15 research outputs found

    Determinantal sets, singularities and application to optimal control in medical imagery

    Get PDF
    Control theory has recently been involved in the field of nuclear magnetic resonance imagery. The goal is to control the magnetic field optimally in order to improve the contrast between two biological matters on the pictures. Geometric optimal control leads us here to analyze mero-morphic vector fields depending upon physical parameters , and having their singularities defined by a deter-minantal variety. The involved matrix has polynomial entries with respect to both the state variables and the parameters. Taking into account the physical constraints of the problem, one needs to classify, with respect to the parameters, the number of real singularities lying in some prescribed semi-algebraic set. We develop a dedicated algorithm for real root classification of the singularities of the rank defects of a polynomial matrix, cut with a given semi-algebraic set. The algorithm works under some genericity assumptions which are easy to check. These assumptions are not so restrictive and are satisfied in the aforementioned application. As more general strategies for real root classification do, our algorithm needs to compute the critical loci of some maps, intersections with the boundary of the semi-algebraic domain, etc. In order to compute these objects, the determinantal structure is exploited through a stratifi-cation by the rank of the polynomial matrix. This speeds up the computations by a factor 100. Furthermore, our implementation is able to solve the application in medical imagery, which was out of reach of more general algorithms for real root classification. For instance, computational results show that the contrast problem where one of the matters is water is partitioned into three distinct classes

    Solving rank-constrained semidefinite programs in exact arithmetic

    Full text link
    We consider the problem of minimizing a linear function over an affine section of the cone of positive semidefinite matrices, with the additional constraint that the feasible matrix has prescribed rank. When the rank constraint is active, this is a non-convex optimization problem, otherwise it is a semidefinite program. Both find numerous applications especially in systems control theory and combinatorial optimization, but even in more general contexts such as polynomial optimization or real algebra. While numerical algorithms exist for solving this problem, such as interior-point or Newton-like algorithms, in this paper we propose an approach based on symbolic computation. We design an exact algorithm for solving rank-constrained semidefinite programs, whose complexity is essentially quadratic on natural degree bounds associated to the given optimization problem: for subfamilies of the problem where the size of the feasible matrix is fixed, the complexity is polynomial in the number of variables. The algorithm works under assumptions on the input data: we prove that these assumptions are generically satisfied. We also implement it in Maple and discuss practical experiments.Comment: Published at ISSAC 2016. Extended version submitted to the Journal of Symbolic Computatio

    Solving generic nonarchimedean semidefinite programs using stochastic game algorithms

    Full text link
    A general issue in computational optimization is to develop combinatorial algorithms for semidefinite programming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semidefinite feasibility problems given by generic matrices. Our approach is based on tropical geometry. It relies on tropical spectrahedra, which are defined as the images by the valuation of nonarchimedean spectrahedra. We establish a correspondence between generic tropical spectrahedra and zero-sum stochastic games with perfect information. The latter have been well studied in algorithmic game theory. This allows us to solve nonarchimedean semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial nature and work for large instances.Comment: v1: 25 pages, 4 figures; v2: 27 pages, 4 figures, minor revisions + benchmarks added; v3: 30 pages, 6 figures, generalization to non-Metzler sign patterns + some results have been replaced by references to the companion work arXiv:1610.0674

    Exact semidefinite programming bounds for packing problems

    Get PDF
    In this paper we give an algorithm to round the floating point output of a semidefinite programming solver to a solution over the rationals or a quadratic extension of the rationals. We apply this to get sharp bounds for packing problems, and we use these sharp bounds to prove that certain optimal packing configurations are unique up to rotations. In particular, we show that the configuration coming from the E8\mathsf{E}_8 root lattice is the unique optimal code with minimal angular distance π/3\pi/3 on the hemisphere in R8\mathbb R^8, and we prove that the three-point bound for the (3,8,ϑ)(3, 8, \vartheta)-spherical code, where ϑ\vartheta is such that cosϑ=(221)/7\cos \vartheta = (2\sqrt{2}-1)/7, is sharp by rounding to Q[2]\mathbb Q[\sqrt{2}]. We also use our machinery to compute sharp upper bounds on the number of spheres that can be packed into a larger sphere.Comment: 24 page
    corecore