15,021 research outputs found

    On the design of state-of-the-art pseudorandom number generators by means of genetic programming

    Get PDF
    Congress on Evolutionary Computation. Portland, EEUU, 19-23 June 2004The design of pseudorandom number generators by means of evolutionary computation is a classical problem. Today, it has been mostly and better accomplished by means of cellular automata and not many proposals, inside or outside this paradigm could claim to be both robust (passing all the statistical tests, including the most demanding ones) and fast, as is the case of the proposal we present here. Furthermore, for obtaining these generators, we use a radical approach, where our fitness function is not at all based in any measure of randomness, as is frequently the case in the literature, but of nonlinearity. Efficiency is assured by using only very efficient operators (both in hardware and software) and by limiting the number of terminals in the genetic programming implementation

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Stepping Stones to Inductive Synthesis of Low-Level Looping Programs

    Full text link
    Inductive program synthesis, from input/output examples, can provide an opportunity to automatically create programs from scratch without presupposing the algorithmic form of the solution. For induction of general programs with loops (as opposed to loop-free programs, or synthesis for domain-specific languages), the state of the art is at the level of introductory programming assignments. Most problems that require algorithmic subtlety, such as fast sorting, have remained out of reach without the benefit of significant problem-specific background knowledge. A key challenge is to identify cues that are available to guide search towards correct looping programs. We present MAKESPEARE, a simple delayed-acceptance hillclimbing method that synthesizes low-level looping programs from input/output examples. During search, delayed acceptance bypasses small gains to identify significantly-improved stepping stone programs that tend to generalize and enable further progress. The method performs well on a set of established benchmarks, and succeeds on the previously unsolved "Collatz Numbers" program synthesis problem. Additional benchmarks include the problem of rapidly sorting integer arrays, in which we observe the emergence of comb sort (a Shell sort variant that is empirically fast). MAKESPEARE has also synthesized a record-setting program on one of the puzzles from the TIS-100 assembly language programming game.Comment: AAAI 201

    Searching for invariants using genetic programming and mutation testing

    Get PDF
    Invariants are concise and useful descriptions of a program's behaviour. As most programs are not annotated with invariants, previous research has attempted to automatically generate them from source code. In this paper, we propose a new approach to invariant generation using search. We reuse the trace generation front-end of existing tool Daikon and integrate it with genetic programming and a mutation testing tool. We demonstrate that our system can find the same invariants through search that Daikon produces via template instantiation, and we also find useful invariants that Daikon does not. We then present a method of ranking invariants such that we can identify those that are most interesting, through a novel application of program mutation

    A generic optimising feature extraction method using multiobjective genetic programming

    Get PDF
    In this paper, we present a generic, optimising feature extraction method using multiobjective genetic programming. We re-examine the feature extraction problem and show that effective feature extraction can significantly enhance the performance of pattern recognition systems with simple classifiers. A framework is presented to evolve optimised feature extractors that transform an input pattern space into a decision space in which maximal class separability is obtained. We have applied this method to real world datasets from the UCI Machine Learning and StatLog databases to verify our approach and compare our proposed method with other reported results. We conclude that our algorithm is able to produce classifiers of superior (or equivalent) performance to the conventional classifiers examined, suggesting removal of the need to exhaustively evaluate a large family of conventional classifiers on any new problem. (C) 2010 Elsevier B.V. All rights reserved

    Evolution and development of complex computational systems using the paradigm of metabolic computing in Epigenetic Tracking

    Full text link
    Epigenetic Tracking (ET) is an Artificial Embryology system which allows for the evolution and development of large complex structures built from artificial cells. In terms of the number of cells, the complexity of the bodies generated with ET is comparable with the complexity of biological organisms. We have previously used ET to simulate the growth of multicellular bodies with arbitrary 3-dimensional shapes which perform computation using the paradigm of "metabolic computing". In this paper we investigate the memory capacity of such computational structures and analyse the trade-off between shape and computation. We now plan to build on these foundations to create a biologically-inspired model in which the encoding of the phenotype is efficient (in terms of the compactness of the genome) and evolvable in tasks involving non-trivial computation, robust to damage and capable of self-maintenance and self-repair.Comment: In Proceedings Wivace 2013, arXiv:1309.712
    • 

    corecore