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Abstract

Spatio- and s pectro-temporal data (S STD) are the most c ommon
types ofd atac ollectedi nm any dom aina reas, including
engineering, bi  oinformatics, neuroinformatics, eco  logy,
environment, medicine, economics, etc. However, there is lack of
methods for t he e fficient analysis of s uch da ta a nd for s patio-
temporal p attern re cognition ( STPR). T he bra in func tions a s a

spatio-temporal i nformation processing m achinea ndd eals
extremely w ell with spatio-temporal data. It s orga nisation and
functions ha ve been the inspiration for the d evelopment of new
methods for SSTD analysis and STPR. The brain-inspired spiking
neural ne tworks (S NN) a re ¢ onsidered the t hird ge neration o f
neural networks and are a promising paradigm for the creation of
new i ntelligent ICT forS STD.T hisne wge nerationo f
computational models a nd s ystems a re po tentially capable o f
modelling complex i nformation processes due to their ability to
represent and integrate different information dimensions, such as
time, space, frequency, and phase, and to deal with large volumes
of datainanadaptive and s elf-organising m anner. T he p aper
reviews m ethods a nd s ystems of S NN for S STD a nalysis a nd
STPR, including single neuronal models, evolving spiking neural
networks (¢ SNN)a ndc omputational ne uro-genetic m odels
(CNGM). Software and hardware implementations and some pilot
applications for a udio-visual patternre cognition, E EG da ta
analysis, ¢ ognitive robot ic s ystems, BCI, n eurodegenerative
diseases, and others are discussed.

Keywords: Spatio-temporal da ta, spectro-temporal da ta, pattern
recognition, spiking ne ural ne tworks, gene re gulatory n etworks,
computational ne uro-genetic m odeling, probabilistic m odeling,
personalized modelling; EEG data.

1. Spatio- and Spectro-Temporal Data
Modeling and Pattern Recognition

Most problems in nature require s patio- or/and s pectro-
temporal data (SSTD) that include measuring spatial or/and
spectral variables over time. SSTD is described by a triplet
(X,Y,F), where X is a set of independent variables
measured o ver co nsecutive d iscrete time moments £, Y is
the set of dependent output variables, and F is the
association function between whole segments (‘chunks’) of
the input d ata, each sampled in a time window d; and the

output variables belonging to Y:
F: X(dt)_)Ys X(Z)Z(XI(t)5X2(t)5 oo ,Xn(t))’ =1 72, -l (1)

It is important for a computational model to capture and
learn whole spatio- and spectro-temporal patterns from data
streams in order to predict most accurately future events for
new input data. Examples of problems involving SSTD are:
brain ¢ ognitive s tate e valuation based o ns patially
distributed EEG e lectrodes [ 70,2 6,5 1,2 1, 99, 100]
(Fig.1(a)); fMRI data[ 102] (Fig.1(b)); m oving o bject
recognition from video data [23, 60, 25] (Fig.15); spoken
word recognition based on spectro-temporal audio data [93,
107]; evaluating risk o fd isease, e.g. h eart attack [ 20];
evaluating response o fa d iseaset ot reatment b ased on
clinical a nd environmental va riables, e .g.s troke[ 6];
prognosis of outcome of cancer [62]; modelling the
progression of a ne uro-degenerative d isease, su cha s
Alzheimer’s Disease [ 94, 64]; modelling and prognosis of
the e stablishment o f invasive s pecies in ecology [ 19, 9 7].
The prediction of events in geology, astronomy, economics
and m any o ther ar eas al so d epend on accurate S STD
modeling.

The c ommonly us ed models for d ealing w ith temporal
information based on Hidden Markov Models (HMM) [ 88]
and traditional artificial neural networks (ANN) [57] have
limited cap acity to achieve the integration of complex and
long t emporal s patial/spectral ¢ omponents be cause t hey
usually e ither i gnore t he t emporal di mension o r o ver-
simplify its representation. A new trend in machine learning
is ¢ urrently e merging andi s knowna s deep m achine
learning [9,2-4, 112]. M ost o fthe proposed m odels s till
learn SSTD by entering single time point frames rather than
learning whole S STD patterns. T hey a re a Iso | imited i n
addressing adequately the interaction between temporal and
spatial components in SSTD.

The human brain has the amazing capacity to learn and
recall patterns from SSTD at different time scales, ranging
from milliseconds to years and possibly to millions of years
(e.g. genetic information, a ccumulated t hrough e volution).
Thus the brain is the ultimate inspiration for the
development of new machine learning techniques for SSTD
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Fig.1(a) EEG SSTD re corded w itht he us ¢ of E motive E EG
equipment (fro m McFarland, A nderson, M Uller, Schlogl,
Krusienski, 2006); (b) fMRI data (from http://www.fmrib.ox.ac.uk)

modelling. Indeed, brain-inspired Spiking Neural Networks
(SNN) [ 32, 33, 68] have the potential to learn SSTD by
using trains o f spikes (binary temporal e vents) transmitted
among spatially located synapses and neurons. Both spatial
and t emporal information c an be encodedinan SNN as
locations of synapses and neurons and time of their spiking
activity r espectively. S piking neurons s end s pikes via
connections that havea complex dynamic behaviour,
collectively forming an SSTD memory. Some SNN employ
specific 1 earning r ules s uch as S pike-Time-Dependent-
Plasticity (STDP) [103] or Spike Driven Synaptic Plasticity
(SDSP) [30]. According to the STDP a connection weight
between t wo ne urons i ncreases whent he pre-synaptic
neuron spikes be fore the p ostsynaptic one. Otherwise, the
weight decreases.

Models of single neurons as well as computational SNN
models, along with their respective applications, have been
already developed [33, 68, 73, 7, 8, 12], including evolving
connectionist systems and evolving spiking neural networks

(eSNN)i n particular, wherean S NNI earnsd ata
incrementally by o ne-pass propagation oft heda tavia
creating and merging spiking neurons [61, 115]. In [115] an
eSNN is designed to capture features and to aggregate them
into audio and visual perceptions for the purpose of person
authentification. It is based on f our levels of feed-forward
connected layers of spiking neuronal maps, similarly to the
wayt he cortex works w henl earning a nd r ecognising
images o r ¢ omplex i nput stimuli[ 92]. Iti sa nS NN
realization of some computational models of vision, such as
the 5 -level H MAX m odel i nspired by t he i nformation
processes in the cortex [92].

However, t hese m odels ar e designed for (static) o bject
recognition ( e.g. a picture of a cat), but not for moving
object recognition (e.g. a cat jumping to catch a mouse). If
these models are to be used for SSTD, they will still process
SSTD as a s equence of static feature v ectors ex tracted in
singlet ime f rames. A Ithoughan e SNN acc umulates
incoming i nformation c arried i n e ach c onsecutive f rame
from a pronounced word or a video, through the increase of
the membrane potential of output spike neurons, they do not
learn complex spatio/spectro-temporal associations from the
data. M ost of t hese m odels a re de terministic and do n ot
allow to model complex stochastic SSTD.

In [63, 10] a computational neuro-genetic model (CNGM)
ofa s inglen eurona nd S NN a re p resented t hat utilize
information about how some proteins and genes affect the
spiking activities ofa neuron, such as fast excitation, fast
inhibition, s low e xcitation,a nds lowi nhibition. An
important part of a CNGM is a dy namic ge ne r egulatory
network (GRN)m odelo f genes/proteinsa ndt heir
interaction over time that a ffect the spiking activity of the
neurons in the SNN. Depending on the task, the genes in a
GRN can represent either biological genes and proteins (for
biological a pplications) ors omes ystemp arameters
including probability pa rameters ( fore ngineering
applications).

Recently some new techniques have been developed that
allow the creation of new types of c omputational models,
e.g..p robabilistics pikingne uron m odels [66, 71];
probabilistic o ptimization o f f eatures a nd p arameters o f
eSNN [97, 96]; reservoir computing [73, 108]; personalized
modelling f rameworks [ 58,59] . This pa per reviews
methods and systems for SSTD that utilize the above and
some other contemporary SNN techniques along with their
applications.

2. Single Spiking Neuron Models

2.1 A biological neuron

A single biological neuron and the associated synapses is a
complex i nformation pr ocessing m achine, t hat i nvolves
short t erm i nformation pr ocessing, 1 ong t erm i nformation
storage, and evolutionary information stored as genes in the
nucleus of the neuron (Fig.2).

2.2 Single neuron models

Some o f the-state-of-the-art models of a spiking neuron
include: e arly models by H odgkin and Huxley [41] 1952;
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Fig.2. A single biological neuron with the associated synapses is a
complex information processing machine (from Wikipedia)

more recent models by Maas, Gerstner, Kistler, [zhikevich
and others, e.g.: Spike R esponse M odels (SRM) [ 33, 68];
Integrate-and-Fire Model (IFM) [33, 68]; Izhikevich models
[52-55], adaptive IFM, and others.

The most popular f or b oth bi ological m odeling a nd
engineering a pplications i s the | FM. The I FM ha s be en
realised on software-hardware platforms for the exploration
of patterns of activities in large scale SNN under different
conditions and for different applications. Several large scale
architectures of SNN using [FM have be en de veloped for
modeling b rain ¢ ognitive f unctionsa nd e ngineering
applications. Fig. 3(a) and (b) illustrate the structure and the
functionality o f the L eaky I FM ( LIFM) respectively. T he
neuronal p ost synaptic p otential ( PSP),a lsoc alled
membrane potential u(t), increases with every input spike at
a time ¢ multiplied to the synaptic efficacy (strength) until it
reaches a t hreshold. After that, an output spike is emitted
and the membrane potential is reset to an initial state (e.g.
0). Between spikes, the membrane potential leaks, which is
defined by a parameter.

An important part of a model of a neuron is the model of
the s ynapses. Most o f'the n euronal m odels as sume s calar
synaptic ef ficacy p arameters t hat ar ¢ s ubject t o 1 earning,
either on-line or off-line (batch mode). There are models of
dynamics s ynapses (e.g. [ 67, 71, 72]), where the s ynaptic
efficacy depends on s ynaptic p arameters t hat change over
time, representing bot h long term memory (the final
efficacy a fter | earning) and s hortt erm m emory — the
changes o fthe s ynaptic efficacy over as hortert ime
period not only during learning, but during recall as well.
One generalization of the LIFM and the dynamic synaptic
models is the probabilistic model of a neuron [66] as shown
in fig.4a, which is also a biologically plausible model [45,
68, 71]. The state of a spiking neuron n; is described by the
sum PSP i(t) o f the i nputs r eceived from al | m s ynapses.
When the PSP;i(t) reaches a firing threshold 3;(t), neuron n;
fires,i .e.i t emits a spike. Connection weights ( wj;,
j=1,2,..,m)as sociatedw ith thes ynapses are
determined during the learning phase using a learning rule.
Ina ddition tot hec onnection weightsw j;(t),t he
probabilistic s piking neuron model has the following three
probabilistic parameters:
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Fig.3. (a) The structure of the LIFM. (b) functionality of the LIFM
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¢ A probability p;;(t) that a spike emitted by neuron n; will
reachn euronn ; ata t imem oment ¢ throught he
connection between njand n;. If p;(t)=0, no connection
and no spike propagation exist between neurons n;and n;.
If pi(t) =1 the probability for propagation of spikesis
100%.

e A probability pgi(t) for the synapse s;j; to contribute to
the PSPi(t) after it has received a spike from neuron n;.

o A probability p;(t) for the neuron n; to emit an output spike
at time ¢ once the total PSP; (t) has reached a value above
the PSP threshold (a noisy threshold).

The total P SP(t) of the probabilistic spiking neuron n; is
now calculated using the following formula [66]:

PSPi(t) =2 (Zejlfl(pcj,i(t'p))f2(psj,i(t'p))wj,i(t)+n(t'tO)) )
p=to,..,t J=1,..m

where ¢;is 1, if a spike has been emitted from neuron n; and
0 otherwise; f(peji(t)) is 1 with a probability p .i(t), and 0
otherwise; f1(pyi(t))is 1 witha probability p 4;(t), and 0
otherwise; t, is the time of the last spike emitted by n;; n(t-ty)
is an additional term representing decay in the PSP;. Asa
special case, when all or some of the probability parameters
are fixed t o “ 17, t he a bove pr obabilistic m odel wi 1l be
simplified and will resemble the well known IFM. A similar
formulaw illb e usedw henal eakyl FMisusedas a
fundamental model, w hereat imed ecay p arameteri s
introduced.

It has been de monstrated that SNN that utilises the
probabilistic neuronal model c an learn better SSTD than
traditional SNN w ith simple [ FM, e specially in a nosy
environment [98, 83]. The effect of each of the above three
probabilistic parameters on the ability of a SNN to process
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Fig.4 (a) A simple probabilistic spiking neuron model (from [66]);
(b) Different types of noisy thresholds have different effects on the
output spikes (from [99, 98]).

noisy and stochastic information was studied in [98]. Fig.
4(b) presents the effect of different types of nosy thresholds
on the neuronal spiking activity.

2.3 A neurogenetic model of a neuron

A neurogenetic model of a neuron is proposed in [63] and
studiedin [ 10]. I tutilises information a bout how s ome
proteins and genes affect the spiking activities of a neuron
such as fast excitation, fast inhibition, slow excitation, and
slow inhibition. T able 1 shows some of the proteinsina
neuron and their relation to different spiking activities. For
ar eal cas e ap plication, a part from t he GABAB r eceptor
some other metabotropic and other receptors could be also
included. T hisi nformationi sus edt o calculatet he
contribution of each of the different synapses, connected to
a neuron n;, to its post synaptic potential PSPi(t):

N N
synapse __ [Synapse _ _ _
gif (S) =4 [exp[ Tsynap.wJ exp[ Tsynap.ve ]J
decay rise (3)

synapse
decay | rise

where ¢ are time constants representing the rise and

fall of an individual synaptic PSP; A is the PSP's amplitude;
&P representst he t ype o fa ctivity oft he synapse
between neuron jand neuroni that can be measured and
modelled s eparately for a fast e xcitation, f ast i nhibition,
slow e xcitation, a nd s low inhibition (iti s a ffected by
different genes/proteins). External inputs can also be added
to model ba ckground n oise, ba ckground oscillations o r

environmental information.

An important part of the model is a dynamic gene/protein
regulatory ne twork ( GRN)m odelo ft hedy namic
interactions between genes/proteins over time that affect the
spiking activity of the neuron. Although biologically
plausible, a GRN model is only a highly simplified general
model that does not necessarily take into account the exact
chemical an d m olecular i nteractions. A GRN m odel i s
defined by:

(a)  aset of genes/proteins, G= (g;,2,- -, &k);

(b) aninitial s tate o ft hel evel o fe xpression o ft he
genes/proteins G(t=0);

(c) aninitial state ofa connection matrix L = (Lyy,...,
L), where each element L;; defines the known level
of interaction (if any) between genes/proteins g; and
8i;

(d) activation functions f; for each gene/protein g; from
G.T his function defines the gene/protein
expression valuea tt ime ( t+1) depending o nt he
current valuesG (t),L (t)a nds omee xternal
information E(t):

gi(tr1)=fi (G(V), L(1), E(V) (4)

3. Learning and Memory in a Spiking Neuron
3.1 General classification

A learning process has an effect on the synaptic efficacy of
the s ynapses connected t o a s piking n euron a nd on the
information that is memorized. Memory can be:

- Short-term, r epresented a s a ¢ hanging P SP a nd
temporarily changing synaptic efficacy;

- Long-term, re presented a s a s table e stablishment
of the synaptic efficacy;

- Genetic (evolutionary), represented as a ch ange in
the genetic code and the gene/ protein expression
level as a result of the above short-term and long
term memory changes and evolutionary processes.

Learning in SNN can be:
- Unsupervised - thereis no desired output signal
provided;
- Supervised — a desired output signal is provided;
- Semi-supervised.

Different tasks can be learned by a neuron, e.g:
- Classification;
- Input-output spike pattern association.

Several bi ologically pl ausible | earning rules ha ve be en
introduced so far, depending on the type of the information
presentation: 3)

- Rate-order 1 earning, thatis based on the average
spiking activity of a neuron over time [18, 34, 43];

- Temporal learning, thatis based on precise s pike
times [44, 104, 106, 13, 42];

- Rank-order I earning, t hat t akes i nto a ccount t he
order of spikes across all synapses connected to a
neuron [105, 106].

Rate-order i nformation representation
cognitive information processing [18].

ist ypical f or
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Table 1. Neuronal action potential parameters and related proteins
and ion channels in the c omputational ne uro-genetic model of a
spiking ne uron: A MPAR - (amino- methylisoxazole- propionic
acid) AMP A r eceptor; NMDR - (N-methyl-D-aspartate a cid)
NMDA T eceptor; GAB ApR - (gamma-aminobutyric a cid)
GABA, receptor, GABAgR - GABAg receptor; SCN - sodium
voltage-gated ¢ hannel, K CN - kalium (potassium) vol tage-gated
channel; CLC - chloride channel (from Benuskova and Kasabov,
2007)

Different types of action
potential of a spiking neuron
used as parameters for its
computational model

Related neurotransmitters and
ion channels

Fast excitation PSP AMPAR

Slow excitation PSP NMDAR

Fast inhibition PSP GABA,R

Slow inhibition PSP GABAgR

Modulation of PSP mGIluR

Firing threshold Ton channels SCN, KCN, CLC

Temporal spike learning is observed in the auditory [93],
the wvisual[ 11]a ndt hem otorc ontroli nformation
processing of the brain [13, 90]. Its use in neuro-prosthetics
is e ssential, a long w ith a pplications for a fast, real-time
recognition a nd c ontrol of s equence of r elated p rocesses
[14].

Temporal coding accounts for the precise time of spikes
and has been utilised in several learning rules, most popular
being S pike-Time D ependent P lasticity ( STDP) [ 103, 69 ]
and S DSP [ 30, 14]. T emporal ¢ oding of inf ormation i n
SNN m akes useo ft hee xactt ime of s pikes( e.g.in
milliseconds). Every spike matters and its time matters too.

3.2 The STDP learning rule

The STDP learning rule uses Hebbian plasticity [39] in the
form of long-term potentiation (LTP) and depression (LTD)
[103, 69]. Efficacy of synapses is strengthened or weakened
based on the t iming of pos t-synaptic a ction p otential i n
relation t o t he p re-synaptic s pike (examplei s gi venin
Fig.5(a)). 1 fthe difference in the spike time b etween the
pre-synaptic and po st-synaptic ne urons i s ne gative ( pre-
synaptic neuron s pikes first) t han t he ¢ onnection weight
between the two neurons increases, otherwise it decreases.
Through STDP, ¢ onnected neuronsl earnc onsecutive
temporal a ssociations from d ata. P re-synaptic activity t hat
precedes p ost-synaptic f iringc ani nducel ong-term
potentiation ( LTP), r eversing t his t emporal or der c auses
long-term depression (LTD).

3.3 Spike Driven Synaptic Plasticity (SDSP)

The SDSP is an unsupervised learning method [30, 14], a
modification of the S TDP, that directs t he c hange of t he
synaptic p lasticity Vo ofa synapse w, depending on the
time of s piking o f the pre-synaptic ne uron a nd t he p ost-
synaptic neuron. V, increases or decreases, depending on
the relative timing of the pre- and post-synaptic spikes.

If a pre-synaptic s pike arrives at the s ynaptic t erminal
before a p ostsynaptic spike within a critical time window,
the synaptic efficacy is increased (potentiation). If the post-

AF (96)

— AL (Ms)
L} L} L} L
20

o

Output =

(b)

Fig.5. (a) An example of s ynaptic change in a S TDP | earning
neuron [103]; (b) Rank-order learning neuron. .

synaptic spike is emitted just before the pre-synaptic spike,
synaptic efficacy is decreased (depression). This change in
synaptic efficacy can be expressed as:

I (¢ .
AVw() = %IMI)AISADI( if tpre < tpost (5)
P
1, (t
AV, = —me i fyoss < bore ©6)

d
where Az, ist hep re- and po st-synaptic s pike t ime

window.

The SDSP rule can be used to implement a supervised
learning al gorithm, w hen a t eacher s ignal, that c opies the
desired output s piking sequence, is entered along with the
training s pike pa ttern, but wi thout a ny ¢ hange o ft he
weights of the teacher input.

The SDSP model is implemented as an VLSI analogue
chip [49]. The silicon synapses comprise bistability circuits
for drivinga s ynaptic weightt o one o ft wo possible
analogue va lues (either p otentiated or depressed). T hese
circuits drive the synaptic-weight voltage with a current that
is superimposed on that generated by the STDP and which
can be either positive or negative. If, on short time scales,
the synaptic weight is increased above a set threshold by the
network activity via the STDP learning mechanism, the bi-
stability circuits generate a constant weak positive current.
In the absence of activity (and hence learning) this current
will d rive t he w eight t oward i ts potentiated s tate. If't he
STDP decreases t he s ynaptic we ight below the threshold,
the bi-stability circuits will generate a negative current that,
in the absence o f spiking a ctivity, will a ctively d rive t he
weight t oward the analogue value, encoding its de pressed
state. The S TDP and b i-stability c ircuits f acilitate t he
implementation of both long-term and short term memory.

3.4 Rank-order learning

The rank-order 1earning rule us es im portant i nformation
from the input spike trains — the rank of the first incoming
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PlosONE, Jan2008))

spike on each synapse (Fig.5(b)). It establishes a priority of
inputs (synapses) based on the order of the spike arrival on
these s ynapses f ora particular pattern, w hichi s a
phenomenon observed in biological systems as well as an
important i nformation processing c oncept for some S TPR
problems, such as computer vision and control [ 105, 106].
This learning makes use of the extra information of s pike
(event) order. It has several advantages when used in SNN,
mainly: fast learning (as it uses the extra information of the
order of the incoming spikes) and asynchronous data entry
(synaptici nputsa rea ccumulatedi ntot he neuronal
membrane potential in an asynchronous way). The learning
is most appropriate for AER input data streams [23] as the
events and their addresses are entered into the SNN ‘one by
one’, in the order of their happening.

The postsynaptic potential o fa neuron i ata time ¢ is
calculated as:

PSP(i,t) = Y mod” ™ w (7)
J

where mod 1is a modulation factor; j is the ind ex for the
incoming spike at synapse j,i and w;; is the corresponding
synaptic weight; order(j) represents the order (the rank) of
the spike at the synapse j,i among all spikes arriving from
all m synapses to the neuron i. The order(j) has a value 0
for the first spike and increases according to the input spike
order. An output spike is generated by neuroni if the PSP
(i,7) becomes higher than a threshold PSPTh (7).

During t he t raining p rocess, f or e ach t raining i nput
pattern (sample, example)t he connection weights are
calculated based on the order of the incoming spikes [105]:

AVVj,l' (l): mod order (j,i (7)) (8)

3.5 Combined rank-order and temporal learning

In [25] a method for a combined rank-order and temporal
(e.g. SDSP) learning is proposed and tested on benchmark
data. The initial value of a synaptic weight is set according
to the rank-order learning based on the first incoming spike
on this synapse. The weight is further modified to

Input pattemn

Tar?is pike Train
1 1 1 1 1
; T
et e tel it
f a4 '

1 = e S
& % 00 150 300 0 1% 50 200 125450675 0
time in msec time in msec Error
A single output neuron is trained to respond with a temporally precise
output spike train to a specific spatio-temporal input.

(@)

(A} / (B)

Evolution of post-synaptic potential
#

4’ AN
g Y {\N Neural autput and its transarmation
X <

Input spikes

2
3 ,\\_/ . i 2_,-— "' Desried output and its transformation

Auy = [ £ Wd = Yot Mol

Transformed input

6 20 a0 60 80 100 0 20 a0 60 80 100 0 20 40 60 B0 100
time in msec me in msec ne In msec

Mlustration of the proposed training algorithm.

(b)

time
10
100 100 oo
109 " o
7
Bl
El
10! £
£ H
o S B0
-3 e .
: £ |4
= =
2 £ ap|
10 ]
20
EEm Training)
W Teting |
10 50 00 150 00 L e 4 5

Cings

Evolution of the average erros obtained in 3o independent trails for each
class of the training samples, and the average accuracies obtained in the
Lraining and testing phase.

(d)

Fig.7 (a) T he S PAN model [77]. (b) The W idrow-Hoff D elta
learning rule applied to learn to associate an output spike sequence
toaninput STP [77,30]. (¢) The use of a single SPAN neuron
for the classification of 5 STP belonging to 5 different classes [77].
(d) The accuracy of classification is rightly lower for the class 1 —
spike atthe very beginning of the inputpatternasthereisno
sufficient input data).
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Fig.8: (a) Multiple SPAN neurons [76]. (b) Multiple SDSP trained
neurons [14]

accommodate following spikes on this synapse with the use
of a temporal learning rule — SDSP.

4. STPR in a Single Neuron

In c ontrast t o the distributed r epresentation t heory and to
the wi dely p opular vi ew t hat a s ingle ne uron ¢ annot do
much, s ome r ecent r esults s howed t hat a single neuronal
model can be used for complex STPR.

A single LIF ne uron, for example, with simple synapses
can be trained with the STDP unsupervised learning rule to
discriminate a repeating pattern of s ynchronised spikes on
certain s ynapses f rom noi se ( from: T.M asquelier, R .
Guyonneau and S. Thorpe, PlosONE, Jan2008) — see Fig. 6.

Single neuron models have been introduced for S TPR,
such as: Temportron [38]; Chronotron [28]; ReSuMe [ 87];
SPAN [76, 77]. Each of them can learn to emit a spike or a
spike pattern ( spike s equence) whena c ertain S TP1i s
recognised. Some of them can be used to recognise multiple
STP per class and multiple classes [87, 77, 76].

'Fig.7(a)-(d) showa S PANne urona nd itsu sefo r
classification of 5 STP belonging to 5 different classes [77].
The accuracy of classification is rightly lower for the class
1 (the neuron e mits a s pike atthe very b eginning o fthe
input pattern) as there is no sufficient input data — Fig.7(d).)
[77].

Dptimization

Spatio / Spectrg.- Temporal

Machine LEa
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Learning
Algarithm

ing\Systemnm™

5. Evolving Spiking Neural Networks

Despite the ability of a single neuron to conduct STPR, a
single neuron has a limited power and complex STPR tasks
will require multiple spiking neurons.

One approach is proposed in the evolving spiking neural
networks (eSNN) framework [61, 111]. eSNN evolve their
structure a nd f unctionality i na n on-line manner, f rom
incoming information. F or every new input pattern, a new
neuron is dynamically allocated and connected to the input
neurons (feature ne urons). T he ne urons ¢ onnections are
established for t he ne uron t o r ecognise t his pa ttern (or a
similar one) as a positive example. T he neurons represent
centres of clusters in the space of the synaptic weights. In
some implementations similar neurons are merged [61, 115].
That makes it possible to achieve a very fast learning in an
eSNN ( only o ne pass may ben ecessary),b oth ina
supervised and in an unsupervised mode.

In [76] multiple SPAN neurons are evolved to achieve a
better accuracy of s pike p attern g eneration t han a s ingle
SPAN - Fig.8(a).

In [14] the SDSP model from [30] has been successfully
used to train and test a SNN for 293 character recognition
(classes). Each character (a static image) is represented as
2000 bit feature vector, and each bit is transferred into spike
rates, w ith 50Hz s pike bursttorepresent 1and0 Hzto
represent 0. For each class, 20 different training patterns are
used and 2 0 neurons a re a llocated, one for e ach p attern
(altogether 5 860) ( Fig.8(b))a ndt rained fors everal
hundreds of iterations.

A general framework of e SNN for STPR is shownin
Fig.9. It consists of the following blocks:

- Input data encoding block;

- Machine learning bl ock ( consisting of several sub-

blocks);

- Output block.

Int he i nput block ¢ ontinuous value i nput variables a re
transformed into spikes. Different approaches can be used:

- population rank coding [13] — Fig.10(a);

- thresholding thei nput value,s o thata s pikei s
generated i ft he i nput value ( e.g. pixel i ntensity)is
above a threshold;

- Address Event R epresentation ( AER) - thresholding
the difference be tween two consecutive values of the

Dutput
Function

Training
Signal

I Pattern Rcccgmunn‘ Pattern Recognition| || Pattern Recogaition

Ry ———

Fig.9. The eSNN framework for STPR (from: httn://ncs.ethz.ch/nroiects/evosnike)
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Fig.10. (a) Population rank order coding of input information; (b)
Address E vent Representations (A ER) of t he input i nformation
[23].

same variable over time as it is in the artificial cochlea
[107] and artificial retina devices [23] — Fig.10(b).

The input information is entered either on-line (for on-line,
real time applications) or as a batch data. The time of the
input dataisin principal different from the internal SNN
time of information processing.

Long and c omplex S STD cannot be 1 earned in s imple
one-layer n euronal structures as the e xamples in Fig.8(a)
and ( b). T hey re quire neuronal ‘ buffers’ a s s hown in
Fig.11(a). In[ 82] a3D bu ffer was used to store spatio-
temporal ‘chunks’ of input data before the data is classified.
In this case the size of the chunk (both in space and time) is
fixed by the size of the reservoir. There are no connections
betweent hel ayersi nt he buffer. S till,t hes ystem
outperforms t raditional ¢ lassification t echniquesa sitis
demonstrated on sign language r ecognition, w here ¢ SNN
classifier was applied [61, 115].

Reservoir ¢ omputing [ 73, 108] ha s a Iready be come a
popular a pproach forS STD m odellinga nd pattern
recognition. I nt hec lassical v iewa ‘reservoir’i sa
homogeneous, pa ssive 3D s tructure o fp robabilistically
connected a nd f ixed ne urons t hati n principle hasn o
learning and memory, neither it has an interpretable
structure — fig.11b. A reservoir, suchasa L iquid State
Machine (LSM)[ 73, 37],us uallyus es small wo rid
recurrent connections that do not facilitate capturing
explicit spatial and temporal components from the SSTD in
their relationship, which is the main goal of learning SSTD.
Despite difficulties with the LSM reservoirs, it was shown
on several SSTD problems that they produce better results
than us ing a simple classifier [ 95, 73,99 ,60] . Some
publications d emonstrated t hat p robabilistic ne urons a re
suitable f or r eservoir ¢ omputing ¢ speciallyi na n oisy
environment [98, 83].
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Fig.11. (a) An eSNN architecture for STPR using a reservoir; (b)
The structure and connectivity of a reservoir

In [81] an improved accuracy of LSM reservoir structure
on pattern c lassification of hypothetical t asks is a chieved
when STDP learning was introduced into the reservoir. The
learning is based on comparing the liquid states for different
classes and adjusting the connection w eights so that same
class inputs have closer connection weights. The method is
illustrated on the phone recognition task of the TIMIT data
base phonemes — spectro-temporal problem. 13 MSCC are
turned i nto t rains o f's pikes. T he m etric o f's eparation
between liquid statesr epresenting different classes is
similar to the Fisher’s ¢-test [27].

After a presentation of input data example (or a ‘chink’ of
data) the state of the SNN reservoir S(¢) is evaluated in an
output m odule a nd us ed f or c lassification p urposes ( both
during training and recall phase). Different methods can be
applied to capture this state:

- Spike rate activity of a// neurons at a certain time window:
The state of the reservoir is represented as a v ector of n
elements (n is the number o f neurons in the reservoir),
each element representing the spiking probability of the
neuron within a time w indow. Co nsecutive v ectors are
passed to train/recall an output classifier.

- Spike rate activity of spatio-temporal clusters C;, C,, ...
C; of close (both in space and time) neurons: The state
Sci(?) of each cluster C; is represented by a single number,
reflecting o n the s piking a ctivity of the neurons in the
cluster in a defined time window (this is the internal SNN
time, usually measured in ‘msec’). This is interpreted as
the current s piking probability of the cluster. The states
of all clusters define the current reservoir state S(7). In the
output function, t he c lusters tates Sc(f) areu sed
differently for different tasks.

- Continuous function r epresentation o f's pike t rains: In
contrast to the above two methods that use spike rates to
evaluate the s piking a ctivity of a neuron or a ne uronal
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cluster, here the train of spikes from each neuron within a
time window, or a neuronal cluster, is transferred into a
continuous value temporal function using a kernel (e.g.
a-kernel). T hese f unctions can be co mparedan d a
continuous value error measured.

In [95] a comparative analysis of the three methods above is
presented on a case study of Brazilian sign language gesture
recognition (see Fig.18) using a LSM as a reservoir.

Different a daptive c lassifiers ¢ an be e xplored fort he
classification of the reservoir s tate into one o fthe output
classes, i ncluding: s tatistical t echniques, ¢ .g. regression
techniques; MLP; eSNN; n earest-neighbour te chniques;
incremental LDA [85]. State vector transformation, before
classification canb ed onew itht he useo fa daptive
incremental t ransformation functions, s uch as incremental
PCA [84].

6. Computational Neurogenetic Models
(CNGM)

Here, t he n eurogenetic model of a neuron [63,1 0]1is

utilized. A CNGM framework is shown in Fig.12 [64].

The CNGM framework comprises a set of methods and
algorithms t hat support the development o f c omputational
models, each of them characterized by:

- Two-tire, consisting of an eSNN at the higher level and a
gene regulatory network (GRN) at the lower level, each
functioning a t a d ifferent t ime-scale and co ntinuously
interacting between each other;

- Optional us e of pr obabilistic spiking ne urons,
forming an epSNN;

thus
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Chunk n
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Probabilistic Parameters

Gene Regulatory Nelwork

Learning and Spatio Temporal Clustering in epSNNR's

- Parametersi nt heep SNNm odelar ed efinedb y
genes/proteins from the GRN;

- Can capture in its internal representation both spatial and
temporal characteristics from SSTD streams;

- The structure and the functionality of the model evolve in
time from incoming data;

- Both unsupervised a nd s upervised 1 earning a lgorithms
can be applied in an on-line or in a batch mode.

- A concrete model would have a s pecific structure and a
set of a lgorithms de pending on t he problem a ndt he
application conditions, e.g.: classification of SSTD;
modelling of brain data.

The framework f rom Fig.12 supports t he c reation of a
multi-modular integrated s ystem, w here di fferent modules,
consisting of d ifferentne uronal typ esa ndge netic
parameters, r epresent different f unctions ( e.g.: vision;
sensory information processing; sound recognition; m otor-
control) and the whole system works in an integrated mode.

The ne urogenetic model from Fig.12 usesas am ain
principle the a nalogy w ith biological factsa bout the
relationship between spiking activity and gene/protein
dynamics i n or dert o c ontrol t he 1 earning a nd s piking
parametersin a SNN when SSTD i sl earned. B iological
support of this can be found in numerous publications (e.g.
[10, 40, 117, 118]).

The A llen Human Brain A tlas (www.brain-map.org) o f
the A llen Institute for Br ain S cience
(www.alleninstitute.org) has shown that at least 82% of the
human ge nesa ree xpressedi nt he brain. F or 1000
anatomical sites o f the brains of two individuals 100 mIn
data p oints are co llected that indicate gene ex pressions o f
each of the genes and underlies the biochemistry of the sites.
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Fig.12. A schematic diagram of a CNGM framework, consisting of: input encoding module; a SNN reservoir output function for SNN
state e valuation; output classifier; G RN (op tional m odule). T he framework can be used to create ¢ oncrete m odels for STPR or data

modelling (from [64]).
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Neuran

time

Fig.13. A GRN interacting with a SNN reservoir of 1000 neurons. The GRN controls a single parameter, i.e. the T parameter of all 1000 LIF

neurons, over a period of five seconds. The top diagram shows the evolution of

7. The response of the SNN is shown as a raster plot of

spike activity. A black point in this diagram indicates a spike of a specific neuron at a specific time in the simulation. The bottom diagram
presents the evolution of the membrane potential of a single neuron from the network (green curve) along with its firing threshold 9 (red
curve). Output spikes of the neuron are indicated as black vertical lines in the same diagram (from [65]).

In[ 18]itis suggestedthatb oththe firingr ate (rate
coding) and spike timing as s patiotemporal patterns (rank
order and s patial pattern c oding) play a rolein fastand
slow, dy namica nda daptives ensorimotor r esponses,
controlled by the cerebellar nuclei. Spatio-temporal patterns
of population of Purkinji cells are shaped by activities in the
molecular layer of interneurons. In [40] it is demonstrated
that t he t emporal s piking dy namics de pend on the s patial
structure of t he neural system (e .g. different for the
hippocampus and the cerebellum). In the hippocampus the
connections are scale free, e.g. there are hub neurons, while
in the c erebellum the c onnections are regular. T he s patial
structure depends on genetic pre-determination and on the
gene dynamics. Functional connectivity develops in parallel
with s tructural connectivity during b rain maturation. A
growth-elimination p rocess ( synapses a re cr eateda nd
eliminated)d ependo ng ene expression [40], e.g.
glutamatergic ne urons issued f rom the s ame progenitors
tend t o wi re together a nd f orm e nsembles, a Iso for t he
cortical G ABAergic i nterneuron p opulation. Co nnections
between e arly de veloped ne urons (mature ne tworks) a re
more stable and reliable when transferring spikes than the
connections b etween n ewly created neurons (thust he
probability of s pike t ransfer). Postsynaptic A MPA-type
glutamate r eceptors (  AMPARs) m ediatem ostf ast
excitatory synaptic transmissions and are crucial for many
aspects of brain function, including learning, memory and
cognition [10, 31].

It w as shown the dramatic e ffect of a ch ange of single
gene, that regulates the t parameter of the neurons, on the
spiking activity o f the whole SNN of 1000 neurons — see
Fig.13 [65].

The spiking activity of a neuron may affect as a feedback
the expressions of genes [5]. As pointed in[118] on a
longer time s cales of minutes and hours the function of
neurons may cause the changes of the expression of
hundreds of genes transcribed into mRNAs and also in
microRNAs, which makes the short-term, the long-term and

the genetic memories of a neuron linked together in a global
memory of the neuron and further - of the w hole neural
system.

A major problem with the CNGM from fig.12 is how to
optimize t he numerous pa rameters o ft he m odel. One
solution could be using evolutionary c omputation, such as
PSO [75, 83] and the recently proposed quantum inspired
evolutionary computation techniques [22, 97, 96]. The latter
can deal withav eryl arged imensional space as eac h
quantum-bit chromosome represents the whole space, each
point to certain probability. Such algorithms are faster and
lead to a close solution to the gl obal o ptimum ina very
short time.

In onea pproachi tm ayb er easonable tou ses ame
parameter values (same GRN) for all neurons in the SNN or
for each of different types of neurons (cells) that will results
in a significant reduction of the parameters to be optimized.
This can be interpreted as ‘average’ parameter value for the
neurons of the same type. This approach corresponds to the
biological notion tous eone va lue( average)of a
gene/protein e xpressionf orm illionso fc ellsi n
bioinformatics.

Another a pproacht o definet he parameterso ft he
probabilistic s piking ne urons, ¢ specially whe n usedi n
biological s tudies, i st o use p rior k nowledge a bout t he
association ofs pikingpa rametersw ithr elevant
genes/proteins ( neuro-transmitter, n  euro-receptor, ion
channel,n euro-modulator)a s described in [64].
Combination of the two approaches above is also possible.

7. SNN Software and hardware
implementations to support STPR

Software a nd h ardware re alisations o f S NN a re a lready
available to support various applications of SNN for STPR.
Among the most popular software/hardware systems are [24,
16, 29]:

- JAER (http://jaer.wiki.sourceforge.net) [23];
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Fig.14. A hypothetical neuromorphic SNN application system
(from http://ncs.ethz.ch)

- Software simulators, such as Brian [16], Nestor,
NeMo [79],etc;

- Silicon retina camera [23];

- Silicon cochlea [107];

- SNN h ardware r ealisation of LIFM an d S DSP
[47-501;

- The S piNNaker hardware/software e nvironment
[89, 116];

- FPGA implementations of SNN [56];

- The IBM LIF SNN chip, recently announced.

Fig.14 shows a hypothetical engineering system using some
of the above tools (from [47, 25]).

8. Current and Future Applications of eSNN
and CNGM for STPR

Numerous are t he a pplications of e SNN for STPR. Here
only few of them are listed:

- Moving object recognition (fig. 15) [23, 60];

- EEG data modelling and pattern recognition [70, 1,51,
21,26, 99, 35,3 6] directed t o p ractical a pplications,
such as: BCI [51], classification of epilepsy [ 35, 36,
109] - (fig.16);

- Robot ¢ ontrol th rough E EG s ignals [ 86] ( fig.17) and
robot navigation [80];

- Sign la nguage gesture recognition ( e.g. t he Br azilian
sign language — fig.18) [95];

- Risk ofe vente wvaluation,e .g. prognosiso f
establishment of invasive species [ 97] — fig.19; stroke
occurrence [6], etc.

- Cognitive and emotional robotics [8, 64];

- Neuro-rehabilitation robots [110];

- Modelling finite automata [17, 78];

- Knowledge discovery from SSTD [101];

- Neuro-genetic robotics [74];

- Modelling the progression or the response to treatment
of n eurodegenerative diseases, s uch as Alzheimer’s
Disease [94, 64] — fig.20. The analysis of the obtained
GRN model in this case could enable the discovery of
unknown interactions between genes/proteins related to
a brain disease progression and how these interactions
can be modified to achieve a desirable effect.

(a) (b)

Fig.15.Moving object recognition with the use of AER [23]. (a)
Disparity map of a video sample; (b) Address event representation
(AER) of the above video sample.

Liquid State Machine Readout Function

EEG Stream

t

Spatio - Temporal Data Pattern Recognition

t
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Fig.16. EEG based BCI.

Fig.17. Robot control and navigation
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Fig.18. A single sample for each of t he 15 classes of t he LIngua
BRAsileirad e Sinais (L IBRAS) - the offi cial Bra zilian s ign
language i s s hown. T he ¢ olour i ndicates t he time fra me of a
given d ata poi nt (bl ack/white correspondst o earlier/later time
points) [95].
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- Modelling financial a nd e conomic pr oblems ( neuro-
economics) where at a ‘lower’ level the GRN represents
the d ynamic i nteraction between time s eries v ariables
(e.g. stock index values, exchange rates, unemployment,
GDP, p rize o f o il), while t he  higher’ | evel e pSNN
states represents the state of the economy or the system
under s tudy. The s tates can b e further cl assified i nto
pre-define c lasses ( e.g. buy, h old, s ell, i nvest, I ikely
bankruptcy) [113];

- Personalized m odelling, w hich i s ¢ oncerned with t he
creation of a single model for an individual input data
[58, 59, 62]. Here as an individual data a whole SSTD
pattern is taken rather than a single vector.
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