However, it remains unclear what analytical strategies should be deployed to achieve

the benefits. Even more challenging it gets when CNAs are being considered, as CNAs

affect large regions of the genome and are difficult to trace using phylogenetics

methods.

In our study, we demonstrated that it is possible to achieve the benefit by recon-

structing copy number evolution history as a lineage tree, i.e., MEDALT, and perform-

ing permutation-based statistical analysis, i.e., LSA, to identify fitness-associated CNAs

and genes.

We have learned several important lessons in our study.

First, it is important to perform accurate lineage tracing. Although the single-copy

gain and loss model that we implemented in deriving MEDALTs is limited in complex-

ity, it already performed substantially better than conventional phylogenetics algorithms

such as MP that assumes infinite sites and NJ that employs naïve distance metrics, as

shown in our simulation and in real data analysis. It is conceivable that further develop-

ment of methodology that incorporates more complex genome evolution mechanisms

such as chromothripsis [56] can lead to better results.

An important goal was to represent convergent evolution that is likely prevalent

in the lens of CNAs [10, 57]. Conventional phylogenetics algorithms strictly pro-

hibit the expression of convergent evolution by disallowing an alteration to occur

multiple times in a course of evolution [28]. Several new algorithms relaxed such

limitation but were designed for analyzing point mutation data [58]. As shown in

our analysis of the TNBC patients, genes identified based on convergent evolution

analysis (i.e., PLSA) had an even higher fraction of known cancer genes than those

identified based on cohort-level single-lineage LSA. Our result suggests that exam-

ining convergent evolution is likely a key component towards fully unleashing the

power of single-cell studies.

Unlike canonical phylogenetic trees, MEDALTs are minimal spanning trees that do

not contain unobserved internal ancestral nodes. Representing evolution using minimal

spanning trees instead of phylogenetics trees was our deliberate choice, as it allowed us

to develop polynomial-runtime solutions that are scalable to real datasets containing

thousands of cells. It also allowed us to conveniently implement biologically meaningful

MED and enforce directionality constraints. Phylogenetics algorithms are likely effective

when the numbers of cells are small and that the alterations are simple to trace. None

of these conditions apply to available SCCN datasets that have CNAs evolving non-

linearly in hundreds of cells. Moreover, we have shown in our simulation that for the

purpose of detecting fitness-association alterations, our method outperformed phyloge-

netics approaches in a wide range of sample sizes.

A particular challenge in developing and evaluating computational lineage tracing

methods is the lack of exact ground truth. Although various experimental technologies
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have been developed [59, 60], we are not aware of any that can be applied to trace copy

number evolution in patient samples. To circumvent this, we utilized in silico simula-

tion that mimics several prevalent CNA mechanisms to evaluate the accuracies of the

reconstructed lineages and fitness-associated alterations. We also utilized longitudinal

datasets on which we knew the biological stages of the cells to evaluate the chrono-

logical accuracy of the inference results. Although these strategies are unlikely sufficient

to validate all the edges and lengths in the trees, they are objective and sufficient to dis-

criminate various approaches.

Second, it is important to control biases in statistical inference. It is challenging to de-

tect fitness-associated genes, as CNAs often affect a large number of genes and that the

sample sizes are often small. Passenger CNAs that occur naturally in non-functional re-

gions such as those near fragile sites or repeats could easily cloud the discovery. In

addition, lineage tracing algorithms are unlikely to be perfect and could introduce distinct

biases. To address these challenges, we employed LSA, which randomly permutes SCCN

profiles into different cells to reduce the biases introduced by background genomic varia-

tions and technical noises. And we reconstructed trees from permutated datasets to allevi-

ate biases introduced by the lineage tracing algorithms. The evolutionarily meaningful

MED metrics and constraints help our analyses to focus on biologically relevant hypoth-

eses, given limited computational resources. These procedures appeared important to

achieve the accuracy. Further exploration of different ways to permute the data and to es-

timate the background distribution will likely lead to better results.

We assessed the functional impact of the identified genes using cell-line CRISPR es-

sentiality screen data. We confirmed that the set of fitness-associated, amplified genes

discovered by our methods are significantly more essential than other control gene

sets in cancer cell lines. We also nominated novel genes that appear to have prognos-

tic values in TCGA and the METABRIC datasets. These assessment strategies likely

have false positives and negatives. Further comprehensive, well-controlled and targeted

experiments will likely be required to fully assess the functional impact and clinical

values of these genes.

Lastly, it was exciting to observe benefits of our methods on both the scDNA-

seq and the scRNA-seq data. Although RNA-derived copy number profiles may not

be as accurate as those derived from DNAs, previous studies [61] suggested that

they can reasonably distinguish tumor clones. Our study further revealed the value

of scRNA-seq data in lineage tracing and supported the notion that genomic pro-

files, even approximations, are more accurate than transcriptomic profiles in deter-

mining biological timing of cells. Our results opened doors towards utilizing

scRNA-seq as a platform to understand genetics underlying developmental pro-

cesses and perform gene discovery.

Conclusions
In this study, we describe two innovative algorithms: MEDALT based on MED tracing tumor

lineage evolution and LSA discovering lineage expansion associated genetic drivers. We exam-

ined the algorithms using synthetic datasets, longitudinal scDNA-seq data obtained from

TNBC patients and scRNA-seq data of HNSCC, MM, OSCC, and OV patients. Compare to

conventional algorithms, our approach effectively improves.
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Methods
Inferring minimal event distance

We use a modified parsimony scoring method to score the distance between two copy

number profiles, which can be considered as non-negative integer arrays. We assume a

copy number alteration (CNA) (event) can affect adjacent genomic regions (one single

entry or k adjacent entries in array) by increasing or decreasing their values by 1. We

define the minimal event distance (MED) between two arrays a and b to be the min-

imal number of CNAs needed to transition from a to b (Additional file 1: Fig. S1a).

We propose a greedy algorithm (Additional file 1: Table S1) which guarantees to find

an optimal solution within a runtime of O(m) (Additional file 6), where m is the size of

the array [34]. We add an additional restriction that MED equals to infinity, if the copy

number at any site is going from 0 to any other number. In addition, the amplification

cannot span across the site with 0 copy number. This is different with Zeira et al.,

which utilized a zero-skipping rule [34].

Constructing Minimal Event Distance Aneuploidy Lineage Tree (MEDALT)

The optimal aneuploidy lineage tree is a rooted directed minimal spanning tree (RDMS

T) with the least number of CNAs. We use an implementation of Edmond’s algorithm

to infer RDMST (Additional file 1: Table S2). Our algorithm runs in O(VE), where V is

the node set and E is edge set. That is approximately as O(n3), where n is the size of

the node set.

Lineage speciation analysis

We propose a statistic routine named lineage speciation analysis (LSA), which performs

permutation tests on the topology of MEDALT or phylogenetics trees to identify CNAs

that are non-randomly associated with cellular lineage expansion in a developmental

process. In LSA, we start from the root node and iteratively remove edges to obtain all

possible lineages (subsets of cells). For the i-th lineage, we calculate a cumulative fold

level (CFL) for the j-th CNA event that sums together the copy number alteration level

in constituent cells (Additional file 1: Fig. S1c).

CFLi j ¼
XK

k¼1

ð1Þ

where CNijk is the copy number level in the k-th cell and K is the size of the lineage.

We treat the amplifications and deletions separately so that a region can be amplified

in some samples but deleted in others. This is necessary because some oncogenes and

tumor suppressors locate in close proximity and can get binned into the same regions.

We estimate the statistical significance of an observed CFL by comparing its value to

a background distribution obtained through permutation (Additional file 1: Fig. S1d).

In the default mode, SCCN data are randomly shuffled by chromosomes into different

cells. They are not further shuffled by sites within each chromosome, because chromo-

somal context plays an important role in determining where and how a CNA occur.

In order to obtain an empirical background distribution, we permute SCCN data

1000 times and construct a lineage tree for each permutated SCCN dataset (Additional

file 1: Fig. S1d). Similar to the process for the real tree, we dissect each permutated tree
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into a collection of lineages. For each lineage from the real tree, we select the lineages

in the permutated trees of identical (or very similar) size. If there is no lineage which

has the same number of cells in one permutated tree, we will select the lineage with

the next closest size. Thus, for each real lineage, at least 1000 lineages from permutated

trees are selected. We compute CFLs of each CNA event in these selected lineages

using Eq. (1) and construct corresponding background distribution to calculate an em-

pirical p-value (tail probability) of the observed value:

p ¼

XR

r¼1

I Sr ≥Soð Þ þ 1

Rþ 1
ð2Þ

where R is the number of background lineages from the permutation data, Sr, So are re-

spectively the CFLs of the CNA event in the permutation and the real data.

To evaluate the performance of LSA for controlling biases in statistical inference, we

estimated the significance using three additional ways:

(1) Rather than reconstructing a tree from each permuted SCCN matrix, estimate

CFLs of cells from real lineage using the by-chromosome-permuted SCCN matrix

from the real three.

(2) Same as (1) except using the SCCN matrix permuted by chromosomal bins within

each cell (similar to GISTIC) instead of by chromosomes across different cells.

(3) One-side Wilcoxon signed-rank test to estimate if the levels of CNA is significantly

higher/lower in cells from a lineage than those from other lineages in the same tree.

For (1) and (2), it is similar with LSA that we construct background distribution of

CFLs and estimate empirical p-value using Eq. (2).

Cohort-level LSA

In a cohort containing multiple individuals, we can estimate whether a recurrent CNA

identified at individual level occurs non-randomly at the cohort (population) level. To

do so, we construct meta-lineages by merging lineages dissected from different individ-

uals and calculate a CFL for each meta-lineage through Eq. (1). We then estimate a

statistical significance for each observed CFL through Eq. (2), based on a background

distribution obtained from corresponding meta-lineages derived from individually per-

muted trees in the entire cohort (Additional file 1: Fig. S1f).

Identifying parallel evolution event

The lineage speciation analysis (LSA) can be used to identify potential presence of par-

allel (aka. convergent) evolution (PLSA), i.e., finding CNAs that occur independently in

multiple parallel lineages during the evolution of a cell population (Fig. S1g). We can

assess the statistical significance of such events using the same permutation framework.

Instead of examining each lineage independently, we deploy an algorithm that exhaust-

ively searches for parallel lineages that are formed by disjoint sets of cells with identical

CNAs or genes.

We then estimate the probability of observing such multi-lineage CNAs over random

chance through permutation (as described above, Additional file 1: Fig. S1g):
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p ¼

XR

r¼1

I Lr ≥Loð Þ þ 1

Rþ 1
ð3Þ

where Lr, Lo are respectively the number of lineages containing the CNA of interest in

the real and the permuted trees and Lo ≥ 2. R is the number of permutations. In this

analysis, only CNAs tested positive in the LSA are being further considered for the

PLSA.

Simulating single-cell copy number evolution

Simulating cell birth-and-death process

In order to evaluate the accuracy of copy number lineage reconstruction, we implement

a Markov process to simulate the cell growth under the influence of CNAs [39, 62].

The simulation process starts from an ancestor cancer cell, which divides and dies at

rate b and d, respectively. All the descent cells have the same division and death rates

as do their ancestors, unless they are mutated.

The cell growth dynamics follow the following differential equation:

dn tð Þ
dt

¼ b∙n tð Þ ð4Þ

where n(t) is the number of cells at time t. We assume that there are one root and 2

children after the first division: n(0) = 1, n(1) = 2. That leads to b = 0.69 as the initial

value based on Eq. (4).

The distribution of the time intervals Δt between any two jumps in a Markov process

with continuous time is exponentially distributed with the mean E(Δt) = 1/(b + d) [63].

Here, we assumed E(Δt) = 1 and the death rate d = 1 − b. When a jump occurs, it results

in a birth with a probability b/(b + d) or a death with a probability d/(b + d). This cell

birth-and-death process can be depicted as a rooted directed tree in which nodes are cells.

We simulated 100 independent runs, each of which has a population size of 200 cells.

Simulating the occurrence of CNA events

CNAs accumulate among tumor cells at an appreciable rate [64]. The CNAs in a cell at

time ti not only include the alterations it inherits from its parent, but also newly ac-

quired ones from ti − 1 to ti (Additional file 1: Fig. S3a). We assume that the CNA rate

per site/region varies in several levels μ ∈ {0.02, 0.05, 0.1, 0.15, 0.2} [32] and determine

the number of CNAs (K) accumulating in Δt based on a Poisson distribution (Add-

itional file 1: Fig. S3a):

K � Poisson λ ¼ Δt�μ�Gð Þ ð5Þ

where G is the total number of sites/regions in the genome. In our simulation, we set

G = 100.

Simulating genomic structural rearrangements

We assume that CNAs can be generated by various types of genomic structural rear-

rangements (GSR), such as terminal deletion (TER), interstitial deletion (DEL), unbal-

anced translocation (UT), tandem duplication (TD), inverted duplication (ID), and
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breakage fusion bridge (BFB) [30]. In addition, different GSRs could occur at differen-

tial rate in cancer [65, 66]. Thus, we determine the numbers of various GSRs based on

a multinomial distribution [32].

X ¼ x1; x2;…; xKf g � Multi pTER; pDEL; pUT ; pTD; pID; pBFBð Þ ð6Þ

where we empirically set pTER = pDEL = 0.1, pUT = 0.15, pTD = 0.5, pID = 0.05, pBFB = 0.1.

We also required that K ¼ PK

k¼1
xk during the period of Δt (Additional file 1: Fig. S3a).

Simulating the location of a CNA

CNAs affect contiguous sites/regions in a chromosome. They often exhibit two modes:

(1) focal, affecting a relatively small (<MB) region [67], and (2) broad, encompassing

large chromosomal regions (e.g., chromosomal arms) [68]. Broad CNAs often result

from chromosomal mis-segregation during mitosis [64], which is a hallmark of cancer.

Both focal and broad CNAs are important in oncogenesis. While broad CNAs often

manifest through dosage effects [13], focal CNAs often target driver genes directly and

result in protein structural changes [69].

We determined the size r of a CNA in X by sampling a zero-truncated Geometric

distribution:

g r; pð Þ ¼ p∙ 1 − pð Þr − 1 ð7Þ

where r is the number of genomic sites/regions that a CNA occupies and p the prob-

ability that a region is affected by the CNA (Additional file 1: Fig. S3a). We set p = 0.5

in our simulation.

We encode the simulated CNAs as sequences of non-negative integers in correspond-

ing cells (Additional file 1: Fig. S3b). Our model allows single-copy gains and losses. A

copy number gain increases the corresponding values by 1 and a copy number loss de-

creases the values by 1 (Additional file 1: Fig. S3b).

Simulating fitness-associated alterations

Some CNAs may themselves alter the fitness of a cell, or occur simultaneously with the

driver mutations. We call them fitness-associated alterations (FAAs). We simulate the

occurrence and the impact of FAAs in the evolution. At each generation, we determine

if a FAA would occur through a Bernoulli distribution (p = 0.5). If a FAA occurs, we

randomly select τ cells to carry the FAA, where τ follows a binomial distribution Bðζ; p
¼ 1

ζÞ and ζ is the number of cells in the generation. The selected cells would increase

their birth rates by s, which follows a uniform distribution U(0, 1).

In order to estimate the effects of noise, we added noise at different levels in the sim-

ulated copy number profile based on a Poisson(λ) model, where λ represents the mean

number of randomly selected bins with increased or decreased CN values (by 1) in each

cell. We set λ = 0, 2, 4, 6, 8, 10 with 0 being no noise, 10 corresponding to 10% of the

genome.
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Constructing phylogenetic trees

We construct phylogenetic trees using the R package phangorn [70], which implements

widely used versions of the maximal parsimony, neighbor-joining and maximum likeli-

hood approaches. To apply the maximal parsimony approach, the SCCN data are re-

segmented by the collection of breakpoints detected in each cell, so that each column

in the data matrix corresponds to a genomic interval that is uninterrupted by any GSR

in any cell. The GSR breakpoints in individual cells are determined by the R package

copynumber under default parameters. To apply the neighbor-joining approach, Ham-

ming distances are calculated from each pair of the SCCN profiles. To apply the max-

imal likelihood approach, random trees are chosen as the initial solutions.

Estimating the accuracy of lineage partitioning

The cell birth-and-death process we simulate can be expressed as a rooted directed

minimal spanning tree (RDMST). To compare RDMST with phylogenetic trees, we

convert RDMSTs into dendrograms, which are fully comparable with the phylogenetic

trees in that observed cells are represented as leaves in both types of representations

[71]. From each dendrogram or phylogenetics tree, we calculate a metric, termed

lineage partitioning accuracy (LPA), which measures how accurately cells are parti-

tioned into lineages (subsets). Given a dendrogram, we performed lineage partitioning

as follows:

We iteratively remove each branch in the dendrogram to obtain all the bi-partitions,

i.e., the two disjoint subsets resulting from removing a branch. Each subset corresponds

to a cellular lineage. All lineages can be described as a binary sequence l = {c1, c2,⋯,

cN}, ci = 1 if the i-th cell is in lineage l and ci = 0, otherwise.

In the simulation experiments, the lineages partitioned from the simulated cell

growth trees are considered as the ground truth. The LPA of a given MEDALT or phy-

logenetics tree is calculated as the fraction of lineages that exist in the ground truth

over the total number of predicted lineages.

Accuracy of FAA detection in simulation

We randomly spike in FAAs in the simulation experiments, which are used as the

ground-truth to assess the accuracy of the MEDALT and the phylogenetic trees. For

each CNA, we calculate its p value through LSA and identify the minimal p value over

all the lineages containing the CNA. We use − log(minimal p) as the prediction score.

We then characterize the accuracy of each approach on FAA detection using AUC

values, which are calculated by tallying the positive and the negative hits at various pre-

diction score cutoffs from 0 to the maximal values.

Identifying significant CNAs using GISTIC

We apply the GISTIC algorithm on the simulated and the real SCCN datasets to iden-

tify significant CNAs [37]. The following steps are taken:

i) Calculate the occurrence frequency (f) and the amplitude (Δ) of each alteration

ii) Define a G-score as a function of f and Δ: G = f × log2(Δ + 2)
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iii) Assess the statistical significance of each alteration by comparing the observed G-

score to a background distribution of G-scores obtained from permuted (by

regions) copy number profiles

On the simulated datasets, we regard each cell as an individual sample and apply

GISTIC at the cell level.

On the TNBC dataset, we average the SCCN profiles across the cells in each patient

sample to create a pseudo-bulk copy number profile for each sample. We then run

GISTIC on these pseudo-bulk profiles to identify significant CNAs, similarly to how

GISTIC is applied in TCGA study.

Integer copy number profiles from single-cell DNA sequencing data

The SCCN profile is an integer-valued matrix. The SCCN profiles from single-cell

DNA-sequencing data of triple-negative breast cancer are downloaded from the

original paper [16, 18] which estimated using a variable binning method, as de-

tailed in previous studies [18, 72]. Briefly, sequencing reads are counted in 11,927

genomic bins with variable start and stop coordinates, which are optimized to re-

ceive even read counts across the bins. The median genomic length spanned by

the bins is 220 kbp. Cells with < 50 median reads per bin are excluded. Loess

normalization is used to correct for GC bias [40]. Copy number profiles are seg-

mented using circular binary segmentation (CBS) [73] followed by MergeLevels

[74] to joint adjacent segments with non-significant differences in segment ratios

(parameters alpha = 0.0001 and undo.prune = 0.05). Integer copy numbers are calcu-

lated by scaling segment ratios with average DNA ploidy determined by flow sort-

ing indexes and rounding to closest integers [18].

Dissecting MEDALT into disjoint lineages

To characterize CNA rate variation and genetic organization of a cell population,

we dissect it into disjoint lineages (cell subsets) based on the corresponding MEDA

LT. For each internal node v in MEDALT, the subtree rooted at v is denoted as

Tv, which consists of all the descendants of v. The number of nodes in Tv is de-

noted as Sv, the size of the subtree. To ignore small lineages that cannot be confi-

dently characterized, we set a minimal subtree size cutoff s (s = 5 in our analysis of

the scDNA-seq and the scRNA-seq data) and define an internal node set IV = {v|

Sv > s, v ∈ V}, where V represents the node set of the MEDALT. We arrange the

node sets in IV in an increasing size order:

IV ¼ v1; v2;…; vk jSv1 < Sv2 < … < Svkf g ð8Þ

To obtain disjoint lineages, we remove the internal nodes that lead to redundant lineage as-

signments. For each vi ∈ IV, 1 ≤ i ≤ k, its parent node vj (j > i) should exist in IV. If a parent

node vj has more than one child in IV, remove the parent node vj from IV; otherwise, remove

the child node vi. We iterate through all the nodes in IV until no node can be removed. We

then split the MEDALT into subtrees rooting at nodes remaining in IV. All the nodes that are

not yet included are assigned into a control lineage.
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Estimation of CNA rate and fraction of DDR loss

We estimate CNA rate in a lineage as the average number of CNAs, i.e., average

MED, between the cells in the lineage. DNA damage repair (DDR) genes play key

roles in maintaining genome stability. In our analysis, we download the list of

DDR genes from Knijnenburg et al.’s study [41], based on which we estimate the

proportion of DDR genes with copy number loss in each lineage.

Characterizing chromosomal level CNAs identified in TNBCs

We perform cohort-level LSA per genomic bin at a 220-kb resolution. We define the

chromosomal arm is significant if more than half of bins in the arm are significantly as-

sociated with lineage expansion. Average p value of these significant bins corresponds

to the significance level of the chromosomal arm. In order to benchmark the accuracy

of chromosomal (arm) level CNA detection in the TNBC data, we search biomedical

literature exhaustively and create a list of chromosome-arm-level CNAs that have re-

ported relevance to TNBC biology or clinical utilities (Additional file 1: Table S4). We

treat this list as the ground truth.

For each chromosomal level CNA in a lineage tree, we used the − log(p) estimated

via the cohort LSA as its prediction score. We then estimate AUC values, respectively

for the MEDALT, the MP, and GISTIC approaches.

Inferring copy number profile from single-cell RNA sequencing data

We use R package inferCNV (https://github.com/broadinstitute/infercnv) to identify

somatic large scale chromosomal CNAs from single-cell RNA sequencing (scRNA-seq)

data [53]. InferCNV detects CNAs by exploring expression intensity of genes across po-

sitions of tumor genome in comparison to a set of reference “normal” cell. The CNAs

at gene level relative to reference cell are estimated under default parameters of

inferCNV. According to inferred gene-level relative copy number profile, we calculate

average relative CNA values in non-overlapping genomic bins, each consisting of 30

genes. Within each bin for each cell, we calculate an integer copy number by multiply-

ing the relative CNA value by 2 (diploid) and then rounding the results off to closest

integers.

Estimating genetic homogeneity

We compute a metric, called genetic homogeneity level (GHL) to compare the ac-

curacies of MEDALTs with those of Monocle trajectories in tracing genetic evolu-

tion from scRNA-seq data. For each cell lineage (subset) partitioned from a MEDA

LT (see the “Dissecting MEDALT into disjoint lineages” subsection of the

“Methods” section), we calculate pair-wise Pearson’s correlation coefficients be-

tween all the cells in the lineage, using gene-level copy number profiles inferred by

inferCNV. We treat the mean correlation coefficient as the GHL of the lineage.

Then average the GHLs across the lineages to obtain an overall GHL of the

MEDALT.

Similarly, we calculate a GHL for a Monocle trajectory by averaging cluster-level

GHLs estimated from cell clusters defined by the trajectory.
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