253,993 research outputs found

    Incremental learning in autonomous systems: evolving connectionist systems for on-line image and speech recognition

    Get PDF
    The paper presents an integrated approach to incremental learning in autonomous systems, that includes both pattern recognition and feature selection. The approach utilizes evolving connectionist systems (ECoS) and is applied on on-line image and speech pattern learning and recognition tasks. The experiments show that ECoS are a suitable paradigm for building autonomous systems for learning and navigation in a new environment using both image and speech modalities. © 2005 IEEE

    Neurocomputation as brain inspired informatics: methods, systems, applications

    Get PDF
    Neuromputation is concerned with methods, systems and applications inspired by the principles of information processing in the brain. The talk presents a brief overview of methods of neurocomputation, including: traditional neural networks; evolving connections systems (ECOS) and evolving neuro-fuzzy systems [1]; spiking neural networks (SNN) [2-5]; evolutionary and neurogenetic systems [6]; quantum inspired evolutionary computation [7,8]; rule extraction from SNN [9]. These methods are suitable for incremental adaptive, on-line learning. They are illustrated on spatio-temporal pattern recognition problems such as: EEG pattern recognition; brain-computer interfaces [10]; ecological and environmental modeling [11]. Future directions are discussed. Materials related to the lecture, such as papers, data and software systems can be found from www.kedri.aut.ac.nz and also from: www.theneucom.com and http://ncs.ethz.ch/projects/evospike/

    DATA DRIVEN INTELLIGENT AGENT NETWORKS FOR ADAPTIVE MONITORING AND CONTROL

    Get PDF
    To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments

    Evolving Bacterial Envelopes and Plasticity of TLR2-Dependent Responses: Basic Research and Translational Opportunities.

    Get PDF
    Innate immune mechanisms that follow early recognition of microbes influence the nature and magnitude of subsequent adaptive immune responses. Early detection of microbes depends on pattern recognition receptors that sense pathogen-associated molecular patterns or microbial-associated molecular patterns (PAMPS or MAMPs, respectively). The bacterial envelope contains MAMPs that include membrane proteins, lipopeptides, glycopolymers, and other pro-inflammatory molecules. Bacteria are selected by environmental pressures resulting in quantitative or qualitative changes in their envelope structures that often promote evasion of host immune responses and therefore, infection. However, recent studies have shown that slight, adaptive changes in MAMPs on the bacterial cell wall may result in their ability to induce the secretion not only of pro-inflammatory cytokines but also of anti-inflammatory cytokines. This effect can fine-tune the subsequent response to microbes expressing these MAMPs and lead to the establishment of a commensal state within the host rather than infectious disease. In this review, we will examine the plasticity of Toll-like receptor (TLR) 2 signaling as evidence of evolving MAMPs, using the better-characterized TLR4 as a template. We will review the role of differential dimerization of TLR2 and the arrangement of signaling complexes and co-receptors in determining the capacity of the host to recognize an array of TLR2 ligands and generate different immune responses to these ligands. Last, we will assess briefly how this plasticity may expand the array of interactions between microbes and immune systems beyond the traditional disease-causing paradigm

    Neurocomputing for spatio-/spectro temporal pattern recognition and early event prediction: methods, systems, applications

    Get PDF
    The talk presents a brief overview of contemporary methods for neurocomputation, including: evolving connections systems (ECOS) and evolving neuro-fuzzy systems [1]; evolving spiking neural networks (eSNN) [2-5]; evolutionary and neurogenetic systems [6]; quantum inspired evolutionary computation [7,8]; rule extraction from eSNN [9]. These methods are suitable for incremental adaptive, on-line learning from spatio-temporal data and for data mining. But the main focus of the talk is how they can learn to predict early the outcome of an input spatio-temporal pattern, before the whole pattern is entered in a system. This is demonstrated on several applications in bioinformatics, such as stroke occurrence prediction, and brain data modeling for brain-computer interfaces [10], on ecological and environmental modeling [11]. eSNN have proved superior for spatio-and spectro-temporal data analysis, modeling, pattern recognition and early event prediction as outcome of recognized patterns when partially presented

    Evolving, probabilistic spiking neural networks and neurogenetic systems for spatio- and spectro-temporal data modelling and pattern recognition

    Get PDF
    Spatio- and spectro-temporal data (SSTD) are the most common types of data collected in many domain areas, including engineering, bioinformatics, neuroinformatics, ecology, environment, medicine, economics, etc. However, there is lack of methods for the efficient analysis of such data and for spatio temporal pattern recognition (STPR). The brain functions as a spatio-temporal information processing machine and deals extremely well with spatio-temporal data. Its organisation and functions have been the inspiration for the development of new methods for SSTD analysis and STPR. The brain-inspired spiking neural networks (SNN) are considered the third generation of neural networks and are a promising paradigm for the creation of new intelligent ICT for SSTD. This new generation of computational models and systems are potentially capable of modelling complex information processes due to their ability to represent and integrate different information dimensions, such as time, space, frequency, and phase, and to deal with large volumes of data in an an adaptive and self-organising manner. The paper reviews methods and systems of SNN for SSTD analysis and STPR, including single neuronal models, evolving spiking neural networks (eSNN) and computational neuro-genetic models (CNGM). Software and hardware implementations and some pilot applications for audio-visual pattern recognition, EEG data analysis, cognitive robotic systems, BCI, neurodegenerative diseases, and others are discussed

    Evolving spiking neural networks for temporal pattern recognition in the presence of noise

    Get PDF
    Creative Commons - Attribution-NonCommercial-NoDerivs 3.0 United StatesNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseFinal Published versio

    Learning Opposites Using Neural Networks

    Full text link
    Many research works have successfully extended algorithms such as evolutionary algorithms, reinforcement agents and neural networks using "opposition-based learning" (OBL). Two types of the "opposites" have been defined in the literature, namely \textit{type-I} and \textit{type-II}. The former are linear in nature and applicable to the variable space, hence easy to calculate. On the other hand, type-II opposites capture the "oppositeness" in the output space. In fact, type-I opposites are considered a special case of type-II opposites where inputs and outputs have a linear relationship. However, in many real-world problems, inputs and outputs do in fact exhibit a nonlinear relationship. Therefore, type-II opposites are expected to be better in capturing the sense of "opposition" in terms of the input-output relation. In the absence of any knowledge about the problem at hand, there seems to be no intuitive way to calculate the type-II opposites. In this paper, we introduce an approach to learn type-II opposites from the given inputs and their outputs using the artificial neural networks (ANNs). We first perform \emph{opposition mining} on the sample data, and then use the mined data to learn the relationship between input xx and its opposite x˘\breve{x}. We have validated our algorithm using various benchmark functions to compare it against an evolving fuzzy inference approach that has been recently introduced. The results show the better performance of a neural approach to learn the opposites. This will create new possibilities for integrating oppositional schemes within existing algorithms promising a potential increase in convergence speed and/or accuracy.Comment: To appear in proceedings of the 23rd International Conference on Pattern Recognition (ICPR 2016), Cancun, Mexico, December 201
    • …
    corecore