7,473 research outputs found

    Evolving spatial and frequency selection filters for brain-computer interfaces

    Get PDF
    Proceeding of: 2010 IEEE World Congress in Computational Intelligence (WCCI 2010), Barcelona, Spain, July 18-23, 2010Abstract—Machine Learning techniques are routinely applied to Brain Computer Interfaces in order to learn a classifier for a particular user. However, research has shown that classiffication techniques perform better if the EEG signal is previously preprocessed to provide high quality attributes to the classifier. Spatial and frequency-selection filters can be applied for this purpose. In this paper, we propose to automatically optimize these filters by means of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The technique has been tested on data from the BCI-III competition, because both raw and manually filtered datasets were supplied, allowing to compare them. Results show that the CMA-ES is able to obtain higher accuracies than the datasets preprocessed by manually tuned filters.This work has been funded by the Spanish Ministry of Science under contract TIN2008-06491-C04-03 (MSTAR project)Publicad

    Applying evolution strategies to preprocessing EEG signals for brain–computer interfaces

    Get PDF
    An appropriate preprocessing of EEG signals is crucial to get high classification accuracy for Brain–Computer Interfaces (BCI). The raw EEG data are continuous signals in the time-domain that can be transformed by means of filters. Among them, spatial filters and selecting the most appropriate frequency-bands in the frequency domain are known to improve classification accuracy. However, because of the high variability among users, the filters must be properly adjusted to every user’s data before competitive results can be obtained. In this paper we propose to use the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for automatically tuning the filters. Spatial and frequency-selection filters are evolved to minimize both classification error and the number of frequency bands used. This evolutionary approach to filter optimization has been tested on data for different users from the BCI-III competition. The evolved filters provide higher accuracy than approaches used in the competition. Results are also consistent across different runs of CMA-ES.This work has been funded by the Spanish Ministry of Science under Contract TIN2008-06491-C04-03 (MSTAR project) and TIN2011-28336 (MOVES project).Publicad

    EEG-Based User Reaction Time Estimation Using Riemannian Geometry Features

    Full text link
    Riemannian geometry has been successfully used in many brain-computer interface (BCI) classification problems and demonstrated superior performance. In this paper, for the first time, it is applied to BCI regression problems, an important category of BCI applications. More specifically, we propose a new feature extraction approach for Electroencephalogram (EEG) based BCI regression problems: a spatial filter is first used to increase the signal quality of the EEG trials and also to reduce the dimensionality of the covariance matrices, and then Riemannian tangent space features are extracted. We validate the performance of the proposed approach in reaction time estimation from EEG signals measured in a large-scale sustained-attention psychomotor vigilance task, and show that compared with the traditional powerband features, the tangent space features can reduce the root mean square estimation error by 4.30-8.30%, and increase the estimation correlation coefficient by 6.59-11.13%.Comment: arXiv admin note: text overlap with arXiv:1702.0291

    Multi-objective metaheuristics for preprocessing EEG data in brain–computer interfaces

    Get PDF
    In the field of brain–computer interfaces, one of the main issues is to classify the electroencephalogram (EEG) accurately. EEG signals have a good temporal resolution, but a low spatial one. In this article, metaheuristics are used to compute spatial filters to improve the spatial resolution. Additionally, from a physiological point of view, not all frequency bands are equally relevant. Both spatial filters and relevant frequency bands are user-dependent. In this article a multi-objective formulation for spatial filter optimization and frequency-band selection is proposed. Several multi-objective metaheuristics have been tested for this purpose. The experimental results show, in general, that multi-objective algorithms are able to select a subset of the available frequency bands, while maintaining or improving the accuracy obtained with the whole set. Also, among the different metaheuristics tested, GDE3, which is based on differential evolution, is the most useful algorithm in this contextThis work has been funded by the Spanish Ministry of Science under contract TIN2008-06491-C04-03 (MSTAR project).Publicad

    Hybrid Brain-Computer Interface Systems: Approaches, Features, and Trends

    Get PDF
    Brain-computer interface (BCI) is an emerging field, and an increasing number of BCI research projects are being carried globally to interface computer with human using EEG for useful operations in both healthy and locked persons. Although several methods have been used to enhance the BCI performance in terms of signal processing, noise reduction, accuracy, information transfer rate, and user acceptability, the effective BCI system is still in the verge of development. So far, various modifications on single BCI systems as well as hybrid are done and the hybrid BCIs have shown increased but insufficient performance. Therefore, more efficient hybrid BCI models are still under the investigation by different research groups. In this review chapter, single BCI systems are briefly discussed and more detail discussions on hybrid BCIs, their modifications, operations, and performances with comparisons in terms of signal processing approaches, applications, limitations, and future scopes are presented
    corecore