78,573 research outputs found

    On applying the set covering model to reseeding

    Get PDF
    The Functional BIST approach is a rather new BIST technique based on exploiting embedded system functionality to generate deterministic test patterns during BIST. The approach takes advantages of two well-known testing techniques, the arithmetic BIST approach and the reseeding method. The main contribution of the present paper consists in formulating the problem of an optimal reseeding computation as an instance of the set covering problem. The proposed approach guarantees high flexibility, is applicable to different functional modules, and, in general, provides a more efficient test set encoding then previous techniques. In addition, the approach shorts the computation time and allows to better exploiting the tradeoff between area overhead and global test length as well as to deal with larger circuits

    Optimal Substring-Equality Queries with Applications to Sparse Text Indexing

    Full text link
    We consider the problem of encoding a string of length nn from an integer alphabet of size σ\sigma so that access and substring equality queries (that is, determining the equality of any two substrings) can be answered efficiently. Any uniquely-decodable encoding supporting access must take nlogσ+Θ(log(nlogσ))n\log\sigma + \Theta(\log (n\log\sigma)) bits. We describe a new data structure matching this lower bound when σnO(1)\sigma\leq n^{O(1)} while supporting both queries in optimal O(1)O(1) time. Furthermore, we show that the string can be overwritten in-place with this structure. The redundancy of Θ(logn)\Theta(\log n) bits and the constant query time break exponentially a lower bound that is known to hold in the read-only model. Using our new string representation, we obtain the first in-place subquadratic (indeed, even sublinear in some cases) algorithms for several string-processing problems in the restore model: the input string is rewritable and must be restored before the computation terminates. In particular, we describe the first in-place subquadratic Monte Carlo solutions to the sparse suffix sorting, sparse LCP array construction, and suffix selection problems. With the sole exception of suffix selection, our algorithms are also the first running in sublinear time for small enough sets of input suffixes. Combining these solutions, we obtain the first sublinear-time Monte Carlo algorithm for building the sparse suffix tree in compact space. We also show how to derandomize our algorithms using small space. This leads to the first Las Vegas in-place algorithm computing the full LCP array in O(nlogn)O(n\log n) time and to the first Las Vegas in-place algorithms solving the sparse suffix sorting and sparse LCP array construction problems in O(n1.5logσ)O(n^{1.5}\sqrt{\log \sigma}) time. Running times of these Las Vegas algorithms hold in the worst case with high probability.Comment: Refactored according to TALG's reviews. New w.h.p. bounds and Las Vegas algorithm

    Construct, Merge, Solve and Adapt: Application to the repetition-free longest common subsequence problem

    Get PDF
    In this paper we present the application of a recently proposed, general, algorithm for combinatorial optimization to the repetition-free longest common subsequence problem. The applied algorithm, which is labelled Construct, Merge, Solve & Adapt, generates sub-instances based on merging the solution components found in randomly constructed solutions. These sub-instances are subsequently solved by means of an exact solver. Moreover, the considered sub-instances are dynamically changing due to adding new solution components at each iteration, and removing existing solution components on the basis of indicators about their usefulness. The results of applying this algorithm to the repetition-free longest common subsequence problem show that the algorithm generally outperforms competing approaches from the literature. Moreover, they show that the algorithm is competitive with CPLEX for small and medium size problem instances, whereas it outperforms CPLEX for larger problem instances.Peer ReviewedPostprint (author's final draft

    Topological transition in disordered planar matching: combinatorial arcs expansion

    Full text link
    In this paper, we investigate analytically the properties of the disordered Bernoulli model of planar matching. This model is characterized by a topological phase transition, yielding complete planar matching solutions only above a critical density threshold. We develop a combinatorial procedure of arcs expansion that explicitly takes into account the contribution of short arcs, and allows to obtain an accurate analytical estimation of the critical value by reducing the global constrained problem to a set of local ones. As an application to a toy representation of the RNA secondary structures, we suggest generalized models that incorporate a one-to-one correspondence between the contact matrix and the RNA-type sequence, thus giving sense to the notion of effective non-integer alphabets.Comment: 28 pages, 6 figures, published versio

    Protein design in a lattice model of hydrophobic and polar amino acids

    Full text link
    A general strategy is described for finding which amino acid sequences have native states in a desired conformation (inverse design). The approach is used to design sequences of 48 hydrophobic and polar aminoacids on three-dimensional lattice structures. Previous studies employing a sequence-space Monte-Carlo technique resulted in the successful design of one sequence in ten attempts. The present work also entails the exploration of conformations that compete significantly with the target structure for being its ground state. The design procedure is successful in all the ten cases.Comment: RevTeX, 12 pages, 1 figur
    corecore